private void ProcessParameters(Net2ObjC n2c, EventFacet facet, Dictionary <string, object> options = null) { int idx = 0; int idxMax = facet.Parameters.Count > 0 ? facet.Parameters.Count - 1 : 0; foreach (ParameterFacet parameter in facet.Parameters) { // Known issues: // // 1. Rendering of T[]& fails as in System.Array:Resize<T>(ref T[], int) // <Parameter Name="array" Type="T[]&" ElementType="T[]" IsByRef="True" ContainsGenericParameters="True"/> // Issue : T[]& renders as T** // Workaround: exclude in config.objc.xml like so <string>System.Array:Resize</string> // Suggested fix: provide a separate Element xml element to detail the ElementType more fully. // if the mono parameters is passed by ref then strip // the suffix to enable type association string monoParameterType = parameter.Type; if (parameter.IsByRef || parameter.IsPointer) { monoParameterType = parameter.ElementType; } // // build the ObjC method interleaved parameter representation // eg: name1:(int32_t)p1 name2:(int64_t)p2 name3:(NSString *)p3 // string objCParamTypeDecl = null; bool objCParameterIsObject = true; // // Get the ObjC type associated with the parameter. // ObjCTypeAssociation objCTypeAssociate = n2c.ObjCTypeAssociate(parameter); ManagedTypeAssociation managedTypeAssociate = null; if (objCTypeAssociate != null) { // // If the parameter is an array, say Int64[], then its Obj-C rep will be System.Array // The mono type association however must reflect the represented type, Int64. // if (parameter.IsArray) { ObjCTypeAssociation objCRepresentedTypeAssociate = n2c.ObjCTypeAssociate(parameter.ElementType); if (objCRepresentedTypeAssociate != null) { managedTypeAssociate = objCRepresentedTypeAssociate.ManagedTypeAssociate; } } if (managedTypeAssociate == null) { managedTypeAssociate = objCTypeAssociate.ManagedTypeAssociate; } objCParamTypeDecl = objCTypeAssociate.ObjCTypeDecl; objCParameterIsObject = objCTypeAssociate.IsNSObject; } else { // // Generate default objC representations // objCParamTypeDecl = n2c.ObjCTypeDeclFromManagedFacet(parameter); objCParameterIsObject = n2c.ObjCRepresentationIsObject(parameter); } ObjCEventBlockParameterGetters[idx] = objCTypeAssociate?.GetterFormat ?? string.Empty; // if parameter is an interface then use adoption conforming type ie: id <typename> if (parameter.IsInterface) { objCParamTypeDecl = n2c.ObjCConformingTypeFromObjCTypeDecl(objCParamTypeDecl, false); } if (parameter.IsByRef || parameter.IsPointer) { objCParamTypeDecl += "*"; // add additional indirection } // // Build the mono method argument invocation signature // if (idx > 0) { MonoSigBuilder.Append(","); } string monoParameterTypeInvoke = null; // if type is a GenericParameter defined by the class, as opposed to via a method like so Method<T>(T). // in this case we want to identify the parameter by its position as this makes it simple // to build the required signature at run time if (parameter.IsGenericParameter && !parameter.DeclaredByMethod) { // generic parameters must have an associate if (managedTypeAssociate == null) { throw new Exception("Missing managed type association for generic parameter."); } monoParameterTypeInvoke = managedTypeAssociate.ManagedTypeInvoke; if (parameter.IsArray) { monoParameterTypeInvoke += "[]"; } // in order for the C api to substitute the correct type at run time // the generic parameter position needs to be indicated. monoParameterTypeInvoke = string.Format(monoParameterTypeInvoke, parameter.GenericParameterPosition); } // if parameter is declared by the method like so Method<T>(T) then we want to preserve the type name // as this constitutes part of the method signature this is used to lookup the generic method for inflation else if (parameter.IsGenericParameter && parameter.DeclaredByMethod) { // we expect to be operating on a generic method definition if (!facet.IsGenericMethodDefinition) { throw new Exception("Generic method definition expected."); } // the type sig will be something like Declaring.Type+T but the embedded API sig // uses just the type parameter name T int symbolIndex = monoParameterType.IndexOf('+'); if (symbolIndex == -1) { throw new Exception("Missing nested type symbol for generic parameter."); } monoParameterTypeInvoke = monoParameterType.Substring(symbolIndex + 1); if (parameter.IsArray) { monoParameterTypeInvoke += "[]"; } } else { monoParameterTypeInvoke = n2c.ManagedTypeInvokeFromManagedType(monoParameterType); } // Note that we use a separate variable to hold the actual type sig used in the in mono_method_desc call // as the signature may need to be specfically modified for the mono_method_desc API. string monoParameterTypeInvoke_ = monoParameterTypeInvoke; // The mono_method_desc * APIs prefix nested classes with a '/' rather than a '+' to conform with IL/CTS conventions // The approach used here is trivial and is likely fragile. // We probably need a separate mono param type builder like that found in debug-helpers.c append_class_name(). // Note that Delegates will present as nested classes. // Also note that although we have an IsNested property we shouldn't use it as a conditional test for this operation // as generic types with nested type paramaters such as System.Collections.Generic.IEnumerable`1<A.B+C> // won't identify as nested. monoParameterTypeInvoke_ = monoParameterTypeInvoke_.Replace("+", "/"); // add type signature and access modifier MonoSigBuilder.Append(monoParameterTypeInvoke_); if (parameter.IsPointer) { MonoSigBuilder.Append("*"); } if (parameter.IsByRef) { MonoSigBuilder.Append("&"); // the signature needs to express by ref } // Build ObjC parameter name. // In order to represent overloaded methods effectively the // ObjC paramter name is constructed as follows: // Managed parameter name + Managed parameter type + Ref string objCParamName = ObjCIdentifierFromManagedIdentifier(parameter.Name); // If the method is overloaded by parameter then make the ObjC method // name unique by including type info in the name. // // Managed methods are overloaded by name only. // The Obj-C metjods representation uses interleaved parameters which may // be sufficient to produce a unique method signature. // // If however a managed method overload differs only in the type of its parameters // (the managed method name, parameter count and parameter names all being equal) // then the Obj-C interleaved parameters will include type info. string objCParamOverloadSuffix = ""; if (facet.IsOverloadedParameterMethod) { // We adopt a minimal as opposed to a full type repesentation here in order // to minimize the parameter length. // Time will tell how it flies. objCParamOverloadSuffix = n2c.ObjCMinimalIdentifierFromManagedIdentifier(monoParameterTypeInvoke); if (parameter.IsArray) { objCParamOverloadSuffix += "Array"; } if (parameter.IsPointer) { objCParamOverloadSuffix += "Ptr"; } } if (parameter.IsByRef) { objCParamOverloadSuffix += "Ref"; } if (objCParamOverloadSuffix.Length > 0) { objCParamName += objCParamOverloadSuffix.FirstCharacterToUpper(); } // append the complete interleaved parameter expression if (idx == 0) { if (n2c.AppendFirstArgSignatureToMethodName) { // the leading underscore helps identify the preceding characters as the managed method name ObjCMethodName += "_with"; ObjCParameterBuilder.AppendFormat("{0}", objCParamName.FirstCharacterToUpper()); } } else { ObjCParameterBuilder.AppendFormat(" {0}", objCParamName.FirstCharacterToLower()); } ObjCParameterBuilder.AppendFormat(":({0})p{1}", objCParamTypeDecl, idx + 1); // build C parameter list string cParamDelim = idxMax > 0 && idx < idxMax ? ", " : ""; CParameterBuilder.AppendFormat($"{objCParamTypeDecl} {objCParamName.FirstCharacterToLower()}{cParamDelim}"); idx++; } }
public ObjCMethod(Net2ObjC n2c, MethodFacet facet, Dictionary <string, object> options = null) { // In order to ensure compilation of an assembly and its references // the generated code must resolve all types. // // The generation of a complete set of methods is obviously desirable // but in some cases may not be achievable if a unique method signature // cannot be obtained. // if the method is a duplicate (ie: name, parameter types, return type) // then we have no option but to omit it if (facet.IsDuplicateSignatureMethod) { n2c.Warning("Duplicate method omitted : " + facet.Name); return; } // if the facet is overloaded on its signature and differs only in its // return type then omit it. // This can occur with explicit operators. // At present it is unknown if these can be called via the embedded API. if (facet.IsOverloadedSignatureMethod) { n2c.Warning("Overloaded signature method omitted : " + facet.Name); return; } string objCMethodInvokeFormat = null; string objCMethodPrepareFormat = null; IsConstructorMethod = (facet.Name == null); // constructor has no method name ObjCMethodType = null; // Method name. We do some rudimentary processing to prevent troublesome behaviour. // We may have to prefix certain method names to conform to ARC's semantics // see https://stackoverflow.com/questions/22529454/simple-rules-for-naming-methods-compatible-with-arc-naming-conventions MonoMethodName = facet.Name; ObjCMethodName = MonoMethodName.FirstCharacterToLower(); if (facet.IsStatic || IsConstructorMethod) { ObjCMethodType = "+"; if (facet.Parameters.Count == 0) { // decorate class method names known to be unsafe if (n2c.UnsafeObjCClassMethodNames.Contains(ObjCMethodName)) { ObjCMethodName += "_"; } } } else { ObjCMethodType = "-"; // decorate instance method names known to be unsafe if (facet.Type != "System.Void" && n2c.UnsafeObjCMethodNames().Any(p => ObjCMethodName.StartsWith(p, false, null))) { ObjCMethodName = "db_" + ObjCMethodName; } } // Get ObjC declaration for method return type. // In general we want to allow the type association mechanism to substitute // native objC types for managed types where appropriate. // For example: a managed method that returns a System_DateTime results in an native method that returns an NSDate *. // However, when defining a constructor we don't want to permit this association to occur as the constructor // won't then contruct a managed instance at all. ObjCTypeDecl = n2c.ObjCTypeDeclFromManagedFacet(facet, !IsConstructorMethod); if (facet.IsInterface) { ObjCTypeDecl = n2c.ObjCConformingTypeFromObjCTypeDecl(ObjCTypeDecl, true); } ManagedValueToObjC = null; // instance method requires a name and type if (!IsConstructorMethod) { // create Obj-C representation of mono object ManagedValueToObjC = n2c.ManagedValueToObjc(ManagedVariableName, facet); // invocation statement if (facet.IsGenericMethodDefinition) { // generic method definitions require additional type processing prior to invocation. // DBManagedMethod co-ordinates this. if (facet.IsStatic) { // invoke class method objCMethodPrepareFormat = "DBManagedMethod *method = [self classMethodWithMonoName:\"{0}({1})\" typeParameters:typeParameter]"; objCMethodInvokeFormat = "[method invokeClassMethodWithNumArgs:{2}]"; } else { objCMethodPrepareFormat = "DBManagedMethod *method = [self methodWithMonoName:\"{0}({1})\" typeParameters:typeParameter]"; objCMethodInvokeFormat = "[method invokeMethodWithNumArgs:{2}]"; } } else { if (facet.IsStatic) { // invoke mono class method objCMethodInvokeFormat = "[self invokeMonoClassMethod:\"{0}({1})\" withNumArgs:{2}]"; } else { // invoke mono instance method objCMethodInvokeFormat = "[self invokeMonoMethod:\"{0}({1})\" withNumArgs:{2}]"; } } } else { // this looks like a default constructor if (facet.Parameters.Count() == 0) { return; } ObjCMethodName = "new"; // a constructor requires no explicit name or type objCMethodInvokeFormat = "[[self alloc] initWithSignature:\"{1}\" withNumArgs:{2}]"; } // process the parameters ProcessParameters(n2c, facet, options); // a generic method definition will require an additional parameter to specify the generic type parameters if (facet.IsGenericMethodDefinition) { // get number of generic type parameters defined by the generic method definition as opposed to by the type defining the method int numberOfTypeParametersDeclaredByMethod = facet.GenericMethodDefinitionGenericTypeArguments.Count(); string parameterSig = "typeParameter:(id)typeParameter"; if (numberOfTypeParametersDeclaredByMethod > 1) { parameterSig = "typeParameters:(NSArray<id> *)typeParameter"; } if (facet.Parameters.Count() == 0) { ObjCMethodName += "_with"; ObjCParameterBuilder.AppendFormat("{0}", parameterSig.FirstCharacterToUpper()); } else { ObjCParameterBuilder.AppendFormat(" {0}", parameterSig); } } // finalize argument list representations string monoMethodSig = MonoSigBuilder.ToString(); ObjCMethodParameters = ObjCParameterBuilder.ToString(); string invokeArgs = facet.Parameters.Count().ToString(); if (facet.Parameters.Count() > 0) { invokeArgs += ", " + InvokeArgsBuilder.ToString(); } // form mono method invocation name. // a prefix may be required, for instance when calling explicit interface methods. string monoMethodPrefix = ""; if (options != null) { if (options.ContainsKey("cAPIMethodPrefix")) { monoMethodPrefix = (string)options["cAPIMethodPrefix"]; } } string monoInvocationName = monoMethodPrefix + MonoMethodName; // we may have an expression that prepares the get expression method argument if (objCMethodPrepareFormat != null) { string expression = String.Format(objCMethodPrepareFormat, monoInvocationName, monoMethodSig, invokeArgs) + ";"; ReferencePreProcessBuilder.AppendFormat("{0}{1}", expression, Environment.NewLine); } // the get expression invokes the method and gets the result GetExpression = String.Format(objCMethodInvokeFormat, monoInvocationName, monoMethodSig, invokeArgs); // validation if (IsConstructorMethod && String.IsNullOrEmpty(monoMethodSig)) { throw new Exception("Mono method argument signature is empty"); } if (String.IsNullOrEmpty(ObjCTypeDecl)) { throw new Exception("ObjC type Declaration is empty"); } if (String.IsNullOrEmpty(ObjCMethodName)) { throw new Exception("Method name is empty"); } if (String.IsNullOrEmpty(GetExpression)) { throw new Exception("Get expression is empty"); } IsValid = true; }