예제 #1
0
        public TSAnalyze ()
            {
            InitializeComponent ();
            // There are several options to initialize thengine, but by default the following suffice:
            REngine engine = REngine.GetInstance();

            //init the R engine            
            REngine.SetEnvironmentVariables ();
            engine = REngine.GetInstance ();
            engine.Initialize ();


            //prepare data
            List<int> size = new List<int>() { 29, 33, 51, 110, 357, 45, 338, 543, 132, 70, 103, 301, 146, 10, 56, 243, 238 };
            List<int> population = new List<int>() { 3162, 11142, 3834, 7305, 81890, 1339, 5414, 65697, 11280, 4589, 320, 60918, 480, 1806, 4267, 63228, 21327 };

            var docPath = Directory.GetCurrentDirectory();
            //var myDir = $@"{docPath}\output";
            var myDir = bingPathToAppDir ("output");

            Directory.CreateDirectory (myDir);

            Console.WriteLine (Directory.Exists (myDir));
            Console.WriteLine (myDir);
            Console.WriteLine (bingPathToAppDir ("output"));

            Console.WriteLine ("my image location {0}", myDir);

            fileName = myDir + "\\myplot.png";

            //calculate
            IntegerVector sizeVector = engine.CreateIntegerVector(size);
            engine.SetSymbol ("size", sizeVector);

            IntegerVector populationVector = engine.CreateIntegerVector(population);
            engine.SetSymbol ("population", populationVector);

            CharacterVector fileNameVector = engine.CreateCharacterVector(new[] { fileName });
            engine.SetSymbol ("fileName", fileNameVector);

            engine.Evaluate ("reg <- lm(population~size)");
            engine.Evaluate ("png(filename=fileName, width=6, height=6, units='in', res=100)");
            engine.Evaluate ("plot(population~size)");
            engine.Evaluate ("abline(reg)");
            engine.Evaluate ("dev.off()");

            //clean up
            engine.Dispose ();

            //output
            Console.WriteLine ("");
            Console.WriteLine ("Press any key to exit");
            Console.ReadKey ();



            }
예제 #2
0
        public void DrawCharRTest()
        {
            var x = engine.CreateIntegerVector(new[] { 1, 2, 3 });
            var y = engine.CreateIntegerVector(new[] { 1, 2, 3 });

            engine.SetSymbol("x", x);
            engine.SetSymbol("y", y);
            engine.Evaluate("plot(x,y)");
        }
예제 #3
0
        private void SetupDotNetToRConverters()
        {
            SetupDotNetToRConverter(typeof(void), p => null);

            SetupDotNetToRConverter(typeof(string), p => engine.CreateCharacter((string)p));
            SetupDotNetToRConverter(typeof(string[]), p => engine.CreateCharacterVector((string[])p));
            SetupDotNetToRConverter(typeof(List <string>), p => engine.CreateCharacterVector((IEnumerable <string>)p));
            SetupDotNetToRConverter(typeof(IList <string>), p => engine.CreateCharacterVector((IEnumerable <string>)p));
            SetupDotNetToRConverter(typeof(ICollection <string>), p => engine.CreateCharacterVector((IEnumerable <string>)p));
            SetupDotNetToRConverter(typeof(IEnumerable <string>), p => engine.CreateCharacterVector((IEnumerable <string>)p));
            SetupDotNetToRConverter(typeof(string[, ]), p => engine.CreateCharacterMatrix((string[, ])p));

            SetupDotNetToRConverter(typeof(int), p => engine.CreateInteger((int)p));
            SetupDotNetToRConverter(typeof(int[]), p => engine.CreateIntegerVector((int[])p));
            SetupDotNetToRConverter(typeof(List <int>), p => engine.CreateIntegerVector((IEnumerable <int>)p));
            SetupDotNetToRConverter(typeof(IList <int>), p => engine.CreateIntegerVector((IEnumerable <int>)p));
            SetupDotNetToRConverter(typeof(ICollection <int>), p => engine.CreateIntegerVector((IEnumerable <int>)p));
            SetupDotNetToRConverter(typeof(IEnumerable <int>), p => engine.CreateIntegerVector((IEnumerable <int>)p));
            SetupDotNetToRConverter(typeof(int[, ]), p => engine.CreateIntegerMatrix((int[, ])p));

            SetupDotNetToRConverter(typeof(bool), p => engine.CreateLogical((bool)p));
            SetupDotNetToRConverter(typeof(bool[]), p => engine.CreateLogicalVector((bool[])p));
            SetupDotNetToRConverter(typeof(List <bool>), p => engine.CreateLogicalVector((IEnumerable <bool>)p));
            SetupDotNetToRConverter(typeof(IList <bool>), p => engine.CreateLogicalVector((IEnumerable <bool>)p));
            SetupDotNetToRConverter(typeof(ICollection <bool>), p => engine.CreateLogicalVector((IEnumerable <bool>)p));
            SetupDotNetToRConverter(typeof(IEnumerable <bool>), p => engine.CreateLogicalVector((IEnumerable <bool>)p));
            SetupDotNetToRConverter(typeof(bool[, ]), p => engine.CreateLogicalMatrix((bool[, ])p));

            SetupDotNetToRConverter(typeof(double), p => engine.CreateNumeric((double)p));
            SetupDotNetToRConverter(typeof(double[]), p => engine.CreateNumericVector((double[])p));
            SetupDotNetToRConverter(typeof(List <double>), p => engine.CreateNumericVector((IEnumerable <double>)p));
            SetupDotNetToRConverter(typeof(IList <double>), p => engine.CreateNumericVector((IEnumerable <double>)p));
            SetupDotNetToRConverter(typeof(ICollection <double>), p => engine.CreateNumericVector((IEnumerable <double>)p));
            SetupDotNetToRConverter(typeof(IEnumerable <double>), p => engine.CreateNumericVector((IEnumerable <double>)p));
            SetupDotNetToRConverter(typeof(double[, ]), p => engine.CreateNumericMatrix((double[, ])p));

            SetupDotNetToRConverter(typeof(DateTime), p => engine.CreatePosixct((DateTime)p));
            SetupDotNetToRConverter(typeof(DateTime[]), p => engine.CreatePosixctVector((DateTime[])p));
            SetupDotNetToRConverter(typeof(List <DateTime>), p => engine.CreatePosixctVector((IEnumerable <DateTime>)p));
            SetupDotNetToRConverter(typeof(IList <DateTime>), p => engine.CreatePosixctVector((IEnumerable <DateTime>)p));
            SetupDotNetToRConverter(typeof(ICollection <DateTime>), p => engine.CreatePosixctVector((IEnumerable <DateTime>)p));
            SetupDotNetToRConverter(typeof(IEnumerable <DateTime>), p => engine.CreatePosixctVector((IEnumerable <DateTime>)p));
            SetupDotNetToRConverter(typeof(DateTime[, ]), p => engine.CreatePosixctMatrix((DateTime[, ])p));

            SetupDotNetToRConverter(typeof(TimeSpan), p => engine.CreateDiffTime((TimeSpan)p));
            SetupDotNetToRConverter(typeof(TimeSpan[]), p => engine.CreateDiffTimeVector((TimeSpan[])p));
            SetupDotNetToRConverter(typeof(List <TimeSpan>), p => engine.CreateDiffTimeVector((IEnumerable <TimeSpan>)p));
            SetupDotNetToRConverter(typeof(IList <TimeSpan>), p => engine.CreateDiffTimeVector((IEnumerable <TimeSpan>)p));
            SetupDotNetToRConverter(typeof(ICollection <TimeSpan>), p => engine.CreateDiffTimeVector((IEnumerable <TimeSpan>)p));
            SetupDotNetToRConverter(typeof(IEnumerable <TimeSpan>), p => engine.CreateDiffTimeVector((IEnumerable <TimeSpan>)p));
            SetupDotNetToRConverter(typeof(TimeSpan[, ]), p => engine.CreateDiffTimeMatrix((TimeSpan[, ])p));
        }
예제 #4
0
파일: Arr.cs 프로젝트: mjr129/metaboclust
        /// <summary>
        /// (Private) Applies the inputs of an RScript object.
        /// </summary>
        private void ApplyInputs(RScript script, object[] inputs)
        {
            UiControls.Assert(inputs.Length == script.InputNames.Length, "Number of inputs requested by script must match number of inputs provided.");

            for (int i = 0; i < inputs.Length; i++)
            {
                string name = script.InputNames[i];

                if (name != null)
                {
                    var obj = inputs[i];
                    SymbolicExpression sym;

                    if (obj is double[, ])
                    {
                        sym = _r.CreateNumericMatrix((double[, ])obj);
                    }
                    else if (obj is IReadOnlyList <double> )
                    {
                        sym = _r.CreateNumericVector((IReadOnlyList <double>)obj);
                    }
                    else if (obj is IEnumerable <double> )
                    {
                        sym = _r.CreateNumericVector((IEnumerable <double>)obj);
                    }
                    else if (obj is int[])
                    {
                        sym = _r.CreateIntegerVector((int[])obj);
                    }
                    else if (obj is int[, ])
                    {
                        sym = _r.CreateIntegerMatrix((int[, ])obj);
                    }
                    else if (obj is IEnumerable <int> )
                    {
                        sym = _r.CreateIntegerVector((IEnumerable <int>)obj);
                    }
                    else
                    {
                        throw new InvalidOperationException("Cannot create R object for obj: " + obj);
                    }

                    _r.SetSymbol(name, sym);
                }
            }
        }
예제 #5
0
        static void Main(string[] args)
        {
            // Sample code used for updating the documentation at the codeplex web site.
            using (REngine engine = REngine.GetInstance())
            {
                var e = engine.Evaluate("x <- 3");
                // You can now access x defined in the R environment.
                NumericVector x = engine.GetSymbol("x").AsNumeric();
                engine.Evaluate("y <- 1:10");
                NumericVector y = engine.GetSymbol("y").AsNumeric();

                // Invoking functions; Previously you may have needed custom function definitions
                var myFunc = engine.Evaluate("function(x, y) { expand.grid(x=x, y=y) }").AsFunction();
                var v1     = engine.CreateIntegerVector(new[] { 1, 2, 3 });
                var v2     = engine.CreateCharacterVector(new[] { "a", "b", "c" });
                var df     = myFunc.Invoke(new SymbolicExpression[] { v1, v2 }).AsDataFrame();

                // As of R.NET 1.6, more function call syntaxes are supported.
                var expandGrid = engine.Evaluate("expand.grid").AsFunction();
                var d          = new Dictionary <string, SymbolicExpression>();
                d["x"] = v1;
                d["y"] = v2;
                df     = expandGrid.Invoke(d).AsDataFrame();

                // querying data frames
                engine.SetSymbol("cases", df);
                // As of R.NET 1.6, factor to character expressions work consistently with R

                var letterCases = engine.Evaluate("cases[,'y']").AsCharacter().ToArray();
                // "a","a","a","b","b","b", etc. Same as as.character(cases[,'y']) in R
                // This used to return  "1", "1", "1", "2", "2", etc. with R.NET 1.5.5

                // Equivalent:
                letterCases = df[1].AsCharacter().ToArray();
                letterCases = df["y"].AsCharacter().ToArray();

                // Accessing items by two dimensional indexing
                string s = (string)df[1, 1]; // "a"
                s = (string)df[3, 1];        // "a"
                s = (string)df[3, "y"];      // "b"
                // s = (string)df["4", "y"]; // fails because there are no row names
                df[3, "y"] = "a";
                s          = (string)df[3, "y"]; // "a"
                df[3, "y"] = "d";
                s          = (string)df[3, "y"]; // null, because we have an <NA> string in R

                // invoking a whole script
                // engine.Evaluate("source('c:/src/path/to/myscript.r')");

                // TODO
                // Date-time objects
            }
        }
예제 #6
0
        public static void Start(REngine engine)
        {
            Console.WriteLine("\n\nExporting Objects\n\n");
            string RCodeString = string.Empty;

            //R character vector -- R.NET RDotNet.RDotNet.CharacterVector
            Console.WriteLine("\nR character vector\n");
            string[]        myStringArray     = new string[] { "PIDataLink", "PIProcessBook", "PIWebParts" };
            CharacterVector myCharacterVector = engine.CreateCharacterVector(myStringArray.AsEnumerable());

            engine.SetSymbol("mycharvector", myCharacterVector);
            engine.Evaluate("print(mycharvector)");


            //R integer vector -- R.NET RDotNet.NumericVector
            Console.WriteLine("\nR int vector\n");
            int[]         myIntegerArray  = new int[] { 4, 6, 10, 140, 54, 25 };
            IntegerVector myIntegerVector = engine.CreateIntegerVector(myIntegerArray);

            engine.SetSymbol("myintvector", myIntegerVector);
            engine.Evaluate("print(myintvector)");

            //R real vector -- R.NET RDotNet.NumericVector
            Console.WriteLine("\nR real vector\n");
            NumericVector myNumericVector = engine.CreateNumericVector(new double[] { 30.02, 29.99, 30.11, 29.97, 30.01, 29.99 });

            engine.SetSymbol("mynumvector", myNumericVector);
            engine.Evaluate("print(mynumvector)");

            //R complex vector -- R.NET RDotNet.ComplexVector
            Console.WriteLine("\nR complex vector\n");
            Complex[]     myComplexArray  = new Complex[] { Complex.FromPolarCoordinates(10, 0.524), new Complex(12, 6), new Complex(14, 3), (Complex)12.3m, Complex.One + Complex.One };
            ComplexVector myComplexVector = engine.CreateComplexVector(myComplexArray);

            engine.SetSymbol("mycomplexvector", myComplexVector);
            engine.Evaluate("print(mycomplexvector)");


            //R raw vector -- R.NET RDotNet.RawVector
            Console.WriteLine("\nR raw vector\n");
            byte[]    myByteArray = System.Text.Encoding.ASCII.GetBytes("u03a0");
            RawVector myRawVector = engine.CreateRawVector(myByteArray);

            engine.SetSymbol("myrawvector", myRawVector);
            engine.Evaluate("print(myrawvector)");

            //R logical vector -- R.NET RDotNet.LogicalVector
            Console.WriteLine("\nR logical vector\n");
            LogicalVector myLogicalVector = engine.CreateLogicalVector(new Boolean[] { true, false, false, false, true });

            engine.SetSymbol("mylogicalvector", myLogicalVector);
            engine.Evaluate("print(mylogicalvector)");
        }
예제 #7
0
        private void cboVariable1_SelectedIndexChanged(object sender, EventArgs e)
        {
            string strTargetLayerName = cboTargetLayer.Text;

            m_strVar1Name = cboVariable1.Text;
            int intTargetIndex = m_pSnippet.GetIndexNumberFromLayerName(m_pActiveView, strTargetLayerName);

            m_intNFeatureCount = 0;

            ILayer pTargetLayer = m_pForm.axMapControl1.get_Layer(intTargetIndex);

            m_pTargetFLayer = (IFeatureLayer)pTargetLayer;

            //Extract geometry from selected feature
            IFeatureCursor pFCursor = null;

            pFCursor           = m_pTargetFLayer.Search(null, true);
            m_intNFeatureCount = m_pTargetFLayer.FeatureClass.FeatureCount(null);

            IFeature pFeature = pFCursor.NextFeature();

            //Source and Group Field Index
            int intVar1Idx = m_pTargetFLayer.FeatureClass.Fields.FindField(m_strVar1Name);
            int intFIDIdx  = m_pTargetFLayer.FeatureClass.FindField(m_pTargetFLayer.FeatureClass.OIDFieldName);

            m_adblVar1 = new double[m_intNFeatureCount];
            m_arrFID   = new int[m_intNFeatureCount];

            //Feature Value to Array
            int i = 0;

            while (pFeature != null)
            {
                m_adblVar1[i] = Convert.ToDouble(pFeature.get_Value(intVar1Idx));
                m_arrFID[i]   = Convert.ToInt32(pFeature.get_Value(intFIDIdx));
                i++;
                pFeature = pFCursor.NextFeature();
            }

            //Draw Boxplot at the Form
            //Array to R vector.
            NumericVector vecVar1 = m_pEngine.CreateNumericVector(m_adblVar1);

            m_pEngine.SetSymbol(m_strVar1Name, vecVar1);
            IntegerVector vecFID = m_pEngine.CreateIntegerVector(m_arrFID);

            m_pEngine.SetSymbol("FID", vecFID);
        }
예제 #8
0
파일: Program.cs 프로젝트: xposure/rdotnet
        private static void github_issue_90()
        {
            string rHome = @"c:\Program Files\R\R-3.4.4\";
            string rPath = @"C:\Program Files\R\R-3.4.4\bin\x64";

            REngine.SetEnvironmentVariables(rPath: rPath, rHome: rHome);

            //p.RHome = @"c:\Program Files\Microsoft\R Open\R-3.4.3\";
            REngine engine = REngine.GetInstance();

            engine.Evaluate("library(dplyr)");
            engine.Evaluate("library(keras)");
            engine.Evaluate("model <- keras_model_sequential() %>% layer_dense(units = 1000, input_shape = c(1000)) %>% compile(loss = 'mse',optimizer = 'adam')");

            int counter = 0;

            while (true)
            {
                Console.WriteLine(counter++);

                IntegerVector vec = engine.CreateIntegerVector(1000);
                vec.SetVector(new int[1000]);
                engine.SetSymbol("vec1000", vec);

                var execution = "predict(model, t(vec1000))";
                using (var output = engine.Evaluate(execution))
                {
                    using (var a = output.AsList())
                    {
                        for (int i = 0; i < 1000; i++)
                        {
                            using (var b = a[i].AsNumeric())
                            {
                            }
                        }
                    }
                };
            }
        }
예제 #9
0
        private void button3_Click(object sender, EventArgs e)
        {
            int FeatureNum = app.FeaName.GetLength(0);
            int SampleNum  = app.SamName.GetLength(0);

            REngine.SetEnvironmentVariables();

            REngine PCA = REngine.GetInstance();

            PCA.Initialize();

            NumericMatrix Freq = PCA.CreateNumericMatrix(app.CountMatrix);

            PCA.SetSymbol("Freq", Freq);
            CharacterVector SampleName  = PCA.CreateCharacterVector(app.SamName);
            CharacterVector FeatureName = PCA.CreateCharacterVector(app.FeaName);

            PCA.SetSymbol("FeatureName", FeatureName);
            PCA.SetSymbol("SampleName", SampleName);

            PCA.Evaluate("library(stats)");
            PCA.Evaluate("pr <- prcomp(t(Freq),cor = TRUE)");
            PCA.Evaluate("score <- predict(pr)");
            double[,] Count = PCA.GetSymbol("score").AsNumericMatrix().ToArray();
            app.Score       = new double[SampleNum, 2];
            for (int i = 0; i < SampleNum; i++)
            {
                app.Score[i, 0] = Count[i, 0];
                app.Score[i, 1] = Count[i, 1];
            }
            if (this.radioButton1.Checked)
            {
                PCA.Evaluate("windows()");
                PCA.Evaluate("plot(score[,1:2],main=\"PCA\", type=\"p\")");
            }

            else
            {
                if ((app.cluster == null) || (app.cluster.Length != SampleNum))
                {
                    MessageBox.Show("Sample number in input data is not equal to that in cluster information!!", "Warning!!!", MessageBoxButtons.OK);
                }
                else
                {
                    IntegerVector cluster = PCA.CreateIntegerVector(app.cluster);
                    PCA.SetSymbol("cluster", cluster);
                    PCA.Evaluate("clusterNum <- max(cluster)");
                    PCA.Evaluate("clustermin <- min(cluster)");
                    app.clusterNum = (int)PCA.GetSymbol("clusterNum").AsNumeric().First();
                    int clustermin = (int)PCA.GetSymbol("clustermin").AsNumeric().First();
                    if (app.clusterNum > 10)
                    {
                        MessageBox.Show("Too many clusters!!", "WARNING!");
                    }
                    else if (clustermin < 0)
                    {
                        MessageBox.Show("Illegal cluster number!!!", "WARNING!");
                    }
                    else
                    {
                        PCA_whole_Output plot = new PCA_whole_Output();
                        plot.MdiParent = this.MdiParent;
                        plot.Show();
                    }
                }
            }
            this.Close();
        }
예제 #10
0
        static void Main(string[] args)
        {
            REngine.SetEnvironmentVariables();
            REngine RBlock = REngine.GetInstance();

            DirectoryInfo di            = new DirectoryInfo("C:\\Users\\" + Environment.UserName + "\\Documents\\File Attachments\\");
            string        searchPattern = "*";

            // Set some bases. These need to be tested for each sample.
            int avgRowCount = 100;
            int avgColCount = 20;
            int fileCount   = 0;

            // Get our files, Create a library to hold everything
            Library.ListofFiles = Library.makeList(di, searchPattern);

            // Look Through Each File
            foreach (var a in Library.ListofFiles)
            {
                Console.WriteLine(a.FileName);
                string fileLocation = di + a.FileName;
                // Open The File, Set the Page
                EL.singleExcel thisExcel = new EL.singleExcel().createExcel(fileLocation);
                EL.singleExcel.ExcelWorkSheetChange(thisExcel, 1);

                // Get Basic Vars
                new EDA.excelBasics().basicVars(a, thisExcel);
                // Run Series of Operations to Get More Exact Bounds

                EDA.lookTriggers LT = new EDA.lookTriggers();
                LT.runTriggers(fileCount, a, avgRowCount, avgColCount, out avgRowCount, out avgColCount);

                Library.colCounts.Add(a.colCount);
                Library.rowCounts.Add(a.rowCount);

                // In the event that no rows are found, the file is not counted
                if (a.rowCount != 0)
                {
                    fileCount++;
                }

                EL.singleExcel.CloseSheet(thisExcel);
                //Console.ReadLine();
                Console.WriteLine("\n");
            }

            // Run some R analysis
            IntegerVector rowR = RBlock.CreateIntegerVector(Library.rowCounts);
            IntegerVector colR = RBlock.CreateIntegerVector(Library.colCounts);

            RBlock.SetSymbol("rowR", rowR);
            RBlock.SetSymbol("colR", colR);

            int[] thisTemp;
            RBlock.Evaluate("temp <- table(as.vector(rowR))");
            thisTemp = RBlock.Evaluate("names(temp)[temp == max(temp)]").AsInteger().ToArray();
            Library.groupStats.modeRow = thisTemp[0];
            RBlock.Evaluate("temp <- table(as.vector(colR))");
            thisTemp = RBlock.Evaluate("names(temp)[temp == max(temp)]").AsInteger().ToArray();
            Library.groupStats.modeCol = thisTemp[0];
            thisTemp = RBlock.Evaluate("mean(rowR)").AsInteger().ToArray();
            Library.groupStats.meanRow = thisTemp[0];
            thisTemp = RBlock.Evaluate("mean(colR)").AsInteger().ToArray();
            Library.groupStats.meanCol = thisTemp[0];
            thisTemp = RBlock.Evaluate("median(rowR)").AsInteger().ToArray();
            Library.groupStats.medianRow = thisTemp[0];
            thisTemp = RBlock.Evaluate("median(colR)").AsInteger().ToArray();
            Library.groupStats.medianCol = thisTemp[0];
            thisTemp = RBlock.Evaluate("min(rowR)").AsInteger().ToArray();
            Library.groupStats.minRow = thisTemp[0];
            thisTemp = RBlock.Evaluate("min(colR)").AsInteger().ToArray();
            Library.groupStats.minCol = thisTemp[0];
            thisTemp = RBlock.Evaluate("max(rowR)").AsInteger().ToArray();
            Library.groupStats.maxRow = thisTemp[0];
            thisTemp = RBlock.Evaluate("max(colR)").AsInteger().ToArray();
            Library.groupStats.maxCol = thisTemp[0];
            thisTemp = RBlock.Evaluate("IQR(rowR)").AsInteger().ToArray();
            Library.groupStats.iqrRow = thisTemp[0];
            thisTemp = RBlock.Evaluate("IQR(colR)").AsInteger().ToArray();
            Library.groupStats.iqrCol = thisTemp[0];
            thisTemp = RBlock.Evaluate("quantile(rowR)").AsInteger().ToArray();
            Library.groupStats.quantileRow = thisTemp[0];
            thisTemp = RBlock.Evaluate("quantile(colR)").AsInteger().ToArray();
            Library.groupStats.quantileCol = thisTemp[0];

            RBlock.Dispose();

            EL.singleExcel.outputObjectToExcel(Library.groupStats);

            // Build some training data from previous information, assumptions
            object[,] theWords = TSR.trainMethods.getTrainData(di, "\\testdata\\trainlist.xlsx");
            List <string> words = new List <string>();

            TSR.trainMethods.makeTrainList(theWords, words);

            theWords = TSR.trainMethods.getTrainData(di, "\\testdata\\looselist.xlsx");
            List <string> looseWords = new List <string>();

            TSR.trainMethods.makeTrainList(theWords, looseWords);

            Dictionary <string, int> discreteTermsDict  = new Dictionary <string, int>();
            Dictionary <string, int> betterTermsDict    = new Dictionary <string, int>();
            Dictionary <string, int> secondaryTermsDict = new Dictionary <string, int>();

            // Run training scenarios
            TSR.trainMethods.runTrainScan(words, looseWords, avgColCount, Library.ListofFiles, out discreteTermsDict, out betterTermsDict, out secondaryTermsDict);
            TSR.trainMethods.buildTrainList(discreteTermsDict, words);

            TSR.trainMethods.runTrainScan(words, looseWords, avgColCount, Library.ListofFiles, out discreteTermsDict, out betterTermsDict, out secondaryTermsDict);
            TSR.trainMethods.buildTrainList(betterTermsDict, looseWords);
            TSR.trainMethods.buildTrainList(secondaryTermsDict, looseWords);

            // In tests, three cycles make for extremely high confidence
            TSR.trainMethods.runTrainScan(words, looseWords, avgColCount, Library.ListofFiles, out discreteTermsDict, out betterTermsDict, out secondaryTermsDict);
            //  Terms for classifcation
            EL.singleExcel.outputListToExcel(words, "strongTrainList");
            EL.singleExcel.outputListToExcel(looseWords, "learnedTrainList");
        }