private void ComputeTransfer() { Vector3d r_from = GravityEngine.Instance().GetPositionDoubleV3(spaceship); Vector3d r_to = new Vector3d(targetPoint.transform.position); OrbitData shipOrbit = new OrbitData(); shipOrbit.SetOrbitForVelocity(spaceship, centralMass); // compute the min energy path (this will be in the short path direction) lambertU = new LambertUniversal(shipOrbit, r_from, r_to, shortPath); // apply any time of flight change double t_flight = tflightFactor * lambertU.GetTMin(); bool reverse = !shortPath; const bool df = false; const int nrev = 0; int error = lambertU.ComputeXfer(reverse, df, nrev, t_flight); if (error != 0) { Debug.LogWarning("Lambert failed to find solution."); maneuverSegment.gameObject.SetActive(false); return; } Vector3 dv = lambertU.GetTransferVelocity() - GravityEngine.Instance().GetVelocity(spaceship); dvText.text = string.Format("dV = {0:00.00} Time={1:00.00}", dv.magnitude, t_flight); maneuverOrbitPredictor.SetVelocity(lambertU.GetTransferVelocity()); maneuverSegment.gameObject.SetActive(true); maneuverSegment.SetDestination(r_to.ToVector3()); maneuverSegment.SetVelocity(lambertU.GetTransferVelocity()); }
/// <summary> /// Computes the transfer with the moon on the +X axis without accounting for the moon motion during /// transit. (That is accounted for in the ExecuteTransfer routine). /// /// This allows a co-rotating visualization of the orbit. /// </summary> /// <returns></returns> private Vector3 ComputeTransfer() { OrbitData shipOrbit = new OrbitData(); shipOrbit.SetOrbitForVelocity(spaceship, planet); // compute the min energy path (this will be in the short path direction) lambertU = new LambertUniversal(shipOrbit, startPoint, targetPoint, shortPath); // apply any time of flight change double t_flight = tflightFactor * lambertU.GetTMin(); bool reverse = !shortPath; const bool df = false; const int nrev = 0; int error = lambertU.ComputeXfer(reverse, df, nrev, t_flight); if (error != 0) { Debug.LogWarning("Lambert failed to find solution."); aroundMoonSegment.gameObject.SetActive(false); return(Vector3.zero); } // Check Lambert is going in the correct direction Vector3 shipOrbitAxis = Vector3.Cross(ge.GetVelocity(spaceship), ge.GetPhysicsPosition(spaceship)).normalized; Vector3 tliOrbitAxis = Vector3.Cross(lambertU.GetTransferVelocity(), startPoint.ToVector3()); if (Vector3.Dot(shipOrbitAxis, tliOrbitAxis) < 0) { error = lambertU.ComputeXfer(!reverse, df, nrev, t_flight); if (error != 0) { Debug.LogWarning("Lambert failed to find solution for reverse path. error=" + error); return(Vector3.zero); } } Vector3 tliVelocity = lambertU.GetTransferVelocity(); toMoonOrbit.SetVelocity(tliVelocity); toMoonSegment.SetVelocity(tliVelocity); aroundMoonSegment.gameObject.SetActive(true); // Set velocity for orbit around moon Vector3 soiEnterVel = lambertU.GetFinalVelocity(); aroundMoonSegment.SetVelocity(soiEnterVel); // update shipEnterSOI object ge.UpdatePositionAndVelocity(shipEnterSOI, targetPoint.ToVector3(), soiEnterVel); // Find the orbit around the moon. By using the mirror position we're assuming it's // a hyperbola (since there is no course correction at SOI this is true). // (Moon is in correct position for these calcs so can use world positions, relativePos=false) Vector3d soiEnterV = new Vector3d(lambertU.GetFinalVelocity()); OrbitUtils.OrbitElements oe = OrbitUtils.RVtoCOE(targetPoint, soiEnterV, moonBody, false); Vector3d soiExitR = new Vector3d(); Vector3d soiExitV = new Vector3d(); OrbitUtils.COEtoRVMirror(oe, moonBody, ref soiExitR, ref soiExitV, false); // Set position and vel for exit ship, so exit orbit predictor can run. Moon offset/vel already added. ge.SetPositionDoubleV3(shipExitSOI, soiExitR); ge.SetVelocityDoubleV3(shipExitSOI, soiExitV); aroundMoonSegment.UpdateOrbit(); return(tliVelocity); }