public void OverflowTest()
        {
            foreach (bool transpose in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 4, 8, 12 })
                    {
                        foreach (int outchannels in new int[] { 4, 8, 12 })
                        {
                            float[] xval = (new float[inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                            float[] yval = (new float[outchannels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                            OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map0D(inchannels, batch), xval);
                            OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map0D(outchannels, batch), yval);

                            OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel0D(inchannels, outchannels / 4));

                            QuaternionKernelProductDense ope = new QuaternionKernelProductDense(inchannels, outchannels, transpose, batch);

                            ope.Execute(x_tensor, y_tensor, gw_tensor);

                            CollectionAssert.AreEqual(xval, x_tensor.State);
                            CollectionAssert.AreEqual(yval, y_tensor.State);

                            gw_tensor.CheckOverflow();

                            Console.WriteLine($"pass: {inchannels},{outchannels},{batch},{transpose}");
                        }
                    }
                }
            }
        }
        public void OverflowTest()
        {
            foreach (bool gradmode in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 2, 4, 10, 20 })
                    {
                        foreach (int outchannels in new int[] { 6, 14 })
                        {
                            float[] xval = (new float[inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                            float[] wval = (new float[inchannels * outchannels / 2]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                            OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map0D(inchannels, batch), xval);
                            OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel0D(inchannels, outchannels / 2), wval);

                            OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map0D(outchannels, batch));

                            ComplexDense ope = new ComplexDense(inchannels, outchannels, gradmode, batch);

                            ope.Execute(x_tensor, w_tensor, y_tensor);

                            CollectionAssert.AreEqual(xval, x_tensor.State);
                            CollectionAssert.AreEqual(wval, w_tensor.State);

                            y_tensor.CheckOverflow();

                            Console.WriteLine($"pass: {inchannels},{outchannels},{batch},{gradmode}");
                        }
                    }
                }
            }
        }
        public void OverflowTest()
        {
            foreach (bool gradmode in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 3, 6, 9, 12 })
                    {
                        foreach (int outchannels in new int[] { 3, 6, 9, 12 })
                        {
                            float[] yval = (new float[outchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                            float[] wval = (new float[inchannels * outchannels / 9 * 4]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                            OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map0D(outchannels, batch), yval);
                            OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel0D(inchannels / 3 * 4, outchannels / 3), wval);

                            OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map0D(inchannels, batch));

                            TrivectorTransposeDense ope = new TrivectorTransposeDense(outchannels, inchannels, gradmode, batch);

                            ope.Execute(y_tensor, w_tensor, x_tensor);

                            CollectionAssert.AreEqual(yval, y_tensor.State);
                            CollectionAssert.AreEqual(wval, w_tensor.State);

                            x_tensor.CheckOverflow();

                            Console.WriteLine($"pass: {inchannels},{outchannels},{batch},{gradmode}");
                        }
                    }
                }
            }
        }
예제 #4
0
        public void OverflowTest()
        {
            foreach (bool gradmode in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 4, 8, 12 })
                    {
                        foreach (int outchannels in new int[] { 4, 8, 12 })
                        {
                            foreach (int kwidth in new int[] { 1, 3, 5 })
                            {
                                foreach (int stride in new int[] { 1, 2, 3 })
                                {
                                    foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                    {
                                        int outwidth = (inwidth - kwidth) / stride + 1;

                                        float[] xval = (new float[inwidth * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                        float[] wval = (new float[kwidth * inchannels * outchannels / 4]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                        Quaternion[] xcval = (new Quaternion[xval.Length / 4])
                                                             .Select((_, idx) => new Quaternion(xval[idx * 4], xval[idx * 4 + 1], xval[idx * 4 + 2], xval[idx * 4 + 3])).ToArray();

                                        Quaternion[] wcval = (new Quaternion[wval.Length / 4])
                                                             .Select((_, idx) => new Quaternion(wval[idx * 4], wval[idx * 4 + 1], wval[idx * 4 + 2], wval[idx * 4 + 3])).ToArray();

                                        QuaternionMap1D    x = new QuaternionMap1D(inchannels / 4, inwidth, batch, xcval);
                                        QuaternionFilter1D w = new QuaternionFilter1D(inchannels / 4, outchannels / 4, kwidth, wcval);

                                        QuaternionMap1D y = Reference(x, w, kwidth, stride);

                                        OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map1D(inchannels, inwidth, batch), xval);
                                        OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel1D(inchannels, outchannels / 4, kwidth), wval);

                                        OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map1D(outchannels, outwidth, batch));

                                        QuaternionConvolution1D ope = new QuaternionConvolution1D(inwidth, inchannels, outchannels, kwidth, stride, gradmode, batch);

                                        ope.Execute(x_tensor, w_tensor, y_tensor);

                                        CollectionAssert.AreEqual(xval, x_tensor.State);
                                        CollectionAssert.AreEqual(wval, w_tensor.State);

                                        y_tensor.CheckOverflow();

                                        Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{stride},{inwidth},{batch},{gradmode}");
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
        public void OverflowTest()
        {
            foreach (bool transpose in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 3, 6, 9, 12 })
                    {
                        foreach (int outchannels in new int[] { 3, 6, 9, 12 })
                        {
                            foreach (int kheight in new int[] { 1, 3, 5 })
                            {
                                foreach (int kwidth in new int[] { 1, 3, 5 })
                                {
                                    foreach (int stride in new int[] { 1, 2, 3 })
                                    {
                                        foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                        {
                                            foreach (int inheight in new int[] { 8, 9, 19, 23 })
                                            {
                                                int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1;

                                                float[] xval = (new float[inwidth * inheight * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                                float[] yval = (new float[outwidth * outheight * outchannels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();
                                                float[] wval = (new float[kwidth * kheight * inchannels * outchannels / 9 * 4]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                                OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight, batch), xval);
                                                OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight, batch), yval);
                                                OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels / 3 * 4, outchannels / 3, kwidth, kheight), wval);

                                                OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels / 3 * 4, outchannels / 3, kwidth, kheight));

                                                TrivectorKernelProduct2D ope = new TrivectorKernelProduct2D(inwidth, inheight, inchannels, outchannels, kwidth, kheight, stride, transpose, batch);

                                                ope.Execute(x_tensor, y_tensor, w_tensor, gw_tensor);

                                                CollectionAssert.AreEqual(xval, x_tensor.State);
                                                CollectionAssert.AreEqual(yval, y_tensor.State);
                                                CollectionAssert.AreEqual(wval, w_tensor.State);

                                                gw_tensor.CheckOverflow();

                                                Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch},{transpose}");
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
        public void OverflowTest()
        {
            foreach (bool gradmode in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 2, 4, 10, 20 })
                    {
                        foreach (int outchannels in new int[] { 6, 14 })
                        {
                            foreach (int kheight in new int[] { 1, 3, 5 })
                            {
                                foreach (int kwidth in new int[] { 1, 3, 5 })
                                {
                                    foreach (int stride in new int[] { 1, 2, 3 })
                                    {
                                        foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                        {
                                            foreach (int inheight in new int[] { 8, 9, 19, 23 })
                                            {
                                                int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1;

                                                float[] xval = (new float[inwidth * inheight * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                                float[] wval = (new float[kwidth * kheight * inchannels * outchannels / 2]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                                OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight, batch), xval);
                                                OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels, outchannels / 2, kwidth, kheight), wval);

                                                OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight, batch));

                                                ComplexConvolution2D ope = new ComplexConvolution2D(inwidth, inheight, inchannels, outchannels, kwidth, kheight, stride, gradmode, batch);

                                                ope.Execute(x_tensor, w_tensor, y_tensor);

                                                CollectionAssert.AreEqual(xval, x_tensor.State);
                                                CollectionAssert.AreEqual(wval, w_tensor.State);

                                                y_tensor.CheckOverflow();

                                                Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch},{gradmode}");
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
예제 #7
0
        public void OverflowTest()
        {
            foreach (bool gradmode in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 3, 6, 9, 12 })
                    {
                        foreach (int outchannels in new int[] { 3, 6, 9, 12 })
                        {
                            foreach (int kwidth in new int[] { 1, 3, 5 })
                            {
                                foreach (int stride in new int[] { 1, 2, 3 })
                                {
                                    foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                    {
                                        int outwidth = (inwidth - kwidth) / stride + 1;

                                        float[] xval = (new float[inwidth * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                        float[] wval = (new float[kwidth * inchannels * outchannels / 9 * 4]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                        OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map1D(inchannels, inwidth, batch), xval);
                                        OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel1D(inchannels / 3 * 4, outchannels / 3, kwidth), wval);

                                        OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map1D(outchannels, outwidth, batch));

                                        TrivectorConvolution1D ope = new TrivectorConvolution1D(inwidth, inchannels, outchannels, kwidth, stride, gradmode, batch);

                                        ope.Execute(x_tensor, w_tensor, y_tensor);

                                        CollectionAssert.AreEqual(xval, x_tensor.State);
                                        CollectionAssert.AreEqual(wval, w_tensor.State);

                                        y_tensor.CheckOverflow();

                                        Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{stride},{inwidth},{batch},{gradmode}");
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
예제 #8
0
        public void OverflowTest()
        {
            foreach (bool transpose in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 2, 4, 10, 20 })
                    {
                        foreach (int outchannels in new int[] { 6, 14 })
                        {
                            foreach (int kwidth in new int[] { 1, 3, 5 })
                            {
                                foreach (int stride in new int[] { 1, 2, 3 })
                                {
                                    foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                    {
                                        int outwidth = (inwidth - kwidth) / stride + 1;

                                        float[] xval = (new float[inwidth * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                        float[] yval = (new float[outwidth * outchannels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                        OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map1D(inchannels, inwidth, batch), xval);
                                        OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map1D(outchannels, outwidth, batch), yval);

                                        OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel1D(inchannels, outchannels / 2, kwidth));

                                        ComplexKernelProduct1D ope = new ComplexKernelProduct1D(inwidth, inchannels, outchannels, kwidth, stride, transpose, batch);

                                        ope.Execute(x_tensor, y_tensor, gw_tensor);

                                        CollectionAssert.AreEqual(xval, x_tensor.State);
                                        CollectionAssert.AreEqual(yval, y_tensor.State);

                                        gw_tensor.CheckOverflow();

                                        Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{stride},{inwidth},{batch},{transpose}");
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }