public static void ClasifyText(string text) { // Google NLP Api Implementation const string googleAPIKey = ""; const string googleNLPUrl = "https://language.googleapis.com/v1/documents:classifyText?key=" + googleAPIKey; HttpClient googleClient = new HttpClient { BaseAddress = new Uri(googleNLPUrl) }; var data = new NLPRequestModel(text); var stringPayload = JsonConvert.SerializeObject(data); var httpContent = new StringContent(stringPayload, Encoding.UTF8, "application/json"); HttpResponseMessage response = googleClient.PostAsync(googleNLPUrl, httpContent).Result; if (response.IsSuccessStatusCode) { var responseContent = response.Content.ReadAsStringAsync().Result .Replace("\\", "") .Trim(new char[1] { '"' }); NLPResponse result = JsonConvert.DeserializeObject <NLPResponse>(responseContent); // Find the best confidence category double bigestConfidence = 0.0; NLPResponseCategory bestCategory = result.Categories.FirstOrDefault(); foreach (NLPResponseCategory category in result.Categories) { if (bigestConfidence < category.Confidence) { bestCategory = category; } } // Set up in the database the category // } }
public string ProcessMessage(string message) { string response = string.Empty; NLPResponse nlpresponse = NLPService.Ask(message); List <Movie> searchResult; switch (nlpresponse.IntentName) { case NLPIntentNames.DefaultFallbackIntent: response = nlpresponse.Message; break; case NLPIntentNames.DefaultWelcomeIntent: response = nlpresponse.Message; break; case NLPIntentNames.FavouriteGenresIntent: try { saveUserPreferences(nlpresponse.Parameters["Genre"]); response = nlpresponse.Message; } catch (Exception exc) { response = exc.Message; } break; case NLPIntentNames.GetMovieDescriptionContIntent: case NLPIntentNames.GetMovieDescriptionIntent: searchResult = movieRepository.SearchByTitle(nlpresponse.Parameters["MovieName"][0]); if (searchResult.Count == 0) { response = $"Sorry, I know nothing about the film {nlpresponse.Parameters["MovieName"][0]}"; } else { foreach (var movie in searchResult) { response += $"{movie.Title}\tDescription:\n{movie.Plot}\n\n"; } } break; case NLPIntentNames.GetMovieRateContIntent: case NLPIntentNames.GetMovieRateIntent: searchResult = movieRepository.SearchByTitle(nlpresponse.Parameters["MovieName"][0]); if (searchResult.Count == 0) { response = $"Sorry, I know nothing about the film {nlpresponse.Parameters["MovieName"][0]}"; } else { foreach (var movie in searchResult) { response += $"{movie.Title}\tMetacritic: {movie.MetacriticRate}\tTomato: {movie?.TomatoRate?.Rating.ToString() ?? "N/A"}\t " + $"Imdb: {movie?.ImdbRate?.Rating.ToString() ?? "N/A"}\n"; } } break; case NLPIntentNames.GetMovieReleaseDateContIntent: case NLPIntentNames.GetMovieReleaseDateIntent: searchResult = movieRepository.SearchByTitle(nlpresponse.Parameters["MovieName"][0]); if (searchResult.Count == 0) { response = $"Sorry, I know nothing about the film {nlpresponse.Parameters["MovieName"][0]}"; } else { foreach (var movie in searchResult) { response += $"{movie.Title}\tRelease Date: {movie.Year}\n"; } } break; //Obsolete /*case NLPIntentNames.GetMoviewReviewIntent: * break; * case NLPIntentNames.GetMoviewReviewContIntent: * break; */ case NLPIntentNames.GetMoviesByGenreIntent: var genreToFind = nlpresponse.Parameters["Genre"][0]; searchResult = movieRepository.SearchByGenre(new List <string>() { genreToFind }, new PaginationRequest() { Page = 1, Size = 1000 }).Data; //remove already recommended var alreadyRecommended = prologService.Execute(PrologQueryFactory.Recommended(Username)).Value; searchResult = searchResult?.Where(x => !alreadyRecommended.Any(y => y.Response.ToLower() == x.Title.ToLower()))?.ToList(); if (searchResult.Count > 0) { for (int i = 0; i < Math.Min(searchResult.Count, 5); i++) { response += $"{i + 1}. {searchResult[i].Title}"; } } else { response = "Sorry I can not find some fresh films for you :("; } break; case NLPIntentNames.GetTopRatedMoviesIntent: List <Movie> movies = movieRepository.FindAll().OrderByDescending(x => x.ImdbRate.Rating) .ToList(); //remove recommended var alreadyRecommendedTOPRated = prologService.Execute(PrologQueryFactory.Recommended(Username)).Value; movies = movies?.Where(x => !alreadyRecommendedTOPRated.Any(y => y.Response.ToLower() == x.Title.ToLower()))?.ToList(); if (movies.Count == 0) { response = "Sorry, I have no fresh films for you :("; break; } movies = movies.Take(Math.Min(movies.Count, 5)).ToList(); response = "I would recommend:\n"; for (int i = 0; i < movies.Count; i++) { response += $"{i + 1}. {movies[i].Title} - Imdb: {movies[i].ImdbRate.Rating};\tMetacritic: {movies[i].MetacriticRate};\tTomato: {movies[i].TomatoRate.Rating}\n"; prologService.Save(PrologRuleFactory.Recommended(Username, movies[i].Title)); } break; case NLPIntentNames.ThanksIntent: response = nlpresponse.Message; break; case NLPIntentNames.WantWatchMovieIntent: List <string> preferences = checkUserPreferences(); if (preferences.Count == 0) { response = "I don't know about your preferences. Please tell me what genres do you prefer."; } else { var rec = recommendRandomMovieByPreferences(preferences); response = rec.Length > 0 ? $"I would like to recommend {rec}" : "I already recommended you all films. Please name me another genres you might likes."; } break; //case NLPIntentNames.WantWatchSpecificMovieIntent: // break; default: response = "Sorry, I don't understand you :("; break; } return(response); }