예제 #1
0
        private static void Graph(string[] args, double[] x, double[] y)
        {
            string chartFileName = string.Empty;
            var    pl            = new PLStream();

            if (args.Length == 1 && args[0] == "svg")
            {
                chartFileName = @"KNN.svg";
                pl.sdev("svg");
                pl.sfnam("KNN.svg");
            }
            else
            {
                chartFileName = @"KNN.png";
                pl.sdev("pngcairo");
                pl.sfnam("KNN.png");
            }
            pl.spal0("cmap0_alternate.pal");
            pl.init();
            const int xMin = 0;
            const int xMax = 1;
            const int yMin = 0;
            const int yMax = 1;

            pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
            pl.schr(0, 0.75);
            pl.lab("X-axis", "Y-axis", "Title");
            pl.col0(3);
            pl.sym(x, y, (char)210);
            pl.eop();
            pl.gver(out var verText);
            var    p = new Process();
            string chartFileNamePath = @".\" + chartFileName;

            p.StartInfo = new ProcessStartInfo(chartFileNamePath)
            {
                UseShellExecute = true
            };
            p.Start();
        }
        private static void DrawPlot(IList <DayInfo> days, IList <DayInfo> anomalies)
        {
            days      = days.Where(x => x.Date >= new DateTime(2017, 9, 1) && x.Date <= new DateTime(2017, 9, 30)).ToList();
            anomalies = anomalies.Where(x => x.Date >= new DateTime(2017, 9, 1) && x.Date <= new DateTime(2017, 9, 30)).ToList();

            using (var plot = new PLStream())
            {
                plot.sdev("pngcairo");             // png rendering
                plot.sfnam("data.png");            // output filename
                plot.spal0("cmap0_alternate.pal"); // alternate color palette
                plot.init();
                plot.env(
                    1,                                // x-axis range
                    days.Count,
                    0,                                // y-axis range
                    150,
                    AxesScale.Independent,            // scale x and y independently
                    AxisBox.BoxTicksLabelsAxes);      // draw box, ticks, and num ticks
                plot.lab(
                    "Date",                           // x-axis label
                    "Count",                          // y-axis label
                    "Press releases September 2017"); // plot title
                plot.line(
                    (from x in Enumerable.Range(1, days.Count) select(double) x).ToArray(),
                    (from p in days select(double) p.Count).ToArray());

                // plot the spikes
                plot.col0(2);     // blue color
                plot.schr(3, 3);  // scale characters
                plot.string2(
                    (from s in anomalies select(double) days.ToList().FindIndex(x => x.Date == s.Date) + 1).ToArray(),
                    (from s in anomalies select(double) s.Count + 15).ToArray(),
                    "↓");
                plot.eop();
            }
        }
예제 #3
0
        private static void PlotRegressionChart(MLContext mlContext,
                                                string testDataSetPath,
                                                int numberOfRecordsToRead,
                                                string[] args)
        {
            ITransformer trainedModel;

            using (var stream = new FileStream(ModelPath, FileMode.Open, FileAccess.Read, FileShare.Read))
            {
                trainedModel = mlContext.Model.Load(stream, out var modelInputSchema);
            }

            // Create prediction engine related to the loaded trained model
            var predFunction = mlContext.Model.CreatePredictionEngine <TaxiTrip, TaxiTripFarePredictionWithContribution>(trainedModel);

            string chartFileName = "";

            using (var pl = new PLStream())
            {
                if (args.Length == 1 && args[0] == "svg")
                {
                    pl.sdev("svg");
                    chartFileName = "TaxiRegressionDistribution.svg";
                    pl.sfnam(chartFileName);
                }
                else
                {
                    pl.sdev("pngcairo");
                    chartFileName = "TaxiRegressionDistribution.png";
                    pl.sfnam(chartFileName);
                }

                // use white background with black foreground
                pl.spal0("cmap0_alternate.pal");

                // Initialize plplot
                pl.init();

                // set axis limits
                const int xMinLimit = 0;
                const int xMaxLimit = 35; //Rides larger than $35 are not shown in the chart
                const int yMinLimit = 0;
                const int yMaxLimit = 35; //Rides larger than $35 are not shown in the chart
                pl.env(xMinLimit, xMaxLimit, yMinLimit, yMaxLimit, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);

                // Set scaling for mail title text 125% size of default
                pl.schr(0, 1.25);

                // The main title
                pl.lab("Actual", "Predicted", "Distribution of Taxi Fare Prediction");

                // plot using different colors
                // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices
                pl.col0(1);

                int totalNumber = numberOfRecordsToRead;
                var testData    = new TaxiTripCsvReader().GetDataFromCsv(testDataSetPath, totalNumber).ToList();

                //This code is the symbol to paint
                char code = (char)9;

                // plot using other color
                //pl.col0(9); //Light Green
                //pl.col0(4); //Red
                pl.col0(2); //Blue

                double yTotal       = 0;
                double xTotal       = 0;
                double xyMultiTotal = 0;
                double xSquareTotal = 0;

                for (int i = 0; i < testData.Count; i++)
                {
                    var x = new double[1];
                    var y = new double[1];

                    //Make Prediction
                    var FarePrediction = predFunction.Predict(testData[i]);

                    x[0] = testData[i].FareAmount;
                    y[0] = FarePrediction.FareAmount;

                    //Paint a dot
                    pl.poin(x, y, code);

                    xTotal += x[0];
                    yTotal += y[0];

                    double multi = x[0] * y[0];
                    xyMultiTotal += multi;

                    double xSquare = x[0] * x[0];
                    xSquareTotal += xSquare;

                    double ySquare = y[0] * y[0];

                    Console.WriteLine($"-------------------------------------------------");
                    Console.WriteLine($"Predicted : {FarePrediction.FareAmount}");
                    Console.WriteLine($"Actual:    {testData[i].FareAmount}");
                    Console.WriteLine($"-------------------------------------------------");
                }

                // Regression Line calculation explanation:
                // https://www.khanacademy.org/math/statistics-probability/describing-relationships-quantitative-data/more-on-regression/v/regression-line-example

                double minY       = yTotal / totalNumber;
                double minX       = xTotal / totalNumber;
                double minXY      = xyMultiTotal / totalNumber;
                double minXsquare = xSquareTotal / totalNumber;

                double m = ((minX * minY) - minXY) / ((minX * minX) - minXsquare);

                double b = minY - (m * minX);

                //Generic function for Y for the regression line
                // y = (m * x) + b;

                double x1 = 1;
                //Function for Y1 in the line
                double y1 = (m * x1) + b;

                double x2 = 39;
                //Function for Y2 in the line
                double y2 = (m * x2) + b;

                var xArray = new double[2];
                var yArray = new double[2];
                xArray[0] = x1;
                yArray[0] = y1;
                xArray[1] = x2;
                yArray[1] = y2;

                pl.col0(4);
                pl.line(xArray, yArray);

                // end page (writes output to disk)
                pl.eop();

                // output version of PLplot
                pl.gver(out var verText);
                Console.WriteLine("PLplot version " + verText);
            } // the pl object is disposed here

            // Open Chart File In Microsoft Photos App (Or default app, like browser for .svg)

            Console.WriteLine("Showing chart...");
            var    p = new Process();
            string chartFileNamePath = @".\" + chartFileName;

            p.StartInfo = new ProcessStartInfo(chartFileNamePath)
            {
                UseShellExecute = true
            };
            p.Start();
        }
예제 #4
0
        /// <summary>
        /// The main program entry point.
        /// </summary>
        /// <param name="args">The command line parameters.</param>
        static void Main()
        {
            // create the machine learning context
            var context = new MLContext();

            // load the data file
            Console.WriteLine("Loading data...");
            var dataView = context.Data.LoadFromTextFile <SalesRecord>(path: dataPath, hasHeader: true, separatorChar: ',');

            // get an array of data points
            var sales = context.Data.CreateEnumerable <SalesRecord>(dataView, reuseRowObject: false).ToArray();

            // plot the data
            var pl = new PLStream();

            pl.sdev("pngcairo");                // png rendering
            pl.sfnam("data.png");               // output filename
            pl.spal0("cmap0_alternate.pal");    // alternate color palette
            pl.init();
            pl.env(
                0, 36,                          // x-axis range
                0, 800,                         // y-axis range
                AxesScale.Independent,          // scale x and y independently
                AxisBox.BoxTicksLabelsAxes);    // draw box, ticks, and num ticks
            pl.lab(
                "Date",                         // x-axis label
                "Sales",                        // y-axis label
                "Shampoo sales over time");     // plot title
            pl.line(
                (from x in Enumerable.Range(0, sales.Count()) select(double) x).ToArray(),
                (from p in sales select(double) p.Sales).ToArray()
                );

            // build a training pipeline for detecting spikes
            var pipeline = context.Transforms.DetectIidSpike(
                outputColumnName: nameof(SalesPrediction.Prediction),
                inputColumnName: nameof(SalesRecord.Sales),
                confidence: 95,
                pvalueHistoryLength: sales.Count() / 4); // 25% of x-range

            // train the model
            Console.WriteLine("Detecting spikes...");
            var model = pipeline.Fit(dataView);

            // predict spikes in the data
            var transformed = model.Transform(dataView);
            var predictions = context.Data.CreateEnumerable <SalesPrediction>(transformed, reuseRowObject: false).ToArray();

            // find the spikes in the data
            var spikes = (from i in Enumerable.Range(0, predictions.Count())
                          where predictions[i].Prediction[0] == 1
                          select(Day: i, Sales: sales[i].Sales));

            // plot the spikes
            pl.col0(2);     // blue color
            pl.schr(3, 3);  // scale characters
            pl.string2(
                (from s in spikes select(double) s.Day).ToArray(),
                (from s in spikes select(double) s.Sales + 40).ToArray(),
                "!");

            // build a training pipeline for detecting change points
            var pipeline2 = context.Transforms.DetectIidChangePoint(
                outputColumnName: nameof(SalesPrediction.Prediction),
                inputColumnName: nameof(SalesRecord.Sales),
                confidence: 95,
                changeHistoryLength: sales.Count() / 4); // 25% of x-range

            // train the model
            Console.WriteLine("Detecting change points...");
            var model2 = pipeline2.Fit(dataView);

            // get predictions
            transformed = model2.Transform(dataView);
            predictions = context.Data.CreateEnumerable <SalesPrediction>(transformed, reuseRowObject: false).ToArray();

            // find the change points in the data
            var changes = (from i in Enumerable.Range(0, predictions.Count())
                           where predictions[i].Prediction[0] == 1
                           select(Day: i, Sales: sales[i].Sales));

            // plot the change points as vertical red lines
            pl.col0(3);
            foreach (var c in changes)
            {
                pl.line(new double[] { c.Day, c.Day }, new double[] { 0, 800 });
            }
            pl.eop();
            Console.WriteLine("Saved output file: data.png");
        }
예제 #5
0
        private static void Main(string[] args)
        {
            // generate data for plotting
            const double sineFactor   = 0.012585;
            const int    exampleCount = 1000;
            var          phaseOffset  = 125;

            var x0 = new double[exampleCount];
            var y0 = new double[exampleCount];

            for (var j = 0; j < exampleCount; j++)
            {
                x0[j] = j;
                y0[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            var x1 = new double[exampleCount];
            var y1 = new double[exampleCount];

            phaseOffset = 250;

            for (var j = 0; j < exampleCount; j++)
            {
                x1[j] = j;
                y1[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            var x2 = new double[exampleCount];
            var y2 = new double[exampleCount];

            phaseOffset = 375;

            for (var j = 0; j < exampleCount; j++)
            {
                x2[j] = j;
                y2[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            var x3 = new double[exampleCount];
            var y3 = new double[exampleCount];

            phaseOffset = 500;

            for (var j = 0; j < exampleCount; j++)
            {
                x3[j] = j;
                y3[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            // create PLplot object
            var pl = new PLStream();

            // use SVG backend and write to SineWaves.svg in current directory
            if (args.Length == 1 && args[0] == "svg")
            {
                pl.sdev("svg");
                pl.sfnam("SineWaves.svg");
            }
            else
            {
                pl.sdev("pngcairo");
                pl.sfnam("SineWaves.png");
            }

            // use white background with black foreground
            pl.spal0("cmap0_alternate.pal");

            // Initialize plplot
            pl.init();

            // set axis limits
            const int xMin = 0;
            const int xMax = 1000;
            const int yMin = -1;
            const int yMax = 1;

            pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);

            // Set scaling for mail title text 125% size of default
            pl.schr(0, 1.25);

            // The main title
            pl.lab("X", "Y", "PLplot demo of four sine waves");

            // plot using different colors
            // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices
            pl.col0(9);
            pl.line(x0, y0);
            pl.col0(1);
            pl.line(x1, y1);
            pl.col0(2);
            pl.line(x2, y2);
            pl.col0(4);
            pl.line(x3, y3);

            // end page (writes output to disk)
            pl.eop();

            // output version
            pl.gver(out var verText);
            Console.WriteLine("PLplot version " + verText);
        }
예제 #6
0
        public static void Main(string[] args)
        {
            Storage();


            // generate data for plotting
            const double sineFactor   = 0.012585;
            const int    exampleCount = 1000;
            var          phaseOffset  = 125;

            var x0 = new double[exampleCount];
            var y0 = new double[exampleCount];

            for (var j = 0; j < exampleCount; j++)
            {
                x0[j] = j;
                y0[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            var x1 = new double[exampleCount];
            var y1 = new double[exampleCount];

            phaseOffset = 250;

            for (var j = 0; j < exampleCount; j++)
            {
                x1[j] = j;
                y1[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            var x2 = new double[exampleCount];
            var y2 = new double[exampleCount];

            phaseOffset = 375;

            for (var j = 0; j < exampleCount; j++)
            {
                x2[j] = j;
                y2[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            var x3 = new double[exampleCount];
            var y3 = new double[exampleCount];

            phaseOffset = 500;

            for (var j = 0; j < exampleCount; j++)
            {
                x3[j] = j;
                y3[j] = (double)(System.Math.Sin(sineFactor * (j + phaseOffset)) * 1);
            }

            // create PLplot object
            var pl = new PLStream();

            // use SVG backend and write to SineWaves.svg in current directory
            if (args.Length == 1 && args[0] == "svg")
            {
                pl.sdev("svg");
                pl.sfnam("SineWaves.svg");
            }
            else
            {
                pl.sdev("pngcairo");
                pl.sfnam("SineWaves.png");
            }

            // use white background with black foreground
            pl.spal0("cmap0_alternate.pal");

            // Initialize plplot
            pl.init();

            // set axis limits
            const int xMin = 0;
            const int xMax = 1000;
            const int yMin = -1;
            const int yMax = 1;

            pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);

            // Set scaling for mail title text 125% size of default
            pl.schr(0, 1.25);

            // The main title
            pl.lab("X", "Y", "PLplot demo of four sine waves");

            // plot using different colors
            // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices
            pl.col0(9);
            pl.line(x0, y0);
            pl.col0(1);
            pl.line(x1, y1);
            pl.col0(2);
            pl.line(x2, y2);
            pl.col0(4);
            pl.line(x3, y3);

            // end page (writes output to disk)
            pl.eop();

            // output version
            pl.gver(out var verText);
            Console.WriteLine("PLplot version " + verText);

            ////////histogram/////////////////////


            double[] y00 = { 5.0, 15.0, 12.0, 24.0, 28.0, 30.0, 20.0, 8.0, 12.0, 3.0 };

            double[] pos   = { 0.0, 0.25, 0.5, 0.75, 1.0 };
            double[] red   = { 0.0, 0.25, 0.5, 1.0, 1.0 };
            double[] green = { 1.0, 0.5, 0.5, 0.5, 1.0 };
            double[] blue  = { 1.0, 1.0, 0.5, 0.25, 0.0 };

            PLStream pls = new PLStream();

            pls.sdev("pngcairo");
            pls.sfnam("Histogram.png");
            pls.spal0("cmap0_alternate.pal");
            pls.init();
            pls.adv(0);
            pls.vsta();
            pls.wind(1980.0, 1990.0, 0.0, 35.0);
            pls.box("bc", 1.0, 0, "bcnv", 10.0, 0);
            pls.col0(2);
            pls.lab("Year", "Widget Sales (millions)", "#frPLplot Example 12");
            for (int i = 0; i < 10; i++)
            {
                //            pls.col0(i + 1);
                pls.col1(i / 9.0);
                pls.psty(0);

                double[] x = new double[4];
                double[] y = new double[4];

                x[0] = 1980.0 + i;
                y[0] = 0.0;
                x[1] = 1980.0 + i;
                y[1] = y00[i];
                x[2] = 1980.0 + i + 1.0;
                y[2] = y00[i];
                x[3] = 1980.0 + i + 1.0;
                y[3] = 0.0;
                pls.fill(x, y);
                pls.col0(1);
                pls.lsty(LineStyle.Continuous);
                pls.line(x, y);


                //	   sprintf(string, "%.0f", y0[i]);
                String text = ((int)(y00[i] + 0.5)).ToString();
                pls.ptex((1980.0 + i + .5), (y00[i] + 1.0), 1.0, 0.0, .5, text);
                //	   sprintf(string, "%d", 1980 + i);
                String text1 = (1980 + i).ToString();
                pls.mtex("b", 1.0, ((i + 1) * .1 - .05), 0.5, text1);
            }
            pls.eop();
            Console.ReadLine();
        }
예제 #7
0
        /// <summary>
        /// The main program entry point.
        /// </summary>
        /// <param name="args">The command line parameters.</param>
        static void Main()
        {
            // create the machine learning context
            var context = new MLContext();

            // load the data file
            Console.WriteLine("Loading data...");
            var dataView = context.Data.LoadFromTextFile <MeterData>(path: dataPath, hasHeader: true, separatorChar: ',');

            // get an array of data points
            var values = context.Data.CreateEnumerable <MeterData>(dataView, reuseRowObject: false).ToArray();

            // plot the data
            var pl = new PLStream();

            pl.sdev("pngcairo");                // png rendering
            pl.sfnam("data.png");               // output filename
            pl.spal0("cmap0_alternate.pal");    // alternate color palette
            pl.init();
            pl.env(
                0, 90,                          // x-axis range
                0, 5000,                        // y-axis range
                AxesScale.Independent,          // scale x and y independently
                AxisBox.BoxTicksLabelsAxes);    // draw box, ticks, and num ticks
            pl.lab(
                "Day",                          // x-axis label
                "Power consumption",            // y-axis label
                "Power consumption over time"); // plot title
            pl.line(
                (from x in Enumerable.Range(0, values.Count()) select(double) x).ToArray(),
                (from p in values select(double) p.Consumption).ToArray()
                );

            // build a training pipeline for detecting spikes
            var pipeline = context.Transforms.SsaSpikeEstimator(
                nameof(SpikePrediction.Prediction),
                nameof(MeterData.Consumption),
                confidence: 98,
                pvalueHistoryLength: 30,
                trainingWindowSize: 90,
                seasonalityWindowSize: 30);

            // train the model
            Console.WriteLine("Detecting spikes...");
            var model = pipeline.Fit(dataView);

            // predict spikes in the data
            var transformed = model.Transform(dataView);
            var predictions = context.Data.CreateEnumerable <SpikePrediction>(transformed, reuseRowObject: false).ToArray();

            // find the spikes in the data
            var spikes = (from i in Enumerable.Range(0, predictions.Count())
                          where predictions[i].Prediction[0] == 1
                          select(Day: i, Consumption: values[i].Consumption));

            // plot the spikes
            pl.col0(2);     // blue color
            pl.schr(3, 3);  // scale characters
            pl.string2(
                (from s in spikes select(double) s.Day).ToArray(),
                (from s in spikes select(double) s.Consumption + 200).ToArray(),
                "↓");

            pl.eop();
        }
예제 #8
0
        public static void PlotRegressionChart(MLContext mlContext,
                                               string testDataSetPath,
                                               string simulationPath)
        {
            ITransformer trainedModel;

            using (var stream = new FileStream(simulationPath, FileMode.Open, FileAccess.Read, FileShare.Read))
            {
                trainedModel = mlContext.Model.Load(stream, out var modelInputSchema);
            }

            // Create prediction engine related to the loaded trained model
            var predFunction = mlContext.Model.CreatePredictionEngine <ExecutionModel, ExecutionModelPrediction>(trainedModel);

            string chartFileName;

            using (var pl = new PLStream())
            {
                pl.sdev("pngcairo");
                chartFileName = "RegressionDistribution.png";
                pl.sfnam(chartFileName);

                // use white background with black foreground
                pl.spal0("cmap0_alternate.pal");

                // Initialize plplot
                pl.init();

                //var totalNumber = numberOfRecordsToRead;
                var testData    = new CsvReader().GetDataFromCsv(testDataSetPath).ToList();
                var totalNumber = testData.Count;

                var(xMinLimit, xMaxLimit) = GetMinMax(testData);

                // set axis limits
                pl.env(xMinLimit, xMaxLimit, xMinLimit, xMaxLimit, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);

                // Set scaling for mail title text 125% size of default
                pl.schr(0, 1.25);

                // The main title
                pl.lab("Measured", "Predicted", "Distribution of TotalTime Prediction");

                // plot using different colors
                // see http://plplot.sourceforge.net/examples.php?demo=02 for palette indices
                pl.col0(1);

                //This code is the symbol to paint
                const char code = (char)9;

                // plot using other color
                //pl.col0(9); //Light Green
                //pl.col0(4); //Red
                pl.col0(2); //Blue

                double yTotal       = 0;
                double xTotal       = 0;
                double xyMultiTotal = 0;
                double xSquareTotal = 0;

                foreach (var t in testData)
                {
                    var x = new double[1];
                    var y = new double[1];

                    //Make Prediction
                    var prediction = predFunction.Predict(t);

                    x[0] = t.TotalTime;
                    y[0] = prediction.TotalTime;

                    //Paint a dot
                    pl.poin(x, y, code);

                    xTotal += x[0];
                    yTotal += y[0];

                    var multi = x[0] * y[0];
                    xyMultiTotal += multi;

                    var xSquare = x[0] * x[0];
                    xSquareTotal += xSquare;

                    //Console.WriteLine($"-------------------------------------------------");
                    //Console.WriteLine($"Predicted : {prediction.TotalTime}");
                    //Console.WriteLine($"Actual:    {testData[i].TotalTime}");
                    //Console.WriteLine($"-------------------------------------------------");
                }

                var minY       = yTotal / totalNumber;
                var minX       = xTotal / totalNumber;
                var minXy      = xyMultiTotal / totalNumber;
                var minXsquare = xSquareTotal / totalNumber;

                var m = ((minX * minY) - minXy) / ((minX * minX) - minXsquare);

                var b = minY - (m * minX);

                //Generic function for Y for the regression line
                // y = (m * x) + b;

                const int x1 = 1;
                var       y1 = (m * x1) + b;

                var x2 = xMaxLimit;
                //Function for Y2 in the line
                var y2 = (m * x2) + b;

                var xArray = new double[2];
                var yArray = new double[2];
                xArray[0] = x1;
                yArray[0] = y1;
                xArray[1] = x2;
                yArray[1] = y2;

                pl.col0(4);
                pl.line(xArray, yArray);

                // end page (writes output to disk)
                pl.eop();

                // output version of PLplot
                pl.gver(out var verText);
                //Console.WriteLine("PLplot version " + verText);
            } // the pl object is disposed here

            // Open Chart File
            Console.WriteLine("Showing chart...");
            var p = new Process();
            var chartFileNamePath = @".\" + chartFileName;

            p.StartInfo = new ProcessStartInfo(chartFileNamePath)
            {
                UseShellExecute = true
            };
            p.Start();
        }