예제 #1
0
        public static void ClasifyText(string text)
        {
            // Google NLP Api Implementation
            const string googleAPIKey = "";
            const string googleNLPUrl = "https://language.googleapis.com/v1/documents:classifyText?key=" + googleAPIKey;
            HttpClient   googleClient = new HttpClient
            {
                BaseAddress = new Uri(googleNLPUrl)
            };

            var data                     = new NLPRequestModel(text);
            var stringPayload            = JsonConvert.SerializeObject(data);
            var httpContent              = new StringContent(stringPayload, Encoding.UTF8, "application/json");
            HttpResponseMessage response = googleClient.PostAsync(googleNLPUrl, httpContent).Result;

            if (response.IsSuccessStatusCode)
            {
                var responseContent = response.Content.ReadAsStringAsync().Result
                                      .Replace("\\", "")
                                      .Trim(new char[1] {
                    '"'
                });

                NLPResponse result = JsonConvert.DeserializeObject <NLPResponse>(responseContent);

                // Find the best confidence category
                double bigestConfidence          = 0.0;
                NLPResponseCategory bestCategory = result.Categories.FirstOrDefault();

                foreach (NLPResponseCategory category in result.Categories)
                {
                    if (bigestConfidence < category.Confidence)
                    {
                        bestCategory = category;
                    }
                }

                // Set up in the database the category
                //
            }
        }
예제 #2
0
        public string ProcessMessage(string message)
        {
            string response = string.Empty;

            NLPResponse  nlpresponse = NLPService.Ask(message);
            List <Movie> searchResult;

            switch (nlpresponse.IntentName)
            {
            case NLPIntentNames.DefaultFallbackIntent:
                response = nlpresponse.Message;
                break;

            case NLPIntentNames.DefaultWelcomeIntent:
                response = nlpresponse.Message;
                break;

            case NLPIntentNames.FavouriteGenresIntent:
                try
                {
                    saveUserPreferences(nlpresponse.Parameters["Genre"]);
                    response = nlpresponse.Message;
                }
                catch (Exception exc)
                {
                    response = exc.Message;
                }

                break;

            case NLPIntentNames.GetMovieDescriptionContIntent:
            case NLPIntentNames.GetMovieDescriptionIntent:
                searchResult = movieRepository.SearchByTitle(nlpresponse.Parameters["MovieName"][0]);
                if (searchResult.Count == 0)
                {
                    response = $"Sorry, I know nothing about the film {nlpresponse.Parameters["MovieName"][0]}";
                }
                else
                {
                    foreach (var movie in searchResult)
                    {
                        response += $"{movie.Title}\tDescription:\n{movie.Plot}\n\n";
                    }
                }

                break;

            case NLPIntentNames.GetMovieRateContIntent:
            case NLPIntentNames.GetMovieRateIntent:
                searchResult = movieRepository.SearchByTitle(nlpresponse.Parameters["MovieName"][0]);
                if (searchResult.Count == 0)
                {
                    response = $"Sorry, I know nothing about the film {nlpresponse.Parameters["MovieName"][0]}";
                }
                else
                {
                    foreach (var movie in searchResult)
                    {
                        response +=
                            $"{movie.Title}\tMetacritic: {movie.MetacriticRate}\tTomato: {movie?.TomatoRate?.Rating.ToString() ?? "N/A"}\t " +
                            $"Imdb: {movie?.ImdbRate?.Rating.ToString() ?? "N/A"}\n";
                    }
                }

                break;

            case NLPIntentNames.GetMovieReleaseDateContIntent:
            case NLPIntentNames.GetMovieReleaseDateIntent:
                searchResult = movieRepository.SearchByTitle(nlpresponse.Parameters["MovieName"][0]);
                if (searchResult.Count == 0)
                {
                    response = $"Sorry, I know nothing about the film {nlpresponse.Parameters["MovieName"][0]}";
                }
                else
                {
                    foreach (var movie in searchResult)
                    {
                        response += $"{movie.Title}\tRelease Date: {movie.Year}\n";
                    }
                }

                break;

            //Obsolete

            /*case NLPIntentNames.GetMoviewReviewIntent:
             *  break;
             * case NLPIntentNames.GetMoviewReviewContIntent:
             *  break;
             */
            case NLPIntentNames.GetMoviesByGenreIntent:
                var genreToFind = nlpresponse.Parameters["Genre"][0];
                searchResult = movieRepository.SearchByGenre(new List <string>()
                {
                    genreToFind
                },
                                                             new PaginationRequest()
                {
                    Page = 1, Size = 1000
                }).Data;
                //remove already recommended
                var alreadyRecommended = prologService.Execute(PrologQueryFactory.Recommended(Username)).Value;
                searchResult = searchResult?.Where(x =>
                                                   !alreadyRecommended.Any(y => y.Response.ToLower() == x.Title.ToLower()))?.ToList();
                if (searchResult.Count > 0)
                {
                    for (int i = 0; i < Math.Min(searchResult.Count, 5); i++)
                    {
                        response += $"{i + 1}. {searchResult[i].Title}";
                    }
                }
                else
                {
                    response = "Sorry I can not find some fresh films for you :(";
                }

                break;

            case NLPIntentNames.GetTopRatedMoviesIntent:
                List <Movie> movies = movieRepository.FindAll().OrderByDescending(x => x.ImdbRate.Rating)
                                      .ToList();
                //remove recommended
                var alreadyRecommendedTOPRated =
                    prologService.Execute(PrologQueryFactory.Recommended(Username)).Value;
                movies = movies?.Where(x =>
                                       !alreadyRecommendedTOPRated.Any(y => y.Response.ToLower() == x.Title.ToLower()))?.ToList();
                if (movies.Count == 0)
                {
                    response = "Sorry, I have no fresh films for you :(";
                    break;
                }

                movies   = movies.Take(Math.Min(movies.Count, 5)).ToList();
                response = "I would recommend:\n";
                for (int i = 0; i < movies.Count; i++)
                {
                    response +=
                        $"{i + 1}. {movies[i].Title} - Imdb: {movies[i].ImdbRate.Rating};\tMetacritic: {movies[i].MetacriticRate};\tTomato: {movies[i].TomatoRate.Rating}\n";
                    prologService.Save(PrologRuleFactory.Recommended(Username, movies[i].Title));
                }

                break;

            case NLPIntentNames.ThanksIntent:
                response = nlpresponse.Message;
                break;

            case NLPIntentNames.WantWatchMovieIntent:
                List <string> preferences = checkUserPreferences();
                if (preferences.Count == 0)
                {
                    response = "I don't know about your preferences. Please tell me what genres do you prefer.";
                }
                else
                {
                    var rec = recommendRandomMovieByPreferences(preferences);

                    response = rec.Length > 0
                            ? $"I would like to recommend {rec}"
                            : "I already recommended you all films. Please name me another genres you might likes.";
                }

                break;

            //case NLPIntentNames.WantWatchSpecificMovieIntent:
            //    break;
            default:
                response = "Sorry, I don't understand you :(";
                break;
            }

            return(response);
        }