예제 #1
0
        /// <summary>
        /// Return the rightmost column of U.
        /// Does not check to see whether or not the matrix actually was rank-deficient.
        /// </summary>
        /// <returns></returns>
        public Vector LeftNullvector()
        {
            Vector ret = new Vector(m_);
            int    col = Netlib.min(m_, n_) - 1;

            for (int i = 0; i < m_; ++i)
            {
                ret[i] = U_[i, col];
            }
            return(ret);
        }
예제 #2
0
        /// <summary>
        /// Return the determinant of M.\  This is computed from M = Q R as follows:.
        /// |M| = |Q| |R|
        /// |R| is the product of the diagonal elements.
        /// |Q| is (-1)^n as it is a product of Householder reflections.
        /// So det = -prod(-r_ii).
        /// </summary>
        /// <returns></returns>
        public float Determinant()
        {
            int   m   = Netlib.min((int)qrdc_out_.Columns, (int)qrdc_out_.Rows);
            float det = qrdc_out_[0, 0];

            for (int i = 1; i < m; ++i)
            {
                det *= -qrdc_out_[i, i];
            }

            return(det);
        }
예제 #3
0
        private unsafe void init(MatrixFixed M, float zero_out_tol)
        {
            m_        = M.Rows;
            n_        = M.Columns;
            U_        = new MatrixFixed(m_, n_);
            W_        = new DiagMatrix(n_);
            Winverse_ = new DiagMatrix(n_);
            V_        = new MatrixFixed(n_, n_);

            //assert(m_ > 0);
            //assert(n_ > 0);

            int n  = M.Rows;
            int p  = M.Columns;
            int mm = Netlib.min(n + 1, p);

            // Copy source matrix into fortran storage
            // SVD is slow, don't worry about the cost of this transpose.
            Vector X = Vector.fortran_copy(M);

            // Make workspace vectors
            Vector work = new Vector(n);

            work.Fill(0);
            Vector uspace = new Vector(n * p);

            uspace.Fill(0);
            Vector vspace = new Vector(p * p);

            vspace.Fill(0);
            Vector wspace = new Vector(mm);

            wspace.Fill(0); // complex fortran routine actually _wants_ complex W!
            Vector espace = new Vector(p);

            espace.Fill(0);

            // Call Linpack SVD
            int info = 0;
            int job  = 21;

            fixed(float *data = X.Datablock())
            {
                fixed(float *data2 = wspace.Datablock())
                {
                    fixed(float *data3 = espace.Datablock())
                    {
                        fixed(float *data4 = uspace.Datablock())
                        {
                            fixed(float *data5 = vspace.Datablock())
                            {
                                fixed(float *data6 = work.Datablock())
                                {
                                    Netlib.dsvdc_(data, &n, &n, &p,
                                                  data2,
                                                  data3,
                                                  data4, &n,
                                                  data5, &p,
                                                  data6,
                                                  &job, &info);
                                }
                            }
                        }
                    }
                }
            }

            // Error return?
            if (info != 0)
            {
                // If info is non-zero, it contains the number of singular values
                // for this the SVD algorithm failed to converge. The condition is
                // not bogus. Even if the returned singular values are sensible,
                // the singular vectors can be utterly wrong.

                // It is possible the failure was due to NaNs or infinities in the
                // matrix. Check for that now.
                M.assert_finite();

                // If we get here it might be because
                // 1. The scalar type has such
                // extreme precision that too few iterations were performed to
                // converge to within machine precision (that is the svdc criterion).
                // One solution to that is to increase the maximum number of
                // iterations in the netlib code.
                //
                // 2. The LINPACK dsvdc_ code expects correct IEEE rounding behaviour,
                // which some platforms (notably x86 processors)
                // have trouble doing. For example, gcc can output
                // code in -O2 and static-linked code that causes this problem.
                // One solution to this is to persuade gcc to output slightly different code
                // by adding and -fPIC option to the command line for v3p\netlib\dsvdc.c. If
                // that doesn't work try adding -ffloat-store, which should fix the problem
                // at the expense of being significantly slower for big problems. Note that
                // if this is the cause, vxl/vnl/tests/test_svd should have failed.
                //
                // You may be able to diagnose the problem here by printing a warning message.
                Debug.WriteLine("__FILE__ : suspicious return value (" + Convert.ToString(info) + ") from SVDC" +
                                "__FILE__ : M is " + Convert.ToString(M.Rows) + "x" + Convert.ToString(M.Columns));

                valid_ = false;
            }
            else
            {
                valid_ = true;
            }

            // Copy fortran outputs into our storage
            int ctr = 0;

            for (int j = 0; j < p; ++j)
            {
                for (int i = 0; i < n; ++i)
                {
                    U_[i, j] = uspace[ctr];
                    ctr++;
                }
            }


            for (int j = 0; j < mm; ++j)
            {
                W_[j, j] = Math.Abs(wspace[j]); // we get rid of complexness here.
            }
            for (int j = mm; j < n_; ++j)
            {
                W_[j, j] = 0;
            }

            ctr = 0;
            for (int j = 0; j < p; ++j)
            {
                for (int i = 0; i < p; ++i)
                {
                    V_[i, j] = vspace[ctr];
                    ctr++;
                }
            }



            //if (test_heavily)
            {
                // Test that recomposed matrix == M
                //float recomposition_residual = Math.Abs((Recompose() - M).FrobeniusNorm());
                //float n2 = Math.Abs(M.FrobeniusNorm());
                //float thresh = m_ * (float)(eps) * n2;
                //if (recomposition_residual > thresh)
                {
                    //std::cerr << "VNL::SVD<T>::SVD<T>() -- Warning, recomposition_residual = "
                    //<< recomposition_residual << std::endl
                    //<< "FrobeniusNorm(M) = " << n << std::endl
                    //<< "eps*FrobeniusNorm(M) = " << thresh << std::endl
                    //<< "Press return to continue\n";
                    //char x;
                    //std::cin.get(&x, 1, '\n');
                }
            }

            if (zero_out_tol >= 0)
            {
                // Zero out small sv's and update rank count.
                ZeroOutAbsolute((float)(+zero_out_tol));
            }
            else
            {
                // negative tolerance implies relative to max elt.
                ZeroOutRelative((float)(-zero_out_tol));
            }
        }