public static void CalcESOs() { int gridSize = 3072; var psfCuts = new int[] { 4, 8, 16, 32, 64 }; var psf = new float[gridSize, gridSize]; var factor = 4; foreach (var cut in psfCuts) { var psfCut = PSF.Cut(psf, cut); var ESO = CalcESO(8, psfCut.Length * factor, gridSize * gridSize); } Console.WriteLine(""); Console.WriteLine(""); Console.WriteLine(""); var processors = new int[] { 1, 4, 8, 16, 32, 64 }; var psfCut32 = PSF.Cut(psf, 32); foreach (var p in processors) { var ESO = CalcESO(p, psfCut32.Length * factor, gridSize * gridSize); Console.WriteLine(ESO); } }
private static void ReconstructRandom(MeasurementData input, GriddingConstants c, float[,] psf, int blockSize, int iterCount, string file) { var cutFactor = 8; var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, cutFactor); var maxLipschitzCut = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * PSF.CalcMaxLipschitz(psfCut)); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(psf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, 8, blockSize, 0.0f, 0.0f, false, true, false); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var data = new ApproxFast.TestingData(new StreamWriter(file + "_tmp.txt")); var xImage = new float[c.GridSize, c.GridSize]; var xCorr = Copy(xImage); var residualVis = input.Visibilities; var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitzCut), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); var gCorr = new float[c.GridSize, c.GridSize]; var shared = new ApproxFast.SharedData(currentLambda, alpha, 1, 1, 8, CountNonZero(psfCut), approx.psf2, approx.aMap, xImage, xCorr, bMap, gCorr, new Random()); shared.ActiveSet = ApproxFast.GetActiveSet(xImage, bMap, shared.YBlockSize, shared.XBlockSize, lambda, alpha, shared.AMap); shared.BlockLock = new int[shared.ActiveSet.Count]; shared.maxLipschitz = (float)PSF.CalcMaxLipschitz(psfCut); shared.MaxConcurrentIterations = 1000; approx.DeconvolveConcurrentTest(data, 0, 0, 0.0, shared, 1, 1e-5f, Copy(xImage), dirtyImage, psfCut, psf); var output = Tools.LMC.CutN132Remnant(xImage); Tools.WriteToMeltCSV(output.Item1, file + "_1k.csv", output.Item2, output.Item3); FitsIO.Write(output.Item1, file + "_1k.fits"); FitsIO.Write(xImage, file + "_1k2.fits"); approx.DeconvolveConcurrentTest(data, 0, 0, 0.0, shared, iterCount, 1e-5f, Copy(xImage), dirtyImage, psfCut, psf); output = Tools.LMC.CutN132Remnant(xImage); Tools.WriteToMeltCSV(output.Item1, file + "_10k.csv", output.Item2, output.Item3); FitsIO.Write(output.Item1, file + "_10k.fits"); FitsIO.Write(xImage, file + "_10k2.fits"); }
private static ReconstructionInfo ReconstructGradientApprox(Data input, float[,] fullPsf, string folder, int cutFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon) { var info = new ReconstructionInfo(); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var psfBMap = psfCut; var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1))); var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); var fastCD2 = new FastSerialCD(totalSize, psfCut); fastCD2.ResetLipschitzMap(fullPsf); FitsIO.Write(psfCut, folder + cutFactor + "psf.fits"); var lambda = LAMBDA_GLOBAL * fastCD.MaxLipschitz; var lambdaTrue = (float)(LAMBDA_GLOBAL * PSF.CalcMaxLipschitz(fullPsf)); var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; DeconvolutionResult lastResult = null; var firstTimeConverged = false; var lastLambda = 0.0f; for (int cycle = 0; cycle < maxMajor; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits"); //calc data and reg penalty var dataPenalty = Residuals.CalcPenalty(dirtyImage); var regPenalty = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha); info.lastDataPenalty = dataPenalty; info.lastRegPenalty = regPenalty; var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + ".fits"); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = Math.Max(currentSideLobe / alpha, lambda); writer.Write(cycle + ";" + currentLambda + ";" + currentSideLobe + ";" + ";" + fastCD2.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");; writer.Flush(); //check wether we can minimize the objective further with the current psf var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff; var minimumReached = (lastResult != null && lastResult.Converged && fastCD2.GetAbsMaxDiff(xImage, dirtyImage, lambdaTrue, alpha) < MAJOR_EPSILON && currentLambda == lambda); if (lambda == lastLambda & !firstTimeConverged) { firstTimeConverged = true; minimumReached = false; } if (!objectiveReached & !minimumReached) { //writer.Write(firstTimeConverged + ";"); //writer.Flush(); info.totalDeconv.Start(); if (!firstTimeConverged) { lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon); } else { bMap = bMapCalculator2.Convolve(dirtyImage); //FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + "_full.fits"); maxB = Residuals.GetMax(bMap); correctionFactor = Math.Max(maxB / (maxDirty * fastCD2.MaxLipschitz), 1.0f); currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = Math.Max(currentSideLobe / alpha, lambdaTrue); info.totalDeconv.Start(); lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon); info.totalDeconv.Stop(); } info.totalDeconv.Stop(); FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits"); writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n"); writer.Flush(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } else { writer.Write(false + ";0;0\n"); writer.Flush(); break; } lastLambda = currentLambda; } bMapCalculator.Dispose(); bMapCalculator2.Dispose(); return(info); }
private static void ReconstructMinorCycle(MeasurementData input, GriddingConstants c, int cutFactor, float[,] fullPsf, string folder, string file, int minorCycles, float searchPercent, bool useAccelerated = true, int blockSize = 1, int maxCycle = 6) { var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var sidelobeHalf = PSF.CalcMaxSidelobe(fullPsf, 2); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, 8, blockSize, 0.1f, searchPercent, false, useAccelerated); using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, fullPsf)) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + "_lambda.txt"); var data = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt")); var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; for (int cycle = 0; cycle < maxCycle; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; //var residualsConvolver = new PaddedConvolver(PSF.CalcPaddedFourierConvolution(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))); for (int minorCycle = 0; minorCycle < minorCycles; minorCycle++) { FitsIO.Write(dirtyImage, folder + "/dirtyMinor_" + minorCycle + ".fits"); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentBMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } writer.WriteLine(cycle + ";" + minorCycle + ";" + currentLambda + ";" + minLambda); writer.Flush(); approx.DeconvolveTest(data, cycle, minorCycle, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f); FitsIO.Write(xImage, folder + "/xImageMinor_" + minorCycle + ".fits"); if (currentLambda == lambda | currentLambda == minLambda) { break; } Console.WriteLine("resetting residuals!!"); //reset dirtyImage with full PSF var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } if (currentLambda == lambda & !switchedToOtherPsf) { approx.ResetAMap(fullPsf); currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } writer.Close(); } }
private static void Reconstruct(Data input, int cutFactor, float[,] fullPsf, string folder, string file, int threads, int blockSize, bool accelerated, float randomPercent, float searchPercent) { var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, threads, blockSize, randomPercent, searchPercent, false, true); var maxLipschitzCut = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * PSF.CalcMaxLipschitz(psfCut)); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + "_lambda.txt"); var data = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt")); var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; for (int cycle = 0; cycle < 7; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitzCut), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); writer.WriteLine("cycle" + ";" + currentLambda); writer.Flush(); approx.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f); FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits"); if (currentLambda == lambda & !switchedToOtherPsf) { approx.ResetAMap(fullPsf); lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } writer.Close(); }
public static void GenerateCLEANExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 10; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); //FitsIO.Write(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty_CLEAN_" + cycle + ".csv")); var maxY = -1; var maxX = -1; var max = 0.0f; for (int y = 0; y < dirtyImage.GetLength(0); y++) { for (int x = 0; x < dirtyImage.GetLength(1); x++) { if (max < Math.Abs(dirtyImage[y, x])) { maxY = y; maxX = x; max = Math.Abs(dirtyImage[y, x]); } } } //FitsIO.Write(reconstruction, Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".fits")); Tools.WriteToMeltCSV(PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CLEAN_" + cycle + ".csv")); reconstruction[maxY, maxX] += 0.5f * dirtyImage[maxY, maxX]; FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } var cleanbeam = new float[c.GridSize, c.GridSize]; var x0 = c.GridSize / 2; var y0 = c.GridSize / 2; for (int y = 0; y < cleanbeam.GetLength(0); y++) { for (int x = 0; x < cleanbeam.GetLength(1); x++) { cleanbeam[y, x] = (float)(1.0 * Math.Exp(-(Math.Pow(x0 - x, 2) / 16 + Math.Pow(y0 - y, 2) / 16))); } } FitsIO.Write(cleanbeam, Path.Combine(outputFolder, "clbeam.fits")); FFT.Shift(cleanbeam); var CL = FFT.Forward(cleanbeam); var REC = FFT.Forward(reconstruction); var CONF = Common.Fourier2D.Multiply(REC, CL); var cleaned = FFT.BackwardFloat(CONF, reconstruction.Length); //FFT.Shift(cleaned); //FitsIO.Write(cleaned, Path.Combine(outputFolder, "rec_CLEAN.fits")); Tools.WriteToMeltCSV(PSF.Cut(cleaned), Path.Combine(outputFolder, "rec_CLEAN.csv")); }
/// <summary> /// Major cycle implementation for the Serial CD /// </summary> /// <param name="obsName"></param> /// <param name="data"></param> /// <param name="c"></param> /// <param name="useGPU"></param> /// <param name="psfCutFactor"></param> /// <param name="maxMajorCycle"></param> /// <param name="lambda"></param> /// <param name="alpha"></param> /// <param name="deconvIterations"></param> /// <param name="deconvEpsilon"></param> public static void ReconstructSerialCD(string obsName, MeasurementData data, GriddingConstants c, bool useGPU, int psfCutFactor, int maxMajorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon) { var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfVis = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length]; for (int i = 0; i < data.Visibilities.GetLength(0); i++) { for (int j = 0; j < data.Visibilities.GetLength(1); j++) { for (int k = 0; k < data.Visibilities.GetLength(2); k++) { if (!data.Flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } Console.WriteLine("gridding psf"); var psfGrid = IDG.GridW(c, metadata, psfVis, data.UVW, data.Frequencies); var psf = FFT.WStackIFFTFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, psfCutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, psfCutFactor); IDeconvolver deconvolver = null; if (useGPU & GPUSerialCD.IsGPUSupported()) { deconvolver = new GPUSerialCD(totalSize, psfCut, 1000); } else if (useGPU & !GPUSerialCD.IsGPUSupported()) { Console.WriteLine("GPU not supported by library. Switching to CPU implementation"); deconvolver = new FastSerialCD(totalSize, psfCut); } else { deconvolver = new FastSerialCD(totalSize, psfCut); } var psfBMap = psfCut; using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)))) using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)))) { var currentGCalculator = gCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambdaLipschitz = (float)(lambda * maxLipschitz); var lambdaTrue = (float)(lambda * PSF.CalcMaxLipschitz(psf)); var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < maxMajorCycle; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, obsName + "_dirty_serial_majorCycle" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var maxDirty = Residuals.GetMax(dirtyImage); var gradients = gCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(gradients); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz); var objective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var absMax = deconvolver.GetAbsMaxDiff(xImage, gradients, lambdaTrue, alpha); if (absMax >= MAJOR_EPSILON) { lastResult = deconvolver.Deconvolve(xImage, gradients, currentLambda, alpha, deconvIterations, deconvEpsilon); } if (lambda == currentLambda & !switchedToOtherPsf) { currentGCalculator = gCalculator2; lambda = lambdaTrue; maxLipschitz = PSF.CalcMaxLipschitz(psf); switchedToOtherPsf = true; } FitsIO.Write(xImage, obsName + "_model_serial_majorCycle" + cycle + ".fits"); currentWatch.Stop(); totalWatch.Stop(); if (absMax < MAJOR_EPSILON) { break; } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds); } }
/// <summary> /// Major cycle implemnentation for the parallel coordinate descent algorithm /// </summary> /// <param name="data"></param> /// <param name="c"></param> /// <param name="psfCutFactor"></param> /// <param name="maxMajorCycle"></param> /// <param name="maxMinorCycle"></param> /// <param name="lambda"></param> /// <param name="alpha"></param> /// <param name="deconvIterations"></param> /// <param name="deconvEpsilon"></param> public static void ReconstructPCDM(string obsName, MeasurementData data, GriddingConstants c, int psfCutFactor, int maxMajorCycle, int maxMinorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon) { var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfVis = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length]; for (int i = 0; i < data.Visibilities.GetLength(0); i++) { for (int j = 0; j < data.Visibilities.GetLength(1); j++) { for (int k = 0; k < data.Visibilities.GetLength(2); k++) { if (!data.Flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } Console.WriteLine("gridding psf"); var psfGrid = IDG.Grid(c, metadata, psfVis, data.UVW, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, psfCutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, psfCutFactor); var sidelobeHalf = PSF.CalcMaxSidelobe(psf, 2); var pcdm = new ParallelCoordinateDescent(totalSize, psfCut, Environment.ProcessorCount, 1000); using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, psf)) { var currentGCalculator = gCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambdaLipschitz = (float)(lambda * maxLipschitz); var lambdaTrue = (float)(lambda * PSF.CalcMaxLipschitz(psf)); var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; ParallelCoordinateDescent.PCDMStatistics lastResult = null; for (int cycle = 0; cycle < maxMajorCycle; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, obsName + "_dirty_pcdm_majorCycle" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var breakMajor = false; var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; var currentObjective = 0.0; var absMax = 0.0f; for (int minorCycle = 0; minorCycle < maxMinorCycle; minorCycle++) { Console.WriteLine("Beginning Minor Cycle " + minorCycle); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentGCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } currentObjective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); absMax = pcdm.GetAbsMax(xImage, bMap, lambdaTrue, alpha); if (absMax < MAJOR_EPSILON) { breakMajor = true; break; } lastResult = pcdm.Deconvolve(xImage, bMap, currentLambda, alpha, 40, deconvEpsilon); if (currentLambda == lambda | currentLambda == minLambda) { break; } var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } currentWatch.Stop(); totalWatch.Stop(); if (breakMajor) { break; } if (currentLambda == lambda & !switchedToOtherPsf) { pcdm.ResetAMap(psf); currentGCalculator = gCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; } FitsIO.Write(xImage, obsName + "_model_pcdm_majorCycle" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds); } }
public static void DebugSimulatedApprox() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\uvw.fits"); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; //completely unflagged dataset double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\small\fits\simulation_point\vis.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var visibilitiesCount = visibilities.Length; int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var watchTotal = new Stopwatch(); var watchForward = new Stopwatch(); var watchBackwards = new Stopwatch(); var watchDeconv = new Stopwatch(); watchTotal.Start(); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var psfCut = PSF.Cut(psf); FitsIO.Write(psfCut, "psfCut.fits"); var random = new Random(123); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); //fastCD.ResetAMap(psf); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.8f; var approx = new ApproxParallel(); var approx2 = new ApproxFast(totalSize, psfCut, 4, 8, 0f, 0.25f, false, true); var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; /*var truth = new double[gridSize, gridSize]; * truth[30, 30] = 1.0; * truth[35, 36] = 1.5; * var truthVis = IDG.ToVisibilities(c, metadata, truth, uvw, frequencies); * visibilities = truthVis; * var residualVis = truthVis;*/ var data = new ApproxFast.TestingData(new StreamWriter("approxConvergence.txt")); for (int cycle = 0; cycle < 4; cycle++) { //FORWARD watchForward.Start(); var dirtyGrid = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, "dirty_" + cycle + ".fits"); watchForward.Stop(); //DECONVOLVE watchDeconv.Start(); //approx.ISTAStep(xImage, dirtyImage, psf, lambda, alpha); //FitsIO.Write(xImage, "xIsta.fits"); //FitsIO.Write(dirtyImage, "dirtyFista.fits"); //bMapCalculator.ConvolveInPlace(dirtyImage); //FitsIO.Write(dirtyImage, "bMap_" + cycle + ".fits"); //var result = fastCD.Deconvolve(xImage, dirtyImage, 0.5f * fastCD.MaxLipschitz, 0.8f, 1000, 1e-4f); //var converged = approx.DeconvolveActiveSet(xImage, dirtyImage, psfCut, lambda, alpha, random, 8, 1, 1); //var converged = approx.DeconvolveGreedy(xImage, dirtyImage, psfCut, lambda, alpha, random, 4, 4, 500); //var converged = approx.DeconvolveApprox(xImage, dirtyImage, psfCut, lambda, alpha, random, 1, threads, 500, 1e-4f, cycle == 0); approx2.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, psf, lambda, alpha, random, 10, 1e-4f); if (data.converged) { Console.WriteLine("-----------------------------CONVERGED!!!!------------------------"); } else { Console.WriteLine("-------------------------------not converged----------------------"); } FitsIO.Write(xImage, "xImageApprox_" + cycle + ".fits"); watchDeconv.Stop(); //BACKWARDS watchBackwards.Start(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGrid(c, metadata, xGrid, uvw, frequencies); residualVis = Visibilities.Substract(visibilities, modelVis, flags); watchBackwards.Stop(); } var dirtyGridCheck = IDG.Grid(c, metadata, residualVis, uvw, frequencies); var dirtyCheck = FFT.Backward(dirtyGridCheck, c.VisibilitiesCount); FFT.Shift(dirtyCheck); var l2Penalty = Residuals.CalcPenalty(ToFloatImage(dirtyCheck)); var elasticPenalty = ElasticNet.CalcPenalty(xImage, (float)lambda, (float)alpha); var sum = l2Penalty + elasticPenalty; data.writer.Close(); }
private static void ReconstructPCDM(MeasurementData input, GriddingConstants c, float[,] fullPsf, string folder, string file, int minorCycles, float searchPercent, int processorCount) { var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, CUT_FACTOR_PCDM); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, CUT_FACTOR_PCDM); var sidelobeHalf = PSF.CalcMaxSidelobe(fullPsf, 2); var random = new Random(123); var pcdm = new ParallelCoordinateDescent(totalSize, psfCut, 1, 1000, searchPercent); var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, fullPsf)) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + ".txt"); var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; ParallelCoordinateDescent.PCDMStatistics lastResult = null; for (int cycle = 0; cycle < 6; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var breakMajor = false; var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; var currentObjective = 0.0; var absMax = 0.0f; for (int minorCycle = 0; minorCycle < minorCycles; minorCycle++) { Console.WriteLine("Beginning Minor Cycle " + minorCycle); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentBMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } currentObjective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); absMax = pcdm.GetAbsMax(xImage, bMap, lambdaTrue, alpha); if (absMax < MAJOR_STOP) { breakMajor = true; break; } lastResult = pcdm.Deconvolve(xImage, bMap, currentLambda, alpha, 100, 1e-5f); if (currentLambda == lambda | currentLambda == minLambda) { break; } var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } currentWatch.Stop(); totalWatch.Stop(); writer.WriteLine(cycle + ";" + currentLambda + ";" + currentObjective + ";" + absMax + ";" + lastResult.IterationCount + ";" + totalWatch.Elapsed.TotalSeconds + ";" + currentWatch.Elapsed.TotalSeconds); writer.Flush(); FitsIO.Write(xImage, folder + "/xImage_pcdm_" + cycle + ".fits"); if (breakMajor) { break; } if (currentLambda == lambda & !switchedToOtherPsf) { pcdm.ResetAMap(fullPsf); currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } writer.Close(); } }
private static void ReconstructSerial(MeasurementData input, GriddingConstants c, float[,] fullPsf, string folder, string file, int processorCount) { var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, CUT_FACTOR_SERIAL); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, CUT_FACTOR_SERIAL); var fastCD = new FastSerialCD(totalSize, psfCut, processorCount); var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var writer = new StreamWriter(folder + "/" + file + ".txt"); var psfBMap = psfCut; using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < 6; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = Math.Max(currentSideLobe / alpha, lambda); var objective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var absMax = fastCD.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha); if (absMax >= MAJOR_STOP) { lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, 1e-5f); } if (lambda == currentLambda & !switchedToOtherPsf) { currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; } currentWatch.Stop(); totalWatch.Stop(); writer.WriteLine(cycle + ";" + currentLambda + ";" + objective + ";" + absMax + ";" + lastResult.IterationCount + ";" + totalWatch.Elapsed.TotalSeconds + ";" + currentWatch.Elapsed.TotalSeconds); writer.Flush(); if (absMax < MAJOR_STOP) { break; } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } } }