예제 #1
0
        public void Generate()
        {
            IAudioStream audioStream = inputTrack.File ?
                                       AudioStreamFactory.FromFileInfoIeee32(inputTrack.FileInfo) :
                                       inputTrack.Stream;

            audioStream = new MonoStream(audioStream);
            audioStream = new ResamplingStream(audioStream, ResamplingQuality.Medium, profile.SampleRate);

            STFT stft = new STFT(audioStream, profile.FrameSize, profile.FrameStep, WindowType.Hann, STFT.OutputFormat.Decibel, this.bufferSize);

            index   = 0;
            indices = stft.WindowCount;

            frameBuffer = new float[profile.FrameSize / 2];
            List <SubFingerprint> subFingerprints = new List <SubFingerprint>();

            while (stft.HasNext())
            {
                // Get FFT spectrum
                stft.ReadFrame(frameBuffer);

                // Sum FFT bins into target frequency bands
                profile.MapFrequencies(frameBuffer, bands);

                CalculateSubFingerprint(bandsPrev, bands, subFingerprints);

                CommonUtil.Swap <float[]>(ref bands, ref bandsPrev);
                index++;

                // Output subfingerprints every once in a while
                if (index % this.eventInterval == 0 && SubFingerprintsGenerated != null)
                {
                    SubFingerprintsGenerated(this, new SubFingerprintsGeneratedEventArgs(inputTrack, subFingerprints, index, indices));
                    subFingerprints.Clear();
                }
            }

            // Output remaining subfingerprints
            if (SubFingerprintsGenerated != null)
            {
                SubFingerprintsGenerated(this, new SubFingerprintsGeneratedEventArgs(inputTrack, subFingerprints, index, indices));
            }

            if (Completed != null)
            {
                Completed(this, EventArgs.Empty);
            }

            audioStream.Close();
        }
예제 #2
0
        public void Generate(AudioTrack track)
        {
            IAudioStream audioStream = new ResamplingStream(
                new MonoStream(AudioStreamFactory.FromFileInfoIeee32(track.FileInfo)),
                ResamplingQuality.Medium, profile.SamplingRate);

            STFT stft            = new STFT(audioStream, profile.WindowSize, profile.HopSize, WindowType.Hann, STFT.OutputFormat.Decibel);
            int  index           = 0;
            int  indices         = stft.WindowCount;
            int  processedFrames = 0;

            float[] spectrum         = new float[profile.WindowSize / 2];
            float[] smoothedSpectrum = new float[spectrum.Length - profile.SpectrumSmoothingLength + 1]; // the smooved frequency spectrum of the current frame
            var     spectrumSmoother = new SimpleMovingAverage(profile.SpectrumSmoothingLength);

            float[] spectrumTemporalAverage = new float[spectrum.Length]; // a running average of each spectrum bin over time
            float[] spectrumResidual        = new float[spectrum.Length]; // the difference between the current spectrum and the moving average spectrum

            var peakHistory = new PeakHistory(1 + profile.TargetZoneDistance + profile.TargetZoneLength, spectrum.Length / 2);
            var peakPairs   = new List <PeakPair>(profile.PeaksPerFrame * profile.PeakFanout); // keep a single instance of the list to avoid instantiation overhead

            var subFingerprints = new List <SubFingerprint>();

            while (stft.HasNext())
            {
                // Get the FFT spectrum
                stft.ReadFrame(spectrum);

                // Skip frames whose average spectrum volume is below the threshold
                // This skips silent frames (zero samples) that only contain very low noise from the FFT
                // and that would screw up the temporal spectrum average below for the following frames.
                if (spectrum.Average() < spectrumMinThreshold)
                {
                    index++;
                    continue;
                }

                // Smooth the frequency spectrum to remove small peaks
                if (profile.SpectrumSmoothingLength > 0)
                {
                    spectrumSmoother.Clear();
                    for (int i = 0; i < spectrum.Length; i++)
                    {
                        var avg = spectrumSmoother.Add(spectrum[i]);
                        if (i >= profile.SpectrumSmoothingLength)
                        {
                            smoothedSpectrum[i - profile.SpectrumSmoothingLength] = avg;
                        }
                    }
                }

                // Update the temporal moving bin average
                if (processedFrames == 0)
                {
                    // Init averages on first frame
                    for (int i = 0; i < spectrum.Length; i++)
                    {
                        spectrumTemporalAverage[i] = spectrum[i];
                    }
                }
                else
                {
                    // Update averages on all subsequent frames
                    for (int i = 0; i < spectrum.Length; i++)
                    {
                        spectrumTemporalAverage[i] = ExponentialMovingAverage.UpdateMovingAverage(
                            spectrumTemporalAverage[i], profile.SpectrumTemporalSmoothingCoefficient, spectrum[i]);
                    }
                }

                // Calculate the residual
                // The residual is the difference of the current spectrum to the temporal average spectrum. The higher
                // a bin residual is, the steeper the increase in energy in that peak.
                for (int i = 0; i < spectrum.Length; i++)
                {
                    spectrumResidual[i] = spectrum[i] - spectrumTemporalAverage[i] - 90f;
                }

                // Find local peaks in the residual
                // The advantage of finding peaks in the residual instead of the spectrum is that spectrum energy is usually
                // concentrated in the low frequencies, resulting in a clustering of the highest peaks in the lows. Getting
                // peaks from the residual distributes the peaks more evenly across the spectrum.
                var peaks = peakHistory.List;             // take oldest list,
                peaks.Clear();                            // clear it, and
                FindLocalMaxima(spectrumResidual, peaks); // refill with new peaks

                // Pick the largest n peaks
                int numMaxima = Math.Min(peaks.Count, profile.PeaksPerFrame);
                if (numMaxima > 0)
                {
                    peaks.Sort((p1, p2) => p1.Value == p2.Value ? 0 : p1.Value < p2.Value ? 1 : -1); // order peaks by height
                    if (peaks.Count > numMaxima)
                    {
                        peaks.RemoveRange(numMaxima, peaks.Count - numMaxima);                       // select the n tallest peaks by deleting the rest
                    }
                    peaks.Sort((p1, p2) => p1.Index == p2.Index ? 0 : p1.Index < p2.Index ? -1 : 1); // sort peaks by index (not really necessary)
                }

                peakHistory.Add(index, peaks);

                if (FrameProcessed != null)
                {
                    // Mark peaks as 0dB for spectrogram display purposes
                    foreach (var peak in peaks)
                    {
                        spectrum[peak.Index]         = 0;
                        spectrumResidual[peak.Index] = 0;
                    }

                    FrameProcessed(this, new FrameProcessedEventArgs {
                        AudioTrack = track, Index = index, Indices = indices,
                        Spectrum   = spectrum, SpectrumResidual = spectrumResidual
                    });
                }

                processedFrames++;
                index++;

                if (processedFrames >= peakHistory.Length)
                {
                    peakPairs.Clear();
                    FindPairsWithMaxEnergy(peakHistory, peakPairs);
                    ConvertPairsToSubFingerprints(peakPairs, subFingerprints);
                }

                if (subFingerprints.Count > 512)
                {
                    FireFingerprintHashesGenerated(track, indices, subFingerprints);
                    subFingerprints.Clear();
                }
            }

            // Flush the remaining peaks of the last frames from the history to get all remaining pairs
            for (int i = 0; i < profile.TargetZoneLength; i++)
            {
                var peaks = peakHistory.List;
                peaks.Clear();
                peakHistory.Add(-1, peaks);
                peakPairs.Clear();
                FindPairsWithMaxEnergy(peakHistory, peakPairs);
                ConvertPairsToSubFingerprints(peakPairs, subFingerprints);
            }
            FireFingerprintHashesGenerated(track, indices, subFingerprints);

            audioStream.Close();
        }
        /// <summary>
        /// This method generates hash codes from an audio stream in a streaming fashion,
        /// which means that it only maintains a small constant-size state and can process
        /// streams of arbitrary length.
        ///
        /// Here is a scheme of the data processing flow. After the subband splitting
        /// stage, every subband is processed independently.
        /// 
        ///                    +-----------------+   +--------------+   +-----------+
        ///   audio stream +---> mono conversion +---> downsampling +---> whitening |
        ///                    +-----------------+   +--------------+   +---------+-+
        ///                                                                       |
        ///                        +-------------------+   +------------------+   |
        ///                        | subband splitting <---+ subband analysis <---+
        ///                        +--+---+---+---+----+   +------------------+
        ///                           |   |   |   |
        ///                           |   v   v   v
        ///                           |  ... ... ...
        ///                           |
        ///                           |   +------------------+   +-----------------+
        ///                           +---> RMS downsampling +---> onset detection |
        ///                               +------------------+   +----------+------+
        ///                                                                 |
        ///                                    +-----------------+          |
        ///   hash codes   <-------------------+ hash generation <----------+
        ///                                    +-----------------+
        ///
        /// The hash codes from the hash generators of each band are then sent though a
        /// sorter which brings them into sequential temporal order before they are stored
        /// in the final list.
        /// </summary>
        /// <param name="track"></param>
        public void Generate(AudioTrack track)
        {
            IAudioStream audioStream = new ResamplingStream(
                new MonoStream(AudioStreamFactory.FromFileInfoIeee32(track.FileInfo)),
                ResamplingQuality.Medium, profile.SamplingRate);

            var whiteningStream = new WhiteningStream(audioStream,
                                                      profile.WhiteningNumPoles, profile.WhiteningDecaySecs, profile.WhiteningBlockLength);
            var subbandAnalyzer = new SubbandAnalyzer(whiteningStream);

            float[] analyzedFrame = new float[profile.SubBands];

            var bandAnalyzers = new BandAnalyzer[profile.SubBands];

            for (int i = 0; i < profile.SubBands; i++)
            {
                bandAnalyzers[i] = new BandAnalyzer(profile, i);
            }

            List <SubFingerprint> hashes     = new List <SubFingerprint>();
            HashTimeSorter        hashSorter = new HashTimeSorter(profile.SubBands);

            var sw = new Stopwatch();

            sw.Start();

            int totalFrames  = subbandAnalyzer.WindowCount;
            int currentFrame = 0;

            while (subbandAnalyzer.HasNext())
            {
                subbandAnalyzer.ReadFrame(analyzedFrame);

                for (int i = 0; i < profile.SubBands; i++)
                {
                    bandAnalyzers[i].ProcessSample(analyzedFrame[i], hashSorter.Queues[i]);
                }

                if (currentFrame % 4096 == 0)
                {
                    hashSorter.Fill(hashes, false);

                    if (SubFingerprintsGenerated != null)
                    {
                        SubFingerprintsGenerated(this, new SubFingerprintsGeneratedEventArgs(track, hashes, currentFrame, totalFrames));
                        hashes.Clear();
                    }
                }

                currentFrame++;
            }

            for (int i = 0; i < bandAnalyzers.Length; i++)
            {
                bandAnalyzers[i].Flush(hashSorter.Queues[i]);
            }
            hashSorter.Fill(hashes, true);

            if (SubFingerprintsGenerated != null)
            {
                SubFingerprintsGenerated(this, new SubFingerprintsGeneratedEventArgs(track, hashes, currentFrame, totalFrames));
                hashes.Clear();
            }

            sw.Stop();
            audioStream.Close();
            Console.WriteLine("time: " + sw.Elapsed);
        }
예제 #4
0
        public float Run()
        {
            IAudioStream audioStream = new ResamplingStream(
                new MonoStream(AudioStreamFactory.FromFileInfoIeee32(audioTrack.FileInfo)),
                ResamplingQuality.Medium, 11000);

            ContinuousFrequencyActivationQuantifier cfaq = new ContinuousFrequencyActivationQuantifier(audioStream);

            float[] cfaValue   = new float[1];
            float[] cfaValues  = new float[cfaq.WindowCount];
            Label[] cfaLabels  = new Label[cfaq.WindowCount];
            int     count      = 0;
            int     musicCount = 0;

            while (cfaq.HasNext())
            {
                cfaq.ReadFrame(cfaValue);
                cfaValues[count] = cfaValue[0];
                if (cfaValue[0] > threshold)
                {
                    musicCount++;
                    cfaLabels[count] = Label.MUSIC;
                }
                Console.WriteLine("cfa {0,3}% {3} {1,5:0.00} {2}", (int)(Math.Round((float)count++ / cfaq.WindowCount * 100)), cfaValue[0], cfaValue[0] > threshold ? "MUSIC" : "", TimeUtil.BytesToTimeSpan(audioStream.Position, audioStream.Properties));
            }

            audioStream.Close();

            if (smoothing)
            {
                // 3.3 Smoothing

                /* majority filtering with sliding window ~5 secs
                 * 1 frame = ~2,4 secs, at least 3 frames are needed for majority filtering -> 3 * ~2,4 secs = ~7,2 secs */

                // filter out single NO_MUSIC frames
                for (int i = 2; i < cfaLabels.Length; i++)
                {
                    if (cfaLabels[i - 2] == Label.MUSIC && cfaLabels[i - 1] == Label.NO_MUSIC && cfaLabels[i] == Label.MUSIC)
                    {
                        cfaLabels[i - 1] = Label.MUSIC;
                    }
                }

                // filter out single MUSIC frames
                for (int i = 2; i < cfaLabels.Length; i++)
                {
                    if (cfaLabels[i - 2] == Label.NO_MUSIC && cfaLabels[i - 1] == Label.MUSIC && cfaLabels[i] == Label.NO_MUSIC)
                    {
                        cfaLabels[i - 1] = Label.NO_MUSIC;
                    }
                }

                // swap ~5 secs NO_MUSIC segments to MUSIC
                for (int i = 3; i < cfaLabels.Length; i++)
                {
                    if (cfaLabels[i - 3] == Label.MUSIC && cfaLabels[i - 2] == Label.NO_MUSIC && cfaLabels[i - 1] == Label.NO_MUSIC && cfaLabels[i] == Label.MUSIC)
                    {
                        cfaLabels[i - 1] = Label.MUSIC;
                        cfaLabels[i - 2] = Label.MUSIC;
                    }
                }

                // swap ~5 secs NMUSIC segments to NO_MUSIC
                for (int i = 3; i < cfaLabels.Length; i++)
                {
                    if (cfaLabels[i - 3] == Label.NO_MUSIC && cfaLabels[i - 2] == Label.MUSIC && cfaLabels[i - 1] == Label.MUSIC && cfaLabels[i] == Label.NO_MUSIC)
                    {
                        cfaLabels[i - 1] = Label.NO_MUSIC;
                        cfaLabels[i - 2] = Label.NO_MUSIC;
                    }
                }
            }

            float musicRatio         = (float)musicCount / count;
            float musicRatioSmoothed = -1f;

            Console.WriteLine("'" + audioTrack.FileInfo.FullName + "' contains " + ((int)(Math.Round(musicRatio * 100))) + "% music");

            if (smoothing)
            {
                musicCount         = cfaLabels.Count <Label>(l => l == Label.MUSIC);
                musicRatioSmoothed = (float)musicCount / count;
                Console.WriteLine("smoothed: " + ((int)(Math.Round(musicRatioSmoothed * 100))) + "% music");
            }

            if (writeLog)
            {
                FileInfo     logFile = new FileInfo(audioTrack.FileInfo.FullName + ".music");
                StreamWriter writer  = logFile.CreateText();

                writer.WriteLine(musicRatio + "; " + musicRatioSmoothed);
                writer.WriteLine(threshold);

                for (int i = 0; i < cfaValues.Length; i++)
                {
                    writer.WriteLine("{0:0.00000}; {1}; \t{2}", cfaValues[i], cfaValues[i] > threshold ? Label.MUSIC : Label.NO_MUSIC, cfaLabels[i]);
                }

                writer.Flush();
                writer.Close();
            }

            return(0);
        }
예제 #5
0
        public void Generate(AudioTrack track)
        {
            IAudioStream audioStream = new ResamplingStream(
                new MonoStream(AudioStreamFactory.FromFileInfoIeee32(track.FileInfo)),
                ResamplingQuality.Medium, profile.SamplingRate);

            var chroma = new Chroma(audioStream, profile.WindowSize, profile.HopSize, profile.WindowType,
                                    profile.ChromaMinFrequency, profile.ChromaMaxFrequency, false, profile.ChromaMappingMode);

            float[] chromaFrame;
            var     chromaBuffer             = new RingBuffer <float[]>(profile.ChromaFilterCoefficients.Length);
            var     chromaFilterCoefficients = profile.ChromaFilterCoefficients;
            var     filteredChromaFrame      = new double[Chroma.Bins];
            var     classifiers     = profile.Classifiers;
            var     maxFilterWidth  = classifiers.Max(c => c.Filter.Width);
            var     integralImage   = new IntegralImage(maxFilterWidth, Chroma.Bins);
            int     index           = 0;
            int     indices         = chroma.WindowCount;
            var     subFingerprints = new List <SubFingerprint>();

            while (chroma.HasNext())
            {
                // Get chroma frame buffer
                // When the chroma buffer is full, we can take and reuse the oldest array
                chromaFrame = chromaBuffer.Count == chromaBuffer.Length ? chromaBuffer[0] : new float[Chroma.Bins];

                // Read chroma frame into buffer
                chroma.ReadFrame(chromaFrame);

                // ChromaFilter
                chromaBuffer.Add(chromaFrame);
                if (chromaBuffer.Count < chromaBuffer.Length)
                {
                    // Wait for the buffer to fill completely for the filtering to start
                    continue;
                }
                Array.Clear(filteredChromaFrame, 0, filteredChromaFrame.Length);
                for (int i = 0; i < chromaFilterCoefficients.Length; i++)
                {
                    var frame = chromaBuffer[i];
                    for (int j = 0; j < frame.Length; j++)
                    {
                        filteredChromaFrame[j] += frame[j] * chromaFilterCoefficients[i];
                    }
                }

                // ChromaNormalizer
                double euclideanNorm = 0;
                for (int i = 0; i < filteredChromaFrame.Length; i++)
                {
                    var value = filteredChromaFrame[i];
                    euclideanNorm += value * value;
                }
                euclideanNorm = Math.Sqrt(euclideanNorm);
                if (euclideanNorm < profile.ChromaNormalizationThreshold)
                {
                    Array.Clear(filteredChromaFrame, 0, filteredChromaFrame.Length);
                }
                else
                {
                    for (int i = 0; i < filteredChromaFrame.Length; i++)
                    {
                        filteredChromaFrame[i] /= euclideanNorm;
                    }
                }

                // ImageBuilder
                // ... just add one feature vector after another as rows to the image
                integralImage.AddColumn(filteredChromaFrame);

                // FingerprintCalculator
                if (integralImage.Columns < maxFilterWidth)
                {
                    // Wait for the image to fill completely before hashes can be generated
                    continue;
                }
                // Calculate subfingerprint hash
                uint hash = 0;
                for (int i = 0; i < classifiers.Length; i++)
                {
                    hash = (hash << 2) | grayCodeMapping[classifiers[i].Classify(integralImage, 0)];
                }
                // We have a SubFingerprint@frameTime
                subFingerprints.Add(new SubFingerprint(index, new SubFingerprintHash(hash), false));

                index++;

                if (index % 512 == 0 && SubFingerprintsGenerated != null)
                {
                    SubFingerprintsGenerated(this, new SubFingerprintsGeneratedEventArgs(track, subFingerprints, index, indices));
                    subFingerprints.Clear();
                }
            }

            if (SubFingerprintsGenerated != null)
            {
                SubFingerprintsGenerated(this, new SubFingerprintsGeneratedEventArgs(track, subFingerprints, index, indices));
            }

            if (Completed != null)
            {
                Completed(this, EventArgs.Empty);
            }

            audioStream.Close();
        }