protected virtual bool BackPropagate(RegionOperator regionOp, int[] insertedPolyVerts, EdgeLoop insertedLoop) { bool bOK = regionOp.BackPropropagate(); if (bOK) { ModifiedRegion = regionOp; IndexUtil.Apply(insertedPolyVerts, regionOp.ReinsertSubToBaseMapV); InsertedPolygonVerts = insertedPolyVerts; if (insertedLoop != null) { InsertedLoop = MeshIndexUtil.MapLoopViaVertexMap(regionOp.ReinsertSubToBaseMapV, regionOp.Region.SubMesh, regionOp.Region.BaseMesh, insertedLoop); if (RemovePolygonInterior) { InsertedLoop.CorrectOrientation(); } } } return(bOK); }
public bool Apply() { // do a simple fill SimpleHoleFiller simplefill = new SimpleHoleFiller(Mesh, FillLoop); int fill_gid = Mesh.AllocateTriangleGroup(); bool bOK = simplefill.Fill(fill_gid); if (bOK == false) { return(false); } if (FillLoop.Vertices.Length <= 3) { FillTriangles = simplefill.NewTriangles; FillVertices = new int[0]; return(true); } // extract the simple fill mesh as a submesh, via RegionOperator, so we can backsub later HashSet <int> intial_fill_tris = new HashSet <int>(simplefill.NewTriangles); regionop = new RegionOperator(Mesh, simplefill.NewTriangles, (submesh) => { submesh.ComputeTriMaps = true; }); fillmesh = regionop.Region.SubMesh; // for each boundary vertex, compute the exterior angle sum // we will use this to compute gaussian curvature later boundaryv = new HashSet <int>(MeshIterators.BoundaryEdgeVertices(fillmesh)); exterior_angle_sums = new Dictionary <int, double>(); if (IgnoreBoundaryTriangles == false) { foreach (int sub_vid in boundaryv) { double angle_sum = 0; int base_vid = regionop.Region.MapVertexToBaseMesh(sub_vid); foreach (int tid in regionop.BaseMesh.VtxTrianglesItr(base_vid)) { if (intial_fill_tris.Contains(tid) == false) { Index3i et = regionop.BaseMesh.GetTriangle(tid); int idx = IndexUtil.find_tri_index(base_vid, ref et); angle_sum += regionop.BaseMesh.GetTriInternalAngleR(tid, idx); } } exterior_angle_sums[sub_vid] = angle_sum; } } // try to guess a reasonable edge length that will give us enough geometry to work with in simplify pass double loop_mine, loop_maxe, loop_avge, fill_mine, fill_maxe, fill_avge; MeshQueries.EdgeLengthStatsFromEdges(Mesh, FillLoop.Edges, out loop_mine, out loop_maxe, out loop_avge); MeshQueries.EdgeLengthStats(fillmesh, out fill_mine, out fill_maxe, out fill_avge); double remesh_target_len = loop_avge; if (fill_maxe / remesh_target_len > 10) { remesh_target_len = fill_maxe / 10; } //double remesh_target_len = Math.Min(loop_avge, fill_avge / 4); // remesh up to target edge length, ideally gives us some triangles to work with RemesherPro remesh1 = new RemesherPro(fillmesh); remesh1.SmoothSpeedT = 1.0; MeshConstraintUtil.FixAllBoundaryEdges(remesh1); //remesh1.SetTargetEdgeLength(remesh_target_len / 2); // would this speed things up? on large regions? //remesh1.FastestRemesh(); remesh1.SetTargetEdgeLength(remesh_target_len); remesh1.FastestRemesh(); /* * first round: collapse to minimal mesh, while flipping to try to * get to ballpark minimal mesh. We stop these passes as soon as * we have done two rounds where we couldn't do another collapse * * This is the most unstable part of the algorithm because there * are strong ordering effects. maybe we could sort the edges somehow?? */ int zero_collapse_passes = 0; int collapse_passes = 0; while (collapse_passes++ < 20 && zero_collapse_passes < 2) { // collapse pass int NE = fillmesh.MaxEdgeID; int collapses = 0; for (int ei = 0; ei < NE; ++ei) { if (fillmesh.IsEdge(ei) == false || fillmesh.IsBoundaryEdge(ei)) { continue; } Index2i ev = fillmesh.GetEdgeV(ei); bool a_bdry = boundaryv.Contains(ev.a), b_bdry = boundaryv.Contains(ev.b); if (a_bdry && b_bdry) { continue; } int keepv = (a_bdry) ? ev.a : ev.b; int otherv = (keepv == ev.a) ? ev.b : ev.a; Vector3d newv = fillmesh.GetVertex(keepv); if (MeshUtil.CheckIfCollapseCreatesFlip(fillmesh, ei, newv)) { continue; } DMesh3.EdgeCollapseInfo info; MeshResult result = fillmesh.CollapseEdge(keepv, otherv, out info); if (result == MeshResult.Ok) { collapses++; } } if (collapses == 0) { zero_collapse_passes++; } else { zero_collapse_passes = 0; } // flip pass. we flip in these cases: // 1) if angle between current triangles is too small (slightly more than 90 degrees, currently) // 2) if angle between flipped triangles is smaller than between current triangles // 3) if flipped edge length is shorter *and* such a flip won't flip the normal NE = fillmesh.MaxEdgeID; Vector3d n1, n2, on1, on2; for (int ei = 0; ei < NE; ++ei) { if (fillmesh.IsEdge(ei) == false || fillmesh.IsBoundaryEdge(ei)) { continue; } bool do_flip = false; Index2i ev = fillmesh.GetEdgeV(ei); MeshUtil.GetEdgeFlipNormals(fillmesh, ei, out n1, out n2, out on1, out on2); double dot_cur = n1.Dot(n2); double dot_flip = on1.Dot(on2); if (n1.Dot(n2) < 0.1 || dot_flip > dot_cur + MathUtil.Epsilonf) { do_flip = true; } if (do_flip == false) { Index2i otherv = fillmesh.GetEdgeOpposingV(ei); double len_e = fillmesh.GetVertex(ev.a).Distance(fillmesh.GetVertex(ev.b)); double len_flip = fillmesh.GetVertex(otherv.a).Distance(fillmesh.GetVertex(otherv.b)); if (len_flip < len_e) { if (MeshUtil.CheckIfEdgeFlipCreatesFlip(fillmesh, ei) == false) { do_flip = true; } } } if (do_flip) { DMesh3.EdgeFlipInfo info; MeshResult result = fillmesh.FlipEdge(ei, out info); } } } // Sometimes, for some reason, we have a remaining interior vertex (have only ever seen one?) // Try to force removal of such vertices, even if it makes ugly mesh remove_remaining_interior_verts(); // enable/disable passes. bool DO_FLATTER_PASS = true; bool DO_CURVATURE_PASS = OptimizeDevelopability && true; bool DO_AREA_PASS = OptimizeDevelopability && OptimizeTriangles && true; /* * In this pass we repeat the flipping iterations from the previous pass. * * Note that because of the always-flip-if-dot-is-small case (commented), * this pass will frequently not converge, as some number of edges will * be able to flip back and forth (because neither has large enough dot). * This is not ideal, but also, if we remove this behavior, then we * generally get worse fills. This case basically introduces a sort of * randomization factor that lets us escape local minima... * */ HashSet <int> remaining_edges = new HashSet <int>(fillmesh.EdgeIndices()); HashSet <int> updated_edges = new HashSet <int>(); int flatter_passes = 0; int zero_flips_passes = 0; while (flatter_passes++ < 40 && zero_flips_passes < 2 && remaining_edges.Count() > 0 && DO_FLATTER_PASS) { zero_flips_passes++; foreach (int ei in remaining_edges) { if (fillmesh.IsBoundaryEdge(ei)) { continue; } bool do_flip = false; Index2i ev = fillmesh.GetEdgeV(ei); Vector3d n1, n2, on1, on2; MeshUtil.GetEdgeFlipNormals(fillmesh, ei, out n1, out n2, out on1, out on2); double dot_cur = n1.Dot(n2); double dot_flip = on1.Dot(on2); if (flatter_passes < 20 && dot_cur < 0.1) // this check causes oscillatory behavior { do_flip = true; } if (dot_flip > dot_cur + MathUtil.Epsilonf) { do_flip = true; } if (do_flip) { DMesh3.EdgeFlipInfo info; MeshResult result = fillmesh.FlipEdge(ei, out info); if (result == MeshResult.Ok) { zero_flips_passes = 0; add_all_edges(ei, updated_edges); } } } var tmp = remaining_edges; remaining_edges = updated_edges; updated_edges = tmp; updated_edges.Clear(); } int curvature_passes = 0; if (DO_CURVATURE_PASS) { curvatures = new double[fillmesh.MaxVertexID]; foreach (int vid in fillmesh.VertexIndices()) { update_curvature(vid); } remaining_edges = new HashSet <int>(fillmesh.EdgeIndices()); updated_edges = new HashSet <int>(); /* * In this pass we try to minimize gaussian curvature at all the vertices. * This will recover sharp edges, etc, and do lots of good stuff. * However, this pass will not make much progress if we are not already * relatively close to a minimal mesh, so it really relies on the previous * passes getting us in the ballpark. */ while (curvature_passes++ < 40 && remaining_edges.Count() > 0 && DO_CURVATURE_PASS) { foreach (int ei in remaining_edges) { if (fillmesh.IsBoundaryEdge(ei)) { continue; } Index2i ev = fillmesh.GetEdgeV(ei); Index2i ov = fillmesh.GetEdgeOpposingV(ei); int find_other = fillmesh.FindEdge(ov.a, ov.b); if (find_other != DMesh3.InvalidID) { continue; } double total_curv_cur = curvature_metric_cached(ev.a, ev.b, ov.a, ov.b); if (total_curv_cur < MathUtil.ZeroTolerancef) { continue; } DMesh3.EdgeFlipInfo info; MeshResult result = fillmesh.FlipEdge(ei, out info); if (result != MeshResult.Ok) { continue; } double total_curv_flip = curvature_metric_eval(ev.a, ev.b, ov.a, ov.b); bool keep_flip = total_curv_flip < total_curv_cur - MathUtil.ZeroTolerancef; if (keep_flip == false) { result = fillmesh.FlipEdge(ei, out info); } else { update_curvature(ev.a); update_curvature(ev.b); update_curvature(ov.a); update_curvature(ov.b); add_all_edges(ei, updated_edges); } } var tmp = remaining_edges; remaining_edges = updated_edges; updated_edges = tmp; updated_edges.Clear(); } } //System.Console.WriteLine("collapse {0} flatter {1} curvature {2}", collapse_passes, flatter_passes, curvature_passes); /* * In this final pass, we try to improve triangle quality. We flip if * the flipped triangles have better total aspect ratio, and the * curvature doesn't change **too** much. The .DevelopabilityTolerance * parameter determines what is "too much" curvature change. */ if (DO_AREA_PASS) { remaining_edges = new HashSet <int>(fillmesh.EdgeIndices()); updated_edges = new HashSet <int>(); int area_passes = 0; while (remaining_edges.Count() > 0 && area_passes < 20) { area_passes++; foreach (int ei in remaining_edges) { if (fillmesh.IsBoundaryEdge(ei)) { continue; } Index2i ev = fillmesh.GetEdgeV(ei); Index2i ov = fillmesh.GetEdgeOpposingV(ei); int find_other = fillmesh.FindEdge(ov.a, ov.b); if (find_other != DMesh3.InvalidID) { continue; } double total_curv_cur = curvature_metric_cached(ev.a, ev.b, ov.a, ov.b); double a = aspect_metric(ei); if (a > 1) { continue; } DMesh3.EdgeFlipInfo info; MeshResult result = fillmesh.FlipEdge(ei, out info); if (result != MeshResult.Ok) { continue; } double total_curv_flip = curvature_metric_eval(ev.a, ev.b, ov.a, ov.b); bool keep_flip = Math.Abs(total_curv_cur - total_curv_flip) < DevelopabilityTolerance; if (keep_flip == false) { result = fillmesh.FlipEdge(ei, out info); } else { update_curvature(ev.a); update_curvature(ev.b); update_curvature(ov.a); update_curvature(ov.b); add_all_edges(ei, updated_edges); } } var tmp = remaining_edges; remaining_edges = updated_edges; updated_edges = tmp; updated_edges.Clear(); } } regionop.BackPropropagate(); FillTriangles = regionop.CurrentBaseTriangles; FillVertices = regionop.CurrentBaseInteriorVertices().ToArray(); return(true); }
protected virtual DMesh3 compute_bounded_distance() { DMesh3 sourceMesh = MeshSource.GetDMeshUnsafe(); ISpatial inputSpatial = MeshSource.GetSpatial(); DMesh3 targetMesh = TargetSource.GetDMeshUnsafe(); ISpatial targetSpatial = TargetSource.GetSpatial(); double max_dist = (TargetMaxDistance == double.MaxValue) ? double.MaxValue : TargetMaxDistance; DMesh3 meshIn = new DMesh3(sourceMesh); bool target_closed = targetMesh.IsClosed(); MeshVertexSelection roiV = new MeshVertexSelection(meshIn); SpinLock roi_lock = new SpinLock(); gParallel.ForEach(meshIn.VertexIndices(), (vid) => { Vector3d pos = meshIn.GetVertex(vid); Vector3d posTarget = TransformToTarget.TransformP(pos); double dist = MeshQueries.NearestPointDistance(targetMesh, targetSpatial, posTarget, max_dist); bool inside = (target_closed && targetSpatial.IsInside(posTarget)); if (dist < max_dist || inside) { bool taken = false; roi_lock.Enter(ref taken); roiV.Select(vid); roi_lock.Exit(); } }); if (is_invalidated()) { return(null); } MeshFaceSelection roi_faces = new MeshFaceSelection(meshIn, roiV, 1); roi_faces.ExpandToOneRingNeighbours(3); roi_faces.LocalOptimize(); if (is_invalidated()) { return(null); } RegionOperator op = new RegionOperator(meshIn, roi_faces); DMesh3 meshROI = op.Region.SubMesh; if (is_invalidated()) { return(null); } RemesherPro remesher = new RemesherPro(meshROI); remesher.SetTargetEdgeLength(TargetEdgeLength); remesher.PreventNormalFlips = this.PreventNormalFlips; remesher.EnableFlips = this.EnableFlips; remesher.EnableSplits = this.EnableSplits; remesher.EnableCollapses = this.EnableCollapses; remesher.EnableSmoothing = this.EnableSmoothing; remesher.SmoothSpeedT = this.SmoothingSpeed; BoundedProjectionTarget target = new BoundedProjectionTarget() { Source = sourceMesh, SourceSpatial = inputSpatial, Target = targetMesh, TargetSpatial = targetSpatial, SourceToTargetXForm = source_to_target, TargetToSourceXForm = target_to_source, MaxDistance = max_dist, Smoothness = transition_smoothness }; remesher.SetProjectionTarget(target); if (remesher.Constraints == null) { remesher.SetExternalConstraints(new MeshConstraints()); } MeshConstraintUtil.FixAllBoundaryEdges(remesher.Constraints, meshROI); if (is_invalidated()) { return(null); } remesher.Progress = new ProgressCancel(is_invalidated); remesher.FastestRemesh(RemeshRounds); if (is_invalidated()) { return(null); } op.BackPropropagate(); return(meshIn); }