public static void Run() { var training = EncogUtility.LoadEGB2Memory(Config.TrainingFile); var pattern = new FeedForwardPattern { InputNeurons = training.InputSize, OutputNeurons = training.IdealSize, ActivationFunction = new ActivationTANH() }; var prune = new PruneIncremental(training, pattern, 100, 1, 10, new ConsoleStatusReportable()); prune.AddHiddenLayer(5, 50); prune.AddHiddenLayer(0, 50); Console.WriteLine("Starting prune process"); prune.Process(); EncogDirectoryPersistence.SaveObject(Config.NetworkFile, prune.BestNetwork); EncogUtility.SaveEGB(Config.TrainingFile, prune.Training); }
public static void Incremental(FileInfo dataDir) { FileInfo file = FileUtil.CombinePath(dataDir, Config.TRAINING_FILE); if (!file.Exists) { Console.WriteLine(@"Can't read file: " + file); return; } IMLDataSet training = EncogUtility.LoadEGB2Memory(file); var pattern = new FeedForwardPattern { InputNeurons = training.InputSize, OutputNeurons = training.IdealSize, ActivationFunction = new ActivationTANH() }; var prune = new PruneIncremental(training, pattern, 100, 1, 10, new ConsoleStatusReportable()); prune.AddHiddenLayer(5, 50); prune.AddHiddenLayer(0, 50); prune.Process(); EncogDirectoryPersistence.SaveObject(file, prune.BestNetwork); }
public static void Run() { Log("Loading training data"); var encog = new EncogPersistedCollection("market-training.dat", FileMode.Open); var trainingSet = (BasicMLDataSet)encog.Find("market-training"); Log("Figuring out best system"); var pattern = new FeedForwardPattern { InputNeurons = trainingSet.InputSize, OutputNeurons = trainingSet.IdealSize, ActivationFunction = new ActivationTANH() }; var prune = new PruneIncremental(trainingSet, pattern, 100, new ConsoleStatusReportable()); prune.AddHiddenLayer(1, 50); prune.AddHiddenLayer(0, 50); prune.Process(); Log("Done!!!!"); }
public void Prune() { INeuralDataSet trainingSet = new BasicNeuralDataSet(networkInput, networkIdealOutput); FeedForwardPattern pattern = new FeedForwardPattern(); pattern.InputNeurons = INPUT_NEURONS; pattern.OutputNeurons = OUTPUT_NEURONS; if (ACTIVIATION_FUNCTION == 1) pattern.ActivationFunction = new ActivationSigmoid(); else if (ACTIVIATION_FUNCTION == 2) pattern.ActivationFunction = new ActivationTANH(); else throw new System.Exception("Only 2 activation functions have been impletemented."); PruneIncremental prune = new PruneIncremental(trainingSet, pattern, 200, new ConsoleStatusReportable()); prune.AddHiddenLayer(10, 40); prune.AddHiddenLayer(0, 30); prune.Process(); network = prune.BestNetwork; Console.WriteLine("Prune process complete."); }
void pruneWorker_DoWork(object sender, DoWorkEventArgs e) { prune.Process(); }