protected override async Task <Queue <TileRef> > Process() { if (_startNode == null || _endNode == null || Status == JobStatus.Finished) { return(null); } // If we couldn't get a nearby node that's good enough if (!PathfindingHelpers.TryEndNode(ref _endNode, _pathfindingArgs)) { return(null); } var openTiles = new PriorityQueue <ValueTuple <float, PathfindingNode> >(new PathfindingComparer()); var gScores = new Dictionary <PathfindingNode, float>(); var cameFrom = new Dictionary <PathfindingNode, PathfindingNode>(); var closedTiles = new HashSet <PathfindingNode>(); PathfindingNode currentNode = null; openTiles.Add((0.0f, _startNode)); gScores[_startNode] = 0.0f; var routeFound = false; var count = 0; while (openTiles.Count > 0) { count++; if (count % 20 == 0 && count > 0) { await SuspendIfOutOfTime(); } if (_startNode == null || _endNode == null) { return(null); } (_, currentNode) = openTiles.Take(); if (currentNode.Equals(_endNode)) { routeFound = true; break; } closedTiles.Add(currentNode); foreach (var(direction, nextNode) in currentNode.Neighbors) { if (closedTiles.Contains(nextNode)) { continue; } // If tile is untraversable it'll be null var tileCost = PathfindingHelpers.GetTileCost(_pathfindingArgs, currentNode, nextNode); if (tileCost == null || !PathfindingHelpers.DirectionTraversable(_pathfindingArgs.CollisionMask, _pathfindingArgs.Access, currentNode, direction)) { continue; } var gScore = gScores[currentNode] + tileCost.Value; if (gScores.TryGetValue(nextNode, out var nextValue) && gScore >= nextValue) { continue; } cameFrom[nextNode] = currentNode; gScores[nextNode] = gScore; // pFactor is tie-breaker where the fscore is otherwise equal. // See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#breaking-ties // There's other ways to do it but future consideration var fScore = gScores[nextNode] + PathfindingHelpers.OctileDistance(_endNode, nextNode) * (1.0f + 1.0f / 1000.0f); openTiles.Add((fScore, nextNode)); } } if (!routeFound) { return(null); } var route = PathfindingHelpers.ReconstructPath(cameFrom, currentNode); if (route.Count == 1) { return(null); } #if DEBUG // Need to get data into an easier format to send to the relevant clients if (DebugRoute != null && route.Count > 0) { var debugCameFrom = new Dictionary <TileRef, TileRef>(cameFrom.Count); var debugGScores = new Dictionary <TileRef, float>(gScores.Count); var debugClosedTiles = new HashSet <TileRef>(closedTiles.Count); foreach (var(node, parent) in cameFrom) { debugCameFrom.Add(node.TileRef, parent.TileRef); } foreach (var(node, score) in gScores) { debugGScores.Add(node.TileRef, score); } foreach (var node in closedTiles) { debugClosedTiles.Add(node.TileRef); } var debugRoute = new SharedAiDebug.AStarRouteDebug( _pathfindingArgs.Uid, route, debugCameFrom, debugGScores, debugClosedTiles, DebugTime); DebugRoute.Invoke(debugRoute); } #endif return(route); }
protected override async Task <Queue <TileRef> > Process() { if (_startNode == null || _endNode == null || Status == JobStatus.Finished) { return(null); } // If we couldn't get a nearby node that's good enough if (!PathfindingHelpers.TryEndNode(ref _endNode, _pathfindingArgs)) { return(null); } var frontier = new PriorityQueue <ValueTuple <float, PathfindingNode> >(new PathfindingComparer()); var costSoFar = new Dictionary <PathfindingNode, float>(); var cameFrom = new Dictionary <PathfindingNode, PathfindingNode>(); PathfindingNode currentNode = null; frontier.Add((0.0f, _startNode)); costSoFar[_startNode] = 0.0f; var routeFound = false; var count = 0; while (frontier.Count > 0) { // Handle whether we need to pause if we've taken too long count++; if (count % 20 == 0 && count > 0) { await SuspendIfOutOfTime(); if (_startNode == null || _endNode == null) { return(null); } } // Actual pathfinding here (_, currentNode) = frontier.Take(); if (currentNode.Equals(_endNode)) { routeFound = true; break; } foreach (var nextNode in currentNode.GetNeighbors()) { // If tile is untraversable it'll be null var tileCost = PathfindingHelpers.GetTileCost(_pathfindingArgs, currentNode, nextNode); if (tileCost == null) { continue; } // So if we're going NE then that means either N or E needs to be free to actually get there var direction = PathfindingHelpers.RelativeDirection(nextNode, currentNode); if (!PathfindingHelpers.DirectionTraversable(_pathfindingArgs.CollisionMask, _pathfindingArgs.Access, currentNode, direction)) { continue; } // f = g + h // gScore is distance to the start node // hScore is distance to the end node var gScore = costSoFar[currentNode] + tileCost.Value; if (costSoFar.TryGetValue(nextNode, out var nextValue) && gScore >= nextValue) { continue; } cameFrom[nextNode] = currentNode; costSoFar[nextNode] = gScore; // pFactor is tie-breaker where the fscore is otherwise equal. // See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html#breaking-ties // There's other ways to do it but future consideration // The closer the fScore is to the actual distance then the better the pathfinder will be // (i.e. somewhere between 1 and infinite) // Can use hierarchical pathfinder or whatever to improve the heuristic but this is fine for now. var fScore = gScore + PathfindingHelpers.OctileDistance(_endNode, nextNode) * (1.0f + 1.0f / 1000.0f); frontier.Add((fScore, nextNode)); } } if (!routeFound) { return(null); } var route = PathfindingHelpers.ReconstructPath(cameFrom, currentNode); if (route.Count == 1) { return(null); } #if DEBUG // Need to get data into an easier format to send to the relevant clients if (DebugRoute != null && route.Count > 0) { var debugCameFrom = new Dictionary <TileRef, TileRef>(cameFrom.Count); var debugGScores = new Dictionary <TileRef, float>(costSoFar.Count); foreach (var(node, parent) in cameFrom) { debugCameFrom.Add(node.TileRef, parent.TileRef); } foreach (var(node, score) in costSoFar) { debugGScores.Add(node.TileRef, score); } var debugRoute = new SharedAiDebug.AStarRouteDebug( _pathfindingArgs.Uid, route, debugCameFrom, debugGScores, DebugTime); DebugRoute.Invoke(debugRoute); } #endif return(route); }