예제 #1
0
        /// <summary> Find a triangle or edge containing a given point. </summary>
        /// <param name="searchpoint">The point to locate.</param>
        /// <param name="searchtri">The triangle to start the search at.</param>
        /// <param name="stopatsubsegment">
        ///     If 'stopatsubsegment' is set, the search
        ///     will stop if it tries to walk through a subsegment, and will return OUTSIDE.
        /// </param>
        /// <returns>Location information.</returns>
        /// <remarks>
        ///     Begins its search from 'searchtri'. It is important that 'searchtri'
        ///     be a handle with the property that 'searchpoint' is strictly to the left
        ///     of the edge denoted by 'searchtri', or is collinear with that edge and
        ///     does not intersect that edge. (In particular, 'searchpoint' should not
        ///     be the origin or destination of that edge.)
        ///     These conditions are imposed because preciselocate() is normally used in
        ///     one of two situations:
        ///     (1)  To try to find the location to insert a new point.  Normally, we
        ///     know an edge that the point is strictly to the left of. In the
        ///     incremental Delaunay algorithm, that edge is a bounding box edge.
        ///     In Ruppert's Delaunay refinement algorithm for quality meshing,
        ///     that edge is the shortest edge of the triangle whose circumcenter
        ///     is being inserted.
        ///     (2)  To try to find an existing point.  In this case, any edge on the
        ///     convex hull is a good starting edge. You must screen out the
        ///     possibility that the vertex sought is an endpoint of the starting
        ///     edge before you call preciselocate().
        ///     On completion, 'searchtri' is a triangle that contains 'searchpoint'.
        ///     This implementation differs from that given by Guibas and Stolfi.  It
        ///     walks from triangle to triangle, crossing an edge only if 'searchpoint'
        ///     is on the other side of the line containing that edge. After entering
        ///     a triangle, there are two edges by which one can leave that triangle.
        ///     If both edges are valid ('searchpoint' is on the other side of both
        ///     edges), one of the two is chosen by drawing a line perpendicular to
        ///     the entry edge (whose endpoints are 'forg' and 'fdest') passing through
        ///     'fapex'. Depending on which side of this perpendicular 'searchpoint'
        ///     falls on, an exit edge is chosen.
        ///     This implementation is empirically faster than the Guibas and Stolfi
        ///     point location routine (which I originally used), which tends to spiral
        ///     in toward its target.
        ///     Returns ONVERTEX if the point lies on an existing vertex. 'searchtri'
        ///     is a handle whose origin is the existing vertex.
        ///     Returns ONEDGE if the point lies on a mesh edge. 'searchtri' is a
        ///     handle whose primary edge is the edge on which the point lies.
        ///     Returns INTRIANGLE if the point lies strictly within a triangle.
        ///     'searchtri' is a handle on the triangle that contains the point.
        ///     Returns OUTSIDE if the point lies outside the mesh. 'searchtri' is a
        ///     handle whose primary edge the point is to the right of.  This might
        ///     occur when the circumcenter of a triangle falls just slightly outside
        ///     the mesh due to floating-point roundoff error. It also occurs when
        ///     seeking a hole or region point that a foolish user has placed outside
        ///     the mesh.
        ///     WARNING:  This routine is designed for convex triangulations, and will
        ///     not generally work after the holes and concavities have been carved.
        ///     However, it can still be used to find the circumcenter of a triangle, as
        ///     long as the search is begun from the triangle in question.
        /// </remarks>
        public LocateResult PreciseLocate(Point searchpoint, ref Otri searchtri,
                                          bool stopatsubsegment)
        {
            Otri   backtracktri = default(Otri);
            Osub   checkedge = default(Osub);
            Point  forg, fdest, fapex;
            double orgorient, destorient;
            bool   moveleft;

            // Where are we?
            forg  = searchtri.Org();
            fdest = searchtri.Dest();
            fapex = searchtri.Apex();
            while (true)
            {
                // Check whether the apex is the point we seek.
                if ((fapex.X == searchpoint.X) && (fapex.Y == searchpoint.Y))
                {
                    searchtri.Lprev();
                    return(LocateResult.OnVertex);
                }
                // Does the point lie on the other side of the line defined by the
                // triangle edge opposite the triangle's destination?
                destorient = RobustPredicates.CounterClockwise(forg, fapex, searchpoint);
                // Does the point lie on the other side of the line defined by the
                // triangle edge opposite the triangle's origin?
                orgorient = RobustPredicates.CounterClockwise(fapex, fdest, searchpoint);
                if (destorient > 0.0)
                {
                    if (orgorient > 0.0)
                    {
                        // Move left if the inner product of (fapex - searchpoint) and
                        // (fdest - forg) is positive.  This is equivalent to drawing
                        // a line perpendicular to the line (forg, fdest) and passing
                        // through 'fapex', and determining which side of this line
                        // 'searchpoint' falls on.
                        moveleft = (fapex.X - searchpoint.X) * (fdest.X - forg.X) +
                                   (fapex.Y - searchpoint.Y) * (fdest.Y - forg.Y) > 0.0;
                    }
                    else
                    {
                        moveleft = true;
                    }
                }
                else
                {
                    if (orgorient > 0.0)
                    {
                        moveleft = false;
                    }
                    else
                    {
                        // The point we seek must be on the boundary of or inside this
                        // triangle.
                        if (destorient == 0.0)
                        {
                            searchtri.Lprev();
                            return(LocateResult.OnEdge);
                        }
                        if (orgorient == 0.0)
                        {
                            searchtri.Lnext();
                            return(LocateResult.OnEdge);
                        }
                        return(LocateResult.InTriangle);
                    }
                }

                // Move to another triangle. Leave a trace 'backtracktri' in case
                // floating-point roundoff or some such bogey causes us to walk
                // off a boundary of the triangulation.
                if (moveleft)
                {
                    searchtri.Lprev(ref backtracktri);
                    fdest = fapex;
                }
                else
                {
                    searchtri.Lnext(ref backtracktri);
                    forg = fapex;
                }
                backtracktri.Sym(ref searchtri);

                if (mesh.checksegments && stopatsubsegment)
                {
                    // Check for walking through a subsegment.
                    backtracktri.Pivot(ref checkedge);
                    if (checkedge.seg.hash != Mesh.DUMMY)
                    {
                        // Go back to the last triangle.
                        backtracktri.Copy(ref searchtri);
                        return(LocateResult.Outside);
                    }
                }
                // Check for walking right out of the triangulation.
                if (searchtri.tri.Id == Mesh.DUMMY)
                {
                    // Go back to the last triangle.
                    backtracktri.Copy(ref searchtri);
                    return(LocateResult.Outside);
                }

                fapex = searchtri.Apex();
            }
        }
예제 #2
0
        /// <summary> Find a triangle or edge containing a given point. </summary>
        /// <param name="searchpoint">The point to locate.</param>
        /// <param name="searchtri">The triangle to start the search at.</param>
        /// <returns>Location information.</returns>
        /// <remarks>
        ///     Searching begins from one of:  the input 'searchtri', a recently
        ///     encountered triangle 'recenttri', or from a triangle chosen from a
        ///     random sample. The choice is made by determining which triangle's
        ///     origin is closest to the point we are searching for. Normally,
        ///     'searchtri' should be a handle on the convex hull of the triangulation.
        ///     Details on the random sampling method can be found in the Mucke, Saias,
        ///     and Zhu paper cited in the header of this code.
        ///     On completion, 'searchtri' is a triangle that contains 'searchpoint'.
        ///     Returns ONVERTEX if the point lies on an existing vertex. 'searchtri'
        ///     is a handle whose origin is the existing vertex.
        ///     Returns ONEDGE if the point lies on a mesh edge. 'searchtri' is a
        ///     handle whose primary edge is the edge on which the point lies.
        ///     Returns INTRIANGLE if the point lies strictly within a triangle.
        ///     'searchtri' is a handle on the triangle that contains the point.
        ///     Returns OUTSIDE if the point lies outside the mesh. 'searchtri' is a
        ///     handle whose primary edge the point is to the right of.  This might
        ///     occur when the circumcenter of a triangle falls just slightly outside
        ///     the mesh due to floating-point roundoff error. It also occurs when
        ///     seeking a hole or region point that a foolish user has placed outside
        ///     the mesh.
        ///     WARNING:  This routine is designed for convex triangulations, and will
        ///     not generally work after the holes and concavities have been carved.
        /// </remarks>
        public LocateResult Locate(Point searchpoint, ref Otri searchtri)
        {
            Otri   sampletri = default(Otri);
            Vertex torg, tdest;
            double searchdist, dist;
            double ahead;

            // Record the distance from the suggested starting triangle to the
            // point we seek.
            torg       = searchtri.Org();
            searchdist = (searchpoint.X - torg.X) * (searchpoint.X - torg.X) +
                         (searchpoint.Y - torg.Y) * (searchpoint.Y - torg.Y);

            // If a recently encountered triangle has been recorded and has not been
            // deallocated, test it as a good starting point.
            if (recenttri.tri != null)
            {
                if (!Otri.IsDead(recenttri.tri))
                {
                    torg = recenttri.Org();
                    if ((torg.X == searchpoint.X) && (torg.Y == searchpoint.Y))
                    {
                        recenttri.Copy(ref searchtri);
                        return(LocateResult.OnVertex);
                    }
                    dist = (searchpoint.X - torg.X) * (searchpoint.X - torg.X) +
                           (searchpoint.Y - torg.Y) * (searchpoint.Y - torg.Y);
                    if (dist < searchdist)
                    {
                        recenttri.Copy(ref searchtri);
                        searchdist = dist;
                    }
                }
            }

            // TODO: Improve sampling.
            sampler.Update(mesh);
            var samples = sampler.GetSamples(mesh);

            foreach (var key in samples)
            {
                sampletri.tri = mesh.triangles[key];
                if (!Otri.IsDead(sampletri.tri))
                {
                    torg = sampletri.Org();
                    dist = (searchpoint.X - torg.X) * (searchpoint.X - torg.X) +
                           (searchpoint.Y - torg.Y) * (searchpoint.Y - torg.Y);
                    if (dist < searchdist)
                    {
                        sampletri.Copy(ref searchtri);
                        searchdist = dist;
                    }
                }
            }

            // Where are we?
            torg  = searchtri.Org();
            tdest = searchtri.Dest();
            // Check the starting triangle's vertices.
            if ((torg.X == searchpoint.X) && (torg.Y == searchpoint.Y))
            {
                return(LocateResult.OnVertex);
            }
            if ((tdest.X == searchpoint.X) && (tdest.Y == searchpoint.Y))
            {
                searchtri.Lnext();
                return(LocateResult.OnVertex);
            }
            // Orient 'searchtri' to fit the preconditions of calling preciselocate().
            ahead = RobustPredicates.CounterClockwise(torg, tdest, searchpoint);
            if (ahead < 0.0)
            {
                // Turn around so that 'searchpoint' is to the left of the
                // edge specified by 'searchtri'.
                searchtri.Sym();
            }
            else if (ahead == 0.0)
            {
                // Check if 'searchpoint' is between 'torg' and 'tdest'.
                if (((torg.X < searchpoint.X) == (searchpoint.X < tdest.X)) &&
                    ((torg.Y < searchpoint.Y) == (searchpoint.Y < tdest.Y)))
                {
                    return(LocateResult.OnEdge);
                }
            }
            return(PreciseLocate(searchpoint, ref searchtri, false));
        }
예제 #3
0
파일: Dwyer.cs 프로젝트: DaddyTrap/JieZi
        /// <summary>
        /// Merge two adjacent Delaunay triangulations into a single Delaunay triangulation.
        /// </summary>
        /// <param name="farleft">Bounding triangles of the left triangulation.</param>
        /// <param name="innerleft">Bounding triangles of the left triangulation.</param>
        /// <param name="innerright">Bounding triangles of the right triangulation.</param>
        /// <param name="farright">Bounding triangles of the right triangulation.</param>
        /// <param name="axis"></param>
        /// <remarks>
        /// This is similar to the algorithm given by Guibas and Stolfi, but uses
        /// a triangle-based, rather than edge-based, data structure.
        ///
        /// The algorithm walks up the gap between the two triangulations, knitting
        /// them together.  As they are merged, some of their bounding triangles
        /// are converted into real triangles of the triangulation.  The procedure
        /// pulls each hull's bounding triangles apart, then knits them together
        /// like the teeth of two gears.  The Delaunay property determines, at each
        /// step, whether the next "tooth" is a bounding triangle of the left hull
        /// or the right.  When a bounding triangle becomes real, its apex is
        /// changed from NULL to a real vertex.
        ///
        /// Only two new triangles need to be allocated.  These become new bounding
        /// triangles at the top and bottom of the seam.  They are used to connect
        /// the remaining bounding triangles (those that have not been converted
        /// into real triangles) into a single fan.
        ///
        /// On entry, 'farleft' and 'innerleft' are bounding triangles of the left
        /// triangulation.  The origin of 'farleft' is the leftmost vertex, and
        /// the destination of 'innerleft' is the rightmost vertex of the
        /// triangulation.  Similarly, 'innerright' and 'farright' are bounding
        /// triangles of the right triangulation.  The origin of 'innerright' and
        /// destination of 'farright' are the leftmost and rightmost vertices.
        ///
        /// On completion, the origin of 'farleft' is the leftmost vertex of the
        /// merged triangulation, and the destination of 'farright' is the rightmost
        /// vertex.
        /// </remarks>
        void MergeHulls(ref Otri farleft, ref Otri innerleft, ref Otri innerright,
                        ref Otri farright, int axis)
        {
            Otri   leftcand = default(Otri), rightcand = default(Otri);
            Otri   nextedge = default(Otri);
            Otri   sidecasing = default(Otri), topcasing = default(Otri), outercasing = default(Otri);
            Otri   checkedge = default(Otri);
            Otri   baseedge  = default(Otri);
            Vertex innerleftdest;
            Vertex innerrightorg;
            Vertex innerleftapex, innerrightapex;
            Vertex farleftpt, farrightpt;
            Vertex farleftapex, farrightapex;
            Vertex lowerleft, lowerright;
            Vertex upperleft, upperright;
            Vertex nextapex;
            Vertex checkvertex;
            bool   changemade;
            bool   badedge;
            bool   leftfinished, rightfinished;

            innerleftdest  = innerleft.Dest();
            innerleftapex  = innerleft.Apex();
            innerrightorg  = innerright.Org();
            innerrightapex = innerright.Apex();
            // Special treatment for horizontal cuts.
            if (useDwyer && (axis == 1))
            {
                farleftpt    = farleft.Org();
                farleftapex  = farleft.Apex();
                farrightpt   = farright.Dest();
                farrightapex = farright.Apex();
                // The pointers to the extremal vertices are shifted to point to the
                // topmost and bottommost vertex of each hull, rather than the
                // leftmost and rightmost vertices.
                while (farleftapex.y < farleftpt.y)
                {
                    farleft.LnextSelf();
                    farleft.SymSelf();
                    farleftpt   = farleftapex;
                    farleftapex = farleft.Apex();
                }
                innerleft.Sym(ref checkedge);
                checkvertex = checkedge.Apex();
                while (checkvertex.y > innerleftdest.y)
                {
                    checkedge.Lnext(ref innerleft);
                    innerleftapex = innerleftdest;
                    innerleftdest = checkvertex;
                    innerleft.Sym(ref checkedge);
                    checkvertex = checkedge.Apex();
                }
                while (innerrightapex.y < innerrightorg.y)
                {
                    innerright.LnextSelf();
                    innerright.SymSelf();
                    innerrightorg  = innerrightapex;
                    innerrightapex = innerright.Apex();
                }
                farright.Sym(ref checkedge);
                checkvertex = checkedge.Apex();
                while (checkvertex.y > farrightpt.y)
                {
                    checkedge.Lnext(ref farright);
                    farrightapex = farrightpt;
                    farrightpt   = checkvertex;
                    farright.Sym(ref checkedge);
                    checkvertex = checkedge.Apex();
                }
            }
            // Find a line tangent to and below both hulls.
            do
            {
                changemade = false;
                // Make innerleftdest the "bottommost" vertex of the left hull.
                if (Primitives.CounterClockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0)
                {
                    innerleft.LprevSelf();
                    innerleft.SymSelf();
                    innerleftdest = innerleftapex;
                    innerleftapex = innerleft.Apex();
                    changemade    = true;
                }
                // Make innerrightorg the "bottommost" vertex of the right hull.
                if (Primitives.CounterClockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0)
                {
                    innerright.LnextSelf();
                    innerright.SymSelf();
                    innerrightorg  = innerrightapex;
                    innerrightapex = innerright.Apex();
                    changemade     = true;
                }
            } while (changemade);

            // Find the two candidates to be the next "gear tooth."
            innerleft.Sym(ref leftcand);
            innerright.Sym(ref rightcand);
            // Create the bottom new bounding triangle.
            mesh.MakeTriangle(ref baseedge);
            // Connect it to the bounding boxes of the left and right triangulations.
            baseedge.Bond(ref innerleft);
            baseedge.LnextSelf();
            baseedge.Bond(ref innerright);
            baseedge.LnextSelf();
            baseedge.SetOrg(innerrightorg);
            baseedge.SetDest(innerleftdest);
            // Apex is intentionally left NULL.

            // Fix the extreme triangles if necessary.
            farleftpt = farleft.Org();
            if (innerleftdest == farleftpt)
            {
                baseedge.Lnext(ref farleft);
            }
            farrightpt = farright.Dest();
            if (innerrightorg == farrightpt)
            {
                baseedge.Lprev(ref farright);
            }
            // The vertices of the current knitting edge.
            lowerleft  = innerleftdest;
            lowerright = innerrightorg;
            // The candidate vertices for knitting.
            upperleft  = leftcand.Apex();
            upperright = rightcand.Apex();
            // Walk up the gap between the two triangulations, knitting them together.
            while (true)
            {
                // Have we reached the top? (This isn't quite the right question,
                // because even though the left triangulation might seem finished now,
                // moving up on the right triangulation might reveal a new vertex of
                // the left triangulation. And vice-versa.)
                leftfinished  = Primitives.CounterClockwise(upperleft, lowerleft, lowerright) <= 0.0;
                rightfinished = Primitives.CounterClockwise(upperright, lowerleft, lowerright) <= 0.0;
                if (leftfinished && rightfinished)
                {
                    // Create the top new bounding triangle.
                    mesh.MakeTriangle(ref nextedge);
                    nextedge.SetOrg(lowerleft);
                    nextedge.SetDest(lowerright);
                    // Apex is intentionally left NULL.
                    // Connect it to the bounding boxes of the two triangulations.
                    nextedge.Bond(ref baseedge);
                    nextedge.LnextSelf();
                    nextedge.Bond(ref rightcand);
                    nextedge.LnextSelf();
                    nextedge.Bond(ref leftcand);

                    // Special treatment for horizontal cuts.
                    if (useDwyer && (axis == 1))
                    {
                        farleftpt    = farleft.Org();
                        farleftapex  = farleft.Apex();
                        farrightpt   = farright.Dest();
                        farrightapex = farright.Apex();
                        farleft.Sym(ref checkedge);
                        checkvertex = checkedge.Apex();
                        // The pointers to the extremal vertices are restored to the
                        // leftmost and rightmost vertices (rather than topmost and
                        // bottommost).
                        while (checkvertex.x < farleftpt.x)
                        {
                            checkedge.Lprev(ref farleft);
                            farleftapex = farleftpt;
                            farleftpt   = checkvertex;
                            farleft.Sym(ref checkedge);
                            checkvertex = checkedge.Apex();
                        }
                        while (farrightapex.x > farrightpt.x)
                        {
                            farright.LprevSelf();
                            farright.SymSelf();
                            farrightpt   = farrightapex;
                            farrightapex = farright.Apex();
                        }
                    }
                    return;
                }
                // Consider eliminating edges from the left triangulation.
                if (!leftfinished)
                {
                    // What vertex would be exposed if an edge were deleted?
                    leftcand.Lprev(ref nextedge);
                    nextedge.SymSelf();
                    nextapex = nextedge.Apex();
                    // If nextapex is NULL, then no vertex would be exposed; the
                    // triangulation would have been eaten right through.
                    if (nextapex != null)
                    {
                        // Check whether the edge is Delaunay.
                        badedge = Primitives.InCircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
                        while (badedge)
                        {
                            // Eliminate the edge with an edge flip.  As a result, the
                            // left triangulation will have one more boundary triangle.
                            nextedge.LnextSelf();
                            nextedge.Sym(ref topcasing);
                            nextedge.LnextSelf();
                            nextedge.Sym(ref sidecasing);
                            nextedge.Bond(ref topcasing);
                            leftcand.Bond(ref sidecasing);
                            leftcand.LnextSelf();
                            leftcand.Sym(ref outercasing);
                            nextedge.LprevSelf();
                            nextedge.Bond(ref outercasing);
                            // Correct the vertices to reflect the edge flip.
                            leftcand.SetOrg(lowerleft);
                            leftcand.SetDest(null);
                            leftcand.SetApex(nextapex);
                            nextedge.SetOrg(null);
                            nextedge.SetDest(upperleft);
                            nextedge.SetApex(nextapex);
                            // Consider the newly exposed vertex.
                            upperleft = nextapex;
                            // What vertex would be exposed if another edge were deleted?
                            sidecasing.Copy(ref nextedge);
                            nextapex = nextedge.Apex();
                            if (nextapex != null)
                            {
                                // Check whether the edge is Delaunay.
                                badedge = Primitives.InCircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
                            }
                            else
                            {
                                // Avoid eating right through the triangulation.
                                badedge = false;
                            }
                        }
                    }
                }
                // Consider eliminating edges from the right triangulation.
                if (!rightfinished)
                {
                    // What vertex would be exposed if an edge were deleted?
                    rightcand.Lnext(ref nextedge);
                    nextedge.SymSelf();
                    nextapex = nextedge.Apex();
                    // If nextapex is NULL, then no vertex would be exposed; the
                    // triangulation would have been eaten right through.
                    if (nextapex != null)
                    {
                        // Check whether the edge is Delaunay.
                        badedge = Primitives.InCircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
                        while (badedge)
                        {
                            // Eliminate the edge with an edge flip.  As a result, the
                            // right triangulation will have one more boundary triangle.
                            nextedge.LprevSelf();
                            nextedge.Sym(ref topcasing);
                            nextedge.LprevSelf();
                            nextedge.Sym(ref sidecasing);
                            nextedge.Bond(ref topcasing);
                            rightcand.Bond(ref sidecasing);
                            rightcand.LprevSelf();
                            rightcand.Sym(ref outercasing);
                            nextedge.LnextSelf();
                            nextedge.Bond(ref outercasing);
                            // Correct the vertices to reflect the edge flip.
                            rightcand.SetOrg(null);
                            rightcand.SetDest(lowerright);
                            rightcand.SetApex(nextapex);
                            nextedge.SetOrg(upperright);
                            nextedge.SetDest(null);
                            nextedge.SetApex(nextapex);
                            // Consider the newly exposed vertex.
                            upperright = nextapex;
                            // What vertex would be exposed if another edge were deleted?
                            sidecasing.Copy(ref nextedge);
                            nextapex = nextedge.Apex();
                            if (nextapex != null)
                            {
                                // Check whether the edge is Delaunay.
                                badedge = Primitives.InCircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
                            }
                            else
                            {
                                // Avoid eating right through the triangulation.
                                badedge = false;
                            }
                        }
                    }
                }
                if (leftfinished || (!rightfinished &&
                                     (Primitives.InCircle(upperleft, lowerleft, lowerright, upperright) > 0.0)))
                {
                    // Knit the triangulations, adding an edge from 'lowerleft'
                    // to 'upperright'.
                    baseedge.Bond(ref rightcand);
                    rightcand.Lprev(ref baseedge);
                    baseedge.SetDest(lowerleft);
                    lowerright = upperright;
                    baseedge.Sym(ref rightcand);
                    upperright = rightcand.Apex();
                }
                else
                {
                    // Knit the triangulations, adding an edge from 'upperleft'
                    // to 'lowerright'.
                    baseedge.Bond(ref leftcand);
                    leftcand.Lnext(ref baseedge);
                    baseedge.SetOrg(lowerright);
                    lowerleft = upperleft;
                    baseedge.Sym(ref leftcand);
                    upperleft = leftcand.Apex();
                }
            }
        }
예제 #4
0
파일: Dwyer.cs 프로젝트: DaddyTrap/JieZi
        /// <summary>
        /// Recursively form a Delaunay triangulation by the divide-and-conquer method.
        /// </summary>
        /// <param name="left"></param>
        /// <param name="right"></param>
        /// <param name="axis"></param>
        /// <param name="farleft"></param>
        /// <param name="farright"></param>
        /// <remarks>
        /// Recursively breaks down the problem into smaller pieces, which are
        /// knitted together by mergehulls(). The base cases (problems of two or
        /// three vertices) are handled specially here.
        ///
        /// On completion, 'farleft' and 'farright' are bounding triangles such that
        /// the origin of 'farleft' is the leftmost vertex (breaking ties by
        /// choosing the highest leftmost vertex), and the destination of
        /// 'farright' is the rightmost vertex (breaking ties by choosing the
        /// lowest rightmost vertex).
        /// </remarks>
        void DivconqRecurse(int left, int right, int axis,
                            ref Otri farleft, ref Otri farright)
        {
            Otri   midtri = default(Otri);
            Otri   tri1 = default(Otri);
            Otri   tri2 = default(Otri);
            Otri   tri3 = default(Otri);
            Otri   innerleft = default(Otri), innerright = default(Otri);
            double area;
            int    vertices = right - left + 1;
            int    divider;

            if (vertices == 2)
            {
                // The triangulation of two vertices is an edge.  An edge is
                // represented by two bounding triangles.
                mesh.MakeTriangle(ref farleft);
                farleft.SetOrg(sortarray[left]);
                farleft.SetDest(sortarray[left + 1]);
                // The apex is intentionally left NULL.
                mesh.MakeTriangle(ref farright);
                farright.SetOrg(sortarray[left + 1]);
                farright.SetDest(sortarray[left]);
                // The apex is intentionally left NULL.
                farleft.Bond(ref farright);
                farleft.LprevSelf();
                farright.LnextSelf();
                farleft.Bond(ref farright);
                farleft.LprevSelf();
                farright.LnextSelf();
                farleft.Bond(ref farright);

                // Ensure that the origin of 'farleft' is sortarray[0].
                farright.Lprev(ref farleft);
                return;
            }
            else if (vertices == 3)
            {
                // The triangulation of three vertices is either a triangle (with
                // three bounding triangles) or two edges (with four bounding
                // triangles).  In either case, four triangles are created.
                mesh.MakeTriangle(ref midtri);
                mesh.MakeTriangle(ref tri1);
                mesh.MakeTriangle(ref tri2);
                mesh.MakeTriangle(ref tri3);
                area = Primitives.CounterClockwise(sortarray[left], sortarray[left + 1], sortarray[left + 2]);
                if (area == 0.0)
                {
                    // Three collinear vertices; the triangulation is two edges.
                    midtri.SetOrg(sortarray[left]);
                    midtri.SetDest(sortarray[left + 1]);
                    tri1.SetOrg(sortarray[left + 1]);
                    tri1.SetDest(sortarray[left]);
                    tri2.SetOrg(sortarray[left + 2]);
                    tri2.SetDest(sortarray[left + 1]);
                    tri3.SetOrg(sortarray[left + 1]);
                    tri3.SetDest(sortarray[left + 2]);
                    // All apices are intentionally left NULL.
                    midtri.Bond(ref tri1);
                    tri2.Bond(ref tri3);
                    midtri.LnextSelf();
                    tri1.LprevSelf();
                    tri2.LnextSelf();
                    tri3.LprevSelf();
                    midtri.Bond(ref tri3);
                    tri1.Bond(ref tri2);
                    midtri.LnextSelf();
                    tri1.LprevSelf();
                    tri2.LnextSelf();
                    tri3.LprevSelf();
                    midtri.Bond(ref tri1);
                    tri2.Bond(ref tri3);
                    // Ensure that the origin of 'farleft' is sortarray[0].
                    tri1.Copy(ref farleft);
                    // Ensure that the destination of 'farright' is sortarray[2].
                    tri2.Copy(ref farright);
                }
                else
                {
                    // The three vertices are not collinear; the triangulation is one
                    // triangle, namely 'midtri'.
                    midtri.SetOrg(sortarray[left]);
                    tri1.SetDest(sortarray[left]);
                    tri3.SetOrg(sortarray[left]);
                    // Apices of tri1, tri2, and tri3 are left NULL.
                    if (area > 0.0)
                    {
                        // The vertices are in counterclockwise order.
                        midtri.SetDest(sortarray[left + 1]);
                        tri1.SetOrg(sortarray[left + 1]);
                        tri2.SetDest(sortarray[left + 1]);
                        midtri.SetApex(sortarray[left + 2]);
                        tri2.SetOrg(sortarray[left + 2]);
                        tri3.SetDest(sortarray[left + 2]);
                    }
                    else
                    {
                        // The vertices are in clockwise order.
                        midtri.SetDest(sortarray[left + 2]);
                        tri1.SetOrg(sortarray[left + 2]);
                        tri2.SetDest(sortarray[left + 2]);
                        midtri.SetApex(sortarray[left + 1]);
                        tri2.SetOrg(sortarray[left + 1]);
                        tri3.SetDest(sortarray[left + 1]);
                    }
                    // The topology does not depend on how the vertices are ordered.
                    midtri.Bond(ref tri1);
                    midtri.LnextSelf();
                    midtri.Bond(ref tri2);
                    midtri.LnextSelf();
                    midtri.Bond(ref tri3);
                    tri1.LprevSelf();
                    tri2.LnextSelf();
                    tri1.Bond(ref tri2);
                    tri1.LprevSelf();
                    tri3.LprevSelf();
                    tri1.Bond(ref tri3);
                    tri2.LnextSelf();
                    tri3.LprevSelf();
                    tri2.Bond(ref tri3);
                    // Ensure that the origin of 'farleft' is sortarray[0].
                    tri1.Copy(ref farleft);
                    // Ensure that the destination of 'farright' is sortarray[2].
                    if (area > 0.0)
                    {
                        tri2.Copy(ref farright);
                    }
                    else
                    {
                        farleft.Lnext(ref farright);
                    }
                }

                return;
            }
            else
            {
                // Split the vertices in half.
                divider = vertices >> 1;
                // Recursively triangulate each half.
                DivconqRecurse(left, left + divider - 1, 1 - axis, ref farleft, ref innerleft);
                //DebugWriter.Session.Write(mesh, true);
                DivconqRecurse(left + divider, right, 1 - axis, ref innerright, ref farright);
                //DebugWriter.Session.Write(mesh, true);

                // Merge the two triangulations into one.
                MergeHulls(ref farleft, ref innerleft, ref innerright, ref farright, axis);
                //DebugWriter.Session.Write(mesh, true);
            }
        }
예제 #5
0
        /// <summary>
        /// Remove the "infinite" bounding triangle, setting boundary markers as appropriate.
        /// </summary>
        /// <returns>Returns the number of edges on the convex hull of the triangulation.</returns>
        /// <remarks>
        /// The triangular bounding box has three boundary triangles (one for each
        /// side of the bounding box), and a bunch of triangles fanning out from
        /// the three bounding box vertices (one triangle for each edge of the
        /// convex hull of the inner mesh).  This routine removes these triangles.
        /// </remarks>
        int RemoveBox()
        {
            Otri   deadtriangle = default(Otri);
            Otri   searchedge = default(Otri);
            Otri   checkedge = default(Otri);
            Otri   nextedge = default(Otri), finaledge = default(Otri), dissolveedge = default(Otri);
            Vertex markorg;
            int    hullsize;

            bool noPoly = !_TriangleNetMesh.behavior.Poly;

            // Find a boundary triangle.
            nextedge.tri    = _TriangleNetMesh.dummytri;
            nextedge.orient = 0;
            nextedge.Sym();

            // Mark a place to stop.
            nextedge.Lprev(ref finaledge);
            nextedge.Lnext();
            nextedge.Sym();
            // Find a triangle (on the boundary of the vertex set) that isn't
            // a bounding box triangle.
            nextedge.Lprev(ref searchedge);
            searchedge.Sym();
            // Check whether nextedge is another boundary triangle
            // adjacent to the first one.
            nextedge.Lnext(ref checkedge);
            checkedge.Sym();
            if (checkedge.tri.id == TriangleNetMesh.DUMMY)
            {
                // Go on to the next triangle.  There are only three boundary
                // triangles, and this next triangle cannot be the third one,
                // so it's safe to stop here.
                searchedge.Lprev();
                searchedge.Sym();
            }

            // Find a new boundary edge to search from, as the current search
            // edge lies on a bounding box triangle and will be deleted.
            _TriangleNetMesh.dummytri.neighbors[0] = searchedge;

            hullsize = -2;
            while (!nextedge.Equals(finaledge))
            {
                hullsize++;
                nextedge.Lprev(ref dissolveedge);
                dissolveedge.Sym();
                // If not using a PSLG, the vertices should be marked now.
                // (If using a PSLG, markhull() will do the job.)
                if (noPoly)
                {
                    // Be careful!  One must check for the case where all the input
                    // vertices are collinear, and thus all the triangles are part of
                    // the bounding box.  Otherwise, the setvertexmark() call below
                    // will cause a bad pointer reference.
                    if (dissolveedge.tri.id != TriangleNetMesh.DUMMY)
                    {
                        markorg = dissolveedge.Org();
                        if (markorg.label == 0)
                        {
                            markorg.label = 1;
                        }
                    }
                }
                // Disconnect the bounding box triangle from the mesh triangle.
                dissolveedge.Dissolve(_TriangleNetMesh.dummytri);
                nextedge.Lnext(ref deadtriangle);
                deadtriangle.Sym(ref nextedge);
                // Get rid of the bounding box triangle.
                _TriangleNetMesh.TriangleDealloc(deadtriangle.tri);
                // Do we need to turn the corner?
                if (nextedge.tri.id == TriangleNetMesh.DUMMY)
                {
                    // Turn the corner.
                    dissolveedge.Copy(ref nextedge);
                }
            }

            _TriangleNetMesh.TriangleDealloc(finaledge.tri);

            return(hullsize);
        }