예제 #1
0
        public void Sigma_RightLeftAndParametersAnnNotNormalized_SigmaCalculated()
        {
            var delta        = 3;
            var util         = new TestDataUtils();
            var observations = util.GetSvcData(util.FTSEFilePath, new DateTime(2011, 11, 18), new DateTime(2011, 12, 18));
            var model        = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <Mixture <IMultivariateDistribution> >()
            {
                NumberOfStates = NumberOfStatesRightLeft, Delta = delta, Emissions = CreateEmissions(observations, NumberOfStatesRightLeft, NumberOfComponents)
            });                                                                                                                                                                                                                                                                       //new HiddenMarkovModelState<Mixture<IMultivariateDistribution>>(NumberOfStatesRightLeft, delta, CreateEmissions(observations, NumberOfStatesRightLeft, NumberOfComponents)) { LogNormalized = false };

            model.Normalized = false;
            var baseParameters = new BasicEstimationParameters <Mixture <IMultivariateDistribution> > {
                Model = model, Observations = Helper.Convert(observations), Normalized = model.Normalized
            };
            var alphaEstimator = new AlphaEstimator <Mixture <IMultivariateDistribution> >();
            var alpha          = alphaEstimator.Estimate(baseParameters);
            var betaEstimator  = new BetaEstimator <Mixture <IMultivariateDistribution> >();
            var beta           = betaEstimator.Estimate(baseParameters);

            var parameters            = new ParameterEstimations <Mixture <IMultivariateDistribution> >(model, Helper.Convert(observations), alpha, beta);
            var sigma                 = new MixtureSigmaEstimator <Mixture <IMultivariateDistribution> >();
            var mixtureGammaEstimator = new MixtureGammaEstimator <Mixture <IMultivariateDistribution> >();
            var mixtureMuEstimator    = new MixtureMuEstimator <Mixture <IMultivariateDistribution> >();
            var @params               = new MixtureSigmaEstimationParameters <Mixture <IMultivariateDistribution> >
            {
                Model        = model,
                Normalized   = model.Normalized,
                Alpha        = alpha,
                Beta         = beta,
                Observations = Helper.Convert(observations),
                L            = model.Emission[0].Components.Length
            };
            var gamma          = mixtureGammaEstimator.Estimate(@params as AdvancedEstimationParameters <Mixture <IMultivariateDistribution> >);
            var gammaComponens = mixtureGammaEstimator.Estimate(@params);

            @params.Gamma           = gamma;
            @params.GammaComponents = gammaComponens;
            @params.Mu = mixtureMuEstimator.Estimate(@params);

            for (int i = 0; i < NumberOfStatesRightLeft; i++)
            {
                for (int l = 0; l < NumberOfComponents; l++)
                {
                    for (int rows = 0; rows < parameters.Observation[0].Dimention; rows++)
                    {
                        for (int cols = 0; cols < parameters.Observation[0].Dimention; cols++)
                        {
                            Assert.IsTrue(sigma.Estimate(@params)[i, l][rows, cols] > 0, string.Format("Failed Sigma {0}", sigma.Estimate(@params)[i, l][rows, cols]));
                        }
                    }
                }
            }
        }
        public void Denormalized_NormalizedEstimator_SigmaDenormalized()
        {
            var util         = new TestDataUtils();
            var observations = util.GetSvcData(util.FTSEFilePath, new DateTime(2011, 11, 18), new DateTime(2011, 12, 18));
            var model        = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <Mixture <IMultivariateDistribution> >()
            {
                NumberOfStates = NumberOfStates, Emissions = CreateEmissions(observations, NumberOfStates, NumberOfComponents)
            });                                                                                                                                                                                                                                      //new HiddenMarkovModelState<Mixture<IMultivariateDistribution>>(NumberOfStates, CreateEmissions(observations, NumberOfStates, NumberOfComponents)) { LogNormalized = true };

            model.Normalized = true;
            var baseParameters = new BasicEstimationParameters <Mixture <IMultivariateDistribution> > {
                Model = model, Observations = Helper.Convert(observations), Normalized = model.Normalized
            };
            var alphaEstimator = new AlphaEstimator <Mixture <IMultivariateDistribution> >();
            var alpha          = alphaEstimator.Estimate(baseParameters);
            var betaEstimator  = new BetaEstimator <Mixture <IMultivariateDistribution> >();
            var beta           = betaEstimator.Estimate(baseParameters);

            var parameters            = new ParameterEstimations <Mixture <IMultivariateDistribution> >(model, Helper.Convert(observations), alpha, beta);
            var coefficients          = new MixtureCoefficientsEstimator <Mixture <IMultivariateDistribution> >();
            var mixtureGammaEstimator = new MixtureGammaEstimator <Mixture <IMultivariateDistribution> >();
            var @params = new MixtureCoefficientEstimationParameters <Mixture <IMultivariateDistribution> >
            {
                Model        = model,
                Normalized   = model.Normalized,
                Alpha        = alpha,
                Beta         = beta,
                Observations = Helper.Convert(observations),
                L            = model.Emission[0].Components.Length
            };
            var gamma          = mixtureGammaEstimator.Estimate(@params as AdvancedEstimationParameters <Mixture <IMultivariateDistribution> >);
            var gammaComponens = mixtureGammaEstimator.Estimate(@params);

            @params.Gamma           = gamma;
            @params.GammaComponents = gammaComponens;

            for (int i = 0; i < NumberOfStates; i++)
            {
                for (int l = 0; l < NumberOfComponents; l++)
                {
                    Assert.IsTrue(coefficients.Estimate(@params)[i][l] < 0, string.Format("Failed Coefficients {0}", coefficients.Estimate(@params)[i][l]));
                }
            }
            coefficients.Denormalize();
            for (int i = 0; i < NumberOfStates; i++)
            {
                for (int l = 0; l < NumberOfComponents; l++)
                {
                    Assert.IsTrue(coefficients.Estimate(@params)[i][l] > 0 && coefficients.Estimate(@params)[i][l] < 1, string.Format("Failed Coefficients {0}", coefficients.Estimate(@params)[i][l]));
                }
            }
        }
        public void Coefficients_RightLeftAndNotNormilized_EachEntryMatrixIsSummedToOne()
        {
            var delta        = 3;
            var util         = new TestDataUtils();
            var observations = util.GetSvcData(util.FTSEFilePath, new DateTime(2011, 11, 18), new DateTime(2011, 12, 18));
            var model        = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <Mixture <IMultivariateDistribution> >()
            {
                NumberOfStates = NumberOfStatesRightLeft, Delta = delta, Emissions = CreateEmissions(observations, NumberOfStatesRightLeft, NumberOfComponents)
            });                                                                                                                                                                                                                                                                       //new HiddenMarkovModelState<Mixture<IMultivariateDistribution>>(NumberOfStatesRightLeft, delta, CreateEmissions(observations, NumberOfStatesRightLeft, NumberOfComponents)) { LogNormalized = false };

            model.Normalized = false;
            var baseParameters = new BasicEstimationParameters <Mixture <IMultivariateDistribution> > {
                Model = model, Observations = Helper.Convert(observations), Normalized = model.Normalized
            };
            var alphaEstimator = new AlphaEstimator <Mixture <IMultivariateDistribution> >();
            var alpha          = alphaEstimator.Estimate(baseParameters);
            var betaEstimator  = new BetaEstimator <Mixture <IMultivariateDistribution> >();
            var beta           = betaEstimator.Estimate(baseParameters);

            var parameters            = new ParameterEstimations <Mixture <IMultivariateDistribution> >(model, Helper.Convert(observations), alpha, beta);
            var coefficients          = new MixtureCoefficientsEstimator <Mixture <IMultivariateDistribution> >();
            var mixtureGammaEstimator = new MixtureGammaEstimator <Mixture <IMultivariateDistribution> >();
            var @params = new MixtureCoefficientEstimationParameters <Mixture <IMultivariateDistribution> >
            {
                Model        = model,
                Normalized   = model.Normalized,
                Alpha        = alpha,
                Beta         = beta,
                Observations = Helper.Convert(observations),
                L            = model.Emission[0].Components.Length
            };
            var gamma          = mixtureGammaEstimator.Estimate(@params as AdvancedEstimationParameters <Mixture <IMultivariateDistribution> >);
            var gammaComponens = mixtureGammaEstimator.Estimate(@params);

            @params.Gamma           = gamma;
            @params.GammaComponents = gammaComponens;
            for (int i = 0; i < NumberOfStates; i++)
            {
                Assert.AreEqual(1.0d, Math.Round(coefficients.Estimate(@params)[i].Sum(), 5), string.Format("Failed Coefficients {0} at component {1}", new Vector(coefficients.Estimate(@params)[i]), i));
            }
        }