public static void CheckGetPendingTrackingCals() { AdiCommandServerClient Link = AdiCommandServerClient.Instance; Link.hw.Connect(TestSetupConfig.ipAddr, TestSetupConfig.port); //Link.Mykonos.setObsRxPathSource(Mykonos.OBSRXCHANNEL.OBS_INTERNALCALS); UInt32 calmask = 0; byte spiData1 = 0x0; Mykonos.OBSRXCHANNEL channel = Mykonos.OBSRXCHANNEL.OBS_RXOFF; //Test Setup: //Run Init Cals TestSetup.MykonosInitCals(settings); System.Threading.Thread.Sleep(5000); Link.Mykonos.getPendingTrackingCals(ref calmask); Console.WriteLine("calmask: " + calmask); spiData1 = Link.spiRead(0xD40); Console.WriteLine("SPI Addr: 0xD40:" + spiData1.ToString("X")); Assert.AreEqual(0x2, (spiData1 & 0x3), "Myk: Test Setup Failed Init Cals not completed"); //Enable RxQEC and TxQEC tracking cals Link.Mykonos.enableTrackingCals((UInt32)(195)); Link.Mykonos.radioOn(); Link.Mykonos.getPendingTrackingCals(ref calmask); //Check that those tracking cals are pending Assert.AreEqual(calmask, 20485, "incorrect calibrations are pending"); Console.WriteLine("calmask: " + calmask); Link.Disconnect(); }
public static void ObsRxAGCTest([Values(Mykonos.OBSRXCHANNEL.OBS_SNIFFER_A)] Mykonos.OBSRXCHANNEL channel) { AdiCommandServerClient Link = AdiCommandServerClient.Instance; Link.hw.Connect(TestSetupConfig.ipAddr, TestSetupConfig.port); byte spiData1 = 0; ushort power = 0; byte agcRx1MaxGainIndex = 255; byte agcRx1MinGainIndex = 195; byte agcRx2MaxGainIndex = 255; byte agcRx2MinGainIndex = 195; byte agcObsRxMaxGainIndex = 255; byte agcObsRxMinGainIndex = 203; byte agcObsRxSelect = 1; byte agcPeakThresholdMode = 1; // Change for power only mode byte agcLowThsPreventGainIncrease = 1; // Change for power only mode UInt32 agcGainUpdateCounter = 30720; byte agcSlowLoopSettlingDelay = 3; byte agcPeakWaitTime = 2; byte pmdMeasDuration = 0x08; byte pmdMeasConfig = 0x2; byte agcResetOnRxEnable = 1; byte agcEnableSyncPulseForGainCounter = 0; // mykonosPowerMeasAgcCfg_t byte pmdUpperHighThresh = 0x01; // Triggered at approx -2dBFS byte pmdUpperLowThresh = 0x03; byte pmdLowerHighThresh = 0x0C; byte pmdLowerLowThresh = 0x04; byte pmdUpperHighGainStepAttack = 0x04; byte pmdUpperLowGainStepAttack = 0x02; byte pmdLowerHighGainStepRecovery = 0x02; byte pmdLowerLowGainStepRecovery = 0x04; // mykonosPeakDetAgcCfg_t byte apdHighThresh = 0x1F; //Triggered at approx -3dBFS byte apdLowThresh = 0x16; //Triggered at approx -5.5dBFS byte hb2HighThresh = 0xB5; // Triggered at approx -2.18dBFS byte hb2LowThresh = 0x80; // Triggered at approx -5.5dBFS byte hb2VeryLowThresh = 0x40; // Triggered at approx -9dBFS byte apdHighThreshExceededCnt = 0x06; byte apdLowThreshExceededCnt = 0x04; byte hb2HighThreshExceededCnt = 0x06; byte hb2LowThreshExceededCnt = 0x04; byte hb2VeryLowThreshExceededCnt = 0x04; byte apdHighGainStepAttack = 0x04; byte apdLowGainStepRecovery = 0x02; byte hb2HighGainStepAttack = 0x04; byte hb2LowGainStepRecovery = 0x02; byte hb2VeryLowGainStepRecovery = 0x04; byte apdFastAttack = 1; byte hb2FastAttack = 1; byte hb2OverloadDetectEnable = 1; byte hb2OverloadDurationCnt = 1; byte hb2OverloadThreshCnt = 0x1; // Write some values into the structure Link.Mykonos.init_obsRxAgcStructure(1, ref agcRx1MaxGainIndex, ref agcRx1MinGainIndex, ref agcRx2MaxGainIndex, ref agcRx2MinGainIndex, ref agcObsRxMaxGainIndex, ref agcObsRxMinGainIndex, ref agcObsRxSelect, ref agcPeakThresholdMode, ref agcLowThsPreventGainIncrease, ref agcGainUpdateCounter, ref agcSlowLoopSettlingDelay, ref agcPeakWaitTime, ref agcResetOnRxEnable, ref agcEnableSyncPulseForGainCounter); Link.Mykonos.init_obsRxPwrAgcStructure(1, ref pmdUpperHighThresh, ref pmdUpperLowThresh, ref pmdLowerHighThresh, ref pmdLowerLowThresh, ref pmdUpperHighGainStepAttack, ref pmdUpperLowGainStepAttack, ref pmdLowerHighGainStepRecovery, ref pmdLowerLowGainStepRecovery, ref pmdMeasDuration, ref pmdMeasConfig); Link.Mykonos.init_obsRxPeakAgcStructure(1, ref apdHighThresh, ref apdLowThresh, ref hb2HighThresh, ref hb2LowThresh, ref hb2VeryLowThresh, ref apdHighThreshExceededCnt, ref apdLowThreshExceededCnt, ref hb2HighThreshExceededCnt, ref hb2LowThreshExceededCnt, ref hb2VeryLowThreshExceededCnt, ref apdHighGainStepAttack, ref apdLowGainStepRecovery, ref hb2HighGainStepAttack, ref hb2LowGainStepRecovery, ref hb2VeryLowGainStepRecovery, ref apdFastAttack, ref hb2FastAttack, ref hb2OverloadDetectEnable, ref hb2OverloadDurationCnt, ref hb2OverloadThreshCnt); Link.Mykonos.setupObsRxAgc(); Link.Mykonos.radioOn(); Link.Mykonos.setObsRxPathSource(channel); Console.WriteLine("gain before: " + Link.Mykonos.getObsRxGain()); Console.WriteLine(Link.spiRead(0x448)); //Link.spiWrite(0x448, 0x2); Link.Mykonos.setObsRxGainControlMode(Mykonos.GAINMODE.AGC); Console.WriteLine("gain after: " + Link.Mykonos.getObsRxGain()); //Assert.Pass(); SG_AgilentESG esg = new SG_AgilentESG(measEquipment.ESGAddress); //Retrieve Profile Information, samplingFreq_Hz, ProfileBW, LO Frequency Information double[] profileInfo = new double[3]; profileInfo[0] = settings.rxProfileData.IqRate_kHz; profileInfo[1] = settings.rxPllLoFreq_Hz; profileInfo[2] = settings.rxProfileData.PrimarySigBw_Hz; double samplingFreq_Hz = profileInfo[0] * 1000; double profileBW_MHz = profileInfo[2] / 1000000; Console.WriteLine("Rx Sampling Freq (Hz): " + samplingFreq_Hz); Console.WriteLine("Rx Profile Bandwdith (MHz): " + profileBW_MHz); double freqLo_kHz = profileInfo[1] / 1000; Console.WriteLine("Rx LO Frequency (kHz): " + freqLo_kHz); //Define Receiver Test Signal to be 10MHz Offset from LO frequency double testSigFreq_MHz = (freqLo_kHz / 1000 + 15); Console.WriteLine("Rx Test Signal Freq (MHz): " + testSigFreq_MHz); //Generate Test Signal for Rx Capture with ESG Console.WriteLine("ESG Info:" + esg.Identify()); Console.WriteLine("ESG Address :" + measEquipment.ESGAddress); Console.WriteLine("ESG Generating Tone Freq:" + testSigFreq_MHz); esg.SetFrequency(testSigFreq_MHz); esg.SetRfOutput(true); AdiMath.FftAnalysis analysisData = new AdiMath.FftAnalysis(); double samplingFreq_MHz = samplingFreq_Hz / 1000000; byte sampleBitWidth = 16; string response = ""; string initgain = ""; string finalgain = ""; //Sweep from -20 to 10db for (int amplitude_dBm = -20; amplitude_dBm < 10; amplitude_dBm++) { esg.SetAmplitude(amplitude_dBm); System.Threading.Thread.Sleep(100); Link.Mykonos.getObsRxDecPower(ref power); short[] rxDataArray = Helper.MykonosOrxCapture(channel, 16384); double[] data = AdiMath.complexfftAndScale(rxDataArray, samplingFreq_MHz, sampleBitWidth, true, out analysisData); response = Link.Mykonos.getObsRxGain(); spiData1 = Link.spiRead(0x4B6); Assert.AreEqual(spiData1 + 128, Int32.Parse(response), "Register Readback for Sniffer Gain not as expected"); if (amplitude_dBm == -20) { initgain = response; } Console.WriteLine("Gain: " + response + "DecPower: " + power + " FFT Power " + analysisData.FundamentalPower_dBFS + " at " + amplitude_dBm + "\n"); } //Sweep from 10 to -20db for (int amplitude_dBm = 10; amplitude_dBm >= -20; amplitude_dBm--) { esg.SetAmplitude(amplitude_dBm); System.Threading.Thread.Sleep(100); Link.Mykonos.getObsRxDecPower(ref power); short[] rxDataArray = Helper.MykonosOrxCapture(channel, 16384); double[] data = AdiMath.complexfftAndScale(rxDataArray, samplingFreq_MHz, sampleBitWidth, true, out analysisData); response = Link.Mykonos.getObsRxGain(); spiData1 = Link.spiRead(0x4B6); Assert.AreEqual(spiData1 + 128, Int32.Parse(response), "Register Readback for Sniffer Gain not as expected"); if (amplitude_dBm == -20) { finalgain = response; } Console.WriteLine("Gain: " + response + "DecPower: " + power + " FFT Power " + analysisData.FundamentalPower_dBFS + " at " + amplitude_dBm + "\n"); } Assert.AreEqual(initgain, finalgain, "Initial gain is not equal to the final gain"); Link.Disconnect(); }
public static void ObsRxDecPwrTest([Values(Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO, Mykonos.OBSRXCHANNEL.OBS_RX2_TXLO)] Mykonos.OBSRXCHANNEL channel, [Values(-20)] int amp_dbm) { AdiCommandServerClient Link = AdiCommandServerClient.Instance; Link.hw.Connect(TestSetupConfig.ipAddr, TestSetupConfig.port); Link.Mykonos.radioOn(); Link.Mykonos.setObsRxPathSource(channel); //Retrieve Profile Information, samplingFreq_Hz, ProfileBW, LO Frequency Information double[] profileInfo = new double[3]; profileInfo[0] = settings.rxProfileData.IqRate_kHz; profileInfo[1] = settings.rxPllLoFreq_Hz; profileInfo[2] = settings.rxProfileData.PrimarySigBw_Hz; double samplingFreq_Hz = profileInfo[0] * 1000; double profileBW_MHz = profileInfo[2] / 1000000; Console.WriteLine("Rx Sampling Freq (Hz): " + samplingFreq_Hz); Console.WriteLine("Rx Profile Bandwdith (MHz): " + profileBW_MHz); double freqLo_kHz = profileInfo[1] / 1000; Console.WriteLine("Rx LO Frequency (kHz): " + freqLo_kHz); //Define Receiver Test Signal to be 10MHz Offset from LO frequency double testSigFreq_MHz = (freqLo_kHz / 1000 + 10); int amplitude_dBm = amp_dbm; Console.WriteLine("Rx Test Signal Freq (MHz): " + testSigFreq_MHz); //Define DataCapture Parameters const byte NUM_SAMPLES = 255; ushort obsRxDecPower_mdBFS = 10; byte spiData = 0x0; //Generate Test Signal for Rx Capture with ESG SG_AgilentESG esg = new SG_AgilentESG(measEquipment.ESGAddress); Console.WriteLine("ESG Info:" + esg.Identify()); Console.WriteLine("ESG Address :" + measEquipment.ESGAddress); Console.WriteLine("ESG Generating Tone Freq:" + testSigFreq_MHz); Console.WriteLine("ESG Generating Tone Amp:" + amplitude_dBm); esg.SetFrequency(testSigFreq_MHz); esg.SetRfOutput(true); esg.SetAmplitude(amplitude_dBm); System.Threading.Thread.Sleep(1000); AdiMath.FftAnalysis analysisData = new AdiMath.FftAnalysis(); double samplingFreq_MHz = samplingFreq_Hz / 1000000; byte sampleBitWidth = 16; for (int amp = -20; amp > -40; amp--) { System.Threading.Thread.Sleep(100); esg.SetAmplitude(amp); System.Threading.Thread.Sleep(100); short[] rxDataArray = Helper.MykonosOrxCapture(channel, 16384); double[] data = AdiMath.complexfftAndScale(rxDataArray, samplingFreq_MHz, sampleBitWidth, true, out analysisData); Link.Mykonos.getObsRxDecPower(ref obsRxDecPower_mdBFS); spiData = Link.spiRead(0x4E6); Console.WriteLine("Received power: " + obsRxDecPower_mdBFS + " calculated power: " + analysisData.FundamentalPower_dBFS + " at " + amp + " dbfs"); NUnit.Framework.Assert.Less(System.Math.Abs((double)obsRxDecPower_mdBFS / 1000 + analysisData.FundamentalPower_dBFS), 0.50); NUnit.Framework.Assert.AreEqual(spiData * 250, obsRxDecPower_mdBFS); } Link.Disconnect(); }
public static void ORxGainSweep([Values(Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO, Mykonos.OBSRXCHANNEL.OBS_RX2_TXLO)] Mykonos.OBSRXCHANNEL channel) { //Initialize param structure with Hardcoded Values double[] profileInfo = Helper.SetOrxProfileInfo(channel); double samplingFreq_MHz = profileInfo[0] / 1000; double freqLo_MHz = profileInfo[1] / 1000000; double profileBW_MHz = profileInfo[2] / 1000000; double testFreq = 2510; double amplitude_dBm = -20; string[] pcbInfo; //TODO: Hard coded, may want to read the gain tables instead if custom ones are loaded //Number of known indicies in the gain index table. //Should a customer provide a custom gain table, we should determine the number of valid gain indicies // and this array size should correspond to that number. int numIndices = 19; double[,] amplitudeData = new double[numIndices, 3]; double[,] amplitudeDiffData = new double[numIndices - 1, 2]; short[] rxDataArray = new short[16384]; Console.WriteLine("Detected LO Frequency: " + freqLo_MHz); Console.WriteLine("Profile BW: " + profileBW_MHz); switch (channel) { case Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO: case Mykonos.OBSRXCHANNEL.OBS_RX2_TXLO: testFreq = freqLo_MHz + 10; break; case Mykonos.OBSRXCHANNEL.OBS_SNIFFER_A: case Mykonos.OBSRXCHANNEL.OBS_SNIFFER_B: case Mykonos.OBSRXCHANNEL.OBS_SNIFFER_C: testFreq = freqLo_MHz + 5; amplitude_dBm = -30; break; } //ESG Configuration SG_AgilentESG esg = new SG_AgilentESG(measEquipment.ESGAddress); Console.WriteLine(measEquipment.ESGAddress); Console.WriteLine(esg.Identify()); esg.SetFrequency(testFreq); esg.SetAmplitude(amplitude_dBm); esg.SetRfOutput(true); //Test Sequence byte gainIndex = 255; AdiCommandServerClient Link = AdiCommandServerClient.Instance; AdiMath.FftAnalysis analysisData = new AdiMath.FftAnalysis(); for (int i = 0; i < (numIndices + 1); i++) { try { Link.hw.Connect(TestSetupConfig.ipAddr, TestSetupConfig.port); Link.spiWrite(0x4F1, 0x80); gainIndex = (byte)(255 - i); Console.WriteLine("Initial gain index = " + Link.Mykonos.getObsRxGain()); Link.Mykonos.setObsRxManualGain(channel, gainIndex); //There is currently an error in the API. Console.WriteLine("Set gain index = " + gainIndex); System.Threading.Thread.Sleep(100); } catch (Exception e) { //Console.WriteLine("Invalid Gain index reached" + i); //Need to figure out a better way to exit the loop when invalid gain reached Console.WriteLine(e); break; } finally { Link.Disconnect(); } rxDataArray = Helper.MykonosOrxCapture(channel, 8192); //Grab data from the FPGA byte sampleBitWidth = 16; double[] data = AdiMath.complexfftAndScale(rxDataArray, samplingFreq_MHz, sampleBitWidth, true, out analysisData); amplitudeData[i, 0] = (double)gainIndex; amplitudeData[i, 1] = analysisData.FundamentalPower_dBFS; if (i == 0) { amplitudeData[i, 2] = analysisData.FundamentalPower_dBFS; } else { amplitudeData[i, 2] = amplitudeData[i - 1, 2] - 1; amplitudeDiffData[i - 1, 0] = (double)gainIndex; amplitudeDiffData[i - 1, 1] = amplitudeData[i - 1, 1] - amplitudeData[i, 1]; Console.WriteLine(" Gain index :" + amplitudeDiffData[i - 1, 0]); Console.WriteLine(" Differential Amplitude" + amplitudeDiffData[i - 1, 1]); } } #if WR_RES_TO_PDF string path = ObsRxRfTests.ResPath + "ORxGainSweep"; if (channel == Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO) { path = path + "OBS_RX1_TXLO"; } else { path = path + "OBS_RX2_TXLO"; } var doc1 = new Document(); iTextSharp.text.Image[] container = new iTextSharp.text.Image[2]; string[] timeLabels = new string[] { "Rx Gain Sweep versus Amplitude for " + channel.ToString(), "Gain Index (byte)", "Amplitude (dBFS)", "Amplitude: " + amplitude_dBm + "dBm", "Perfect 1dB Gain Index Steps" }; string[] timeLabels2 = new string[] { "Difference between consecutive gain entries " + channel.ToString(), "Gain Index", "Amplitude delta (dB, comparing A(n + 1) - A(n))", "Amplitude: " + amplitude_dBm + "dBm" }; pcbInfo = Helper.PcbInfo(); container[0] = Helper.MakeChartObject(amplitudeData, timeLabels, path); container[1] = Helper.MakeChartObject(amplitudeDiffData, timeLabels2, path + "2"); Helper.AddAllChartsToPdf(container, path + ".pdf", pcbInfo); //Open Result PDF System.Diagnostics.Process.Start(path + ".pdf"); for (int i = 1; i < (numIndices); i++) { NUnit.Framework.Assert.IsTrue(((amplitudeDiffData[i - 1, 1] < 1) && (amplitudeDiffData[i - 1, 1] > 0))); } #endif }
public static void OrxCaptureTest([Values(Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO, Mykonos.OBSRXCHANNEL.OBS_RX2_TXLO)] Mykonos.OBSRXCHANNEL channel, [Values(-20)] int amp_dbm, [Values(10000)] int IQExptVal) { //Retrieve Profile Information, samplingFreq_Hz, ProfileBW, LO Frequency Information double[] profileInfo = new double[3]; profileInfo[0] = settings.rxProfileData.IqRate_kHz; profileInfo[1] = settings.rxPllLoFreq_Hz; profileInfo[2] = settings.rxProfileData.PrimarySigBw_Hz; double samplingFreq_Hz = profileInfo[0] * 1000; double profileBW_MHz = profileInfo[2] / 1000000; Console.WriteLine("Rx Sampling Freq (Hz): " + samplingFreq_Hz); Console.WriteLine("Rx Profile Bandwdith (MHz): " + profileBW_MHz); double freqLo_kHz = profileInfo[1] / 1000; Console.WriteLine("Rx LO Frequency (kHz): " + freqLo_kHz); //Define Receiver Test Signal to be 10MHz Offset from LO frequency double testSigFreq_MHz = (freqLo_kHz / 1000 + 10); int amplitude_dBm = amp_dbm; Console.WriteLine("Rx Test Signal Freq (MHz): " + testSigFreq_MHz); //Define DataCapture Parameters const int NUM_SAMPLES = 8192; short[] rxDataArray = new short[NUM_SAMPLES * 2]; double[,] timeDomainData = new double[NUM_SAMPLES / 2, 3]; //Generate Test Signal for Rx Capture with ESG SG_AgilentESG esg = new SG_AgilentESG(measEquipment.ESGAddress); Console.WriteLine("ESG Info:" + esg.Identify()); Console.WriteLine("ESG Address :" + measEquipment.ESGAddress); Console.WriteLine("ESG Generating Tone Freq:" + testSigFreq_MHz); Console.WriteLine("ESG Generating Tone Amp:" + amplitude_dBm); esg.SetFrequency(testSigFreq_MHz); esg.SetAmplitude(amp_dbm); esg.SetRfOutput(true); //Enable Mykonos Rx Datapath AdiCommandServerClient Link = AdiCommandServerClient.Instance; Link.hw.Connect(TestSetupConfig.ipAddr, TestSetupConfig.port); //Link.Mykonos.setEnsmState(Mykonos.ENSM_STATE.TX_RX); //Link.Mykonos.powerUpRxPath(channel); Link.Mykonos.radioOn(); Link.Mykonos.setObsRxPathSource(channel); Link.Disconnect(); System.Threading.Thread.Sleep(1000); //Retrieve Rx Data from FPGA rxDataArray = Helper.MykonosOrxCapture(channel, NUM_SAMPLES); //Frequency Domain Data Processing AdiMath.FftAnalysis analysisData = new AdiMath.FftAnalysis(); double samplingFreq_MHz = samplingFreq_Hz / 1000000; byte sampleBitWidth = 16; double[] data = AdiMath.complexfftAndScale(rxDataArray, samplingFreq_MHz, sampleBitWidth, true, out analysisData); //Define the 2D array to store frequency bins corresponding to fft data double[,] fftFreqAmp = new double[data.Length, 2]; double binSize = (samplingFreq_MHz / NUM_SAMPLES); double minFreq = samplingFreq_MHz / 2 * (-1); for (int i = 0; i < data.Length; i++) { fftFreqAmp[i, 0] = minFreq + (binSize * 2 * i); fftFreqAmp[i, 1] = data[i]; } //Time Domain Data Processing int numSamplesDiv2 = (int)NUM_SAMPLES / 2; for (int i = 0; i < numSamplesDiv2; i++) { timeDomainData[i, 0] = i; timeDomainData[i, 1] = rxDataArray[2 * i]; timeDomainData[i, 2] = rxDataArray[2 * i + 1]; } var IMin = System.Linq.Enumerable.Range(0, numSamplesDiv2).Select(i => timeDomainData[i, 1]).Min(); var IMax = System.Linq.Enumerable.Range(0, numSamplesDiv2).Select(i => timeDomainData[i, 1]).Max(); var QMin = System.Linq.Enumerable.Range(0, numSamplesDiv2).Select(i => timeDomainData[i, 2]).Min(); var QMax = System.Linq.Enumerable.Range(0, numSamplesDiv2).Select(i => timeDomainData[i, 2]).Max(); Console.WriteLine("I Max, Min:" + IMax.ToString() + "," + IMin.ToString()); Console.WriteLine("Q Max, Min:" + QMax.ToString() + "," + QMin.ToString()); #if WR_RES_TO_PDF string path = RxRfTests.ResPath + "Rx_FFT_TimeDomain_Plots"; if (channel == Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO) { path = path + "ORX1"; } else { path = path + "ORX2"; } string[] timeLabels = new string[] { "Time Domain Response of " + channel.ToString(), "Sample Number", "ADC Codes", "I data", "Q data" }; string[] fftLabels = new string[] { "Frequency Domain Response of " + channel.ToString(), "Frequency (MHz)", "Amplitude (dBFS)", "FFT DATA" }; // Should be >=4 long. var doc1 = new Document(); iTextSharp.text.Image[] container = new iTextSharp.text.Image[2]; container[0] = Helper.MakeChartObject(timeDomainData, timeLabels, path); container[1] = Helper.MakeChartObject(fftFreqAmp, fftLabels, path); string[] pcbInfo; pcbInfo = Helper.PcbInfo((settings.txPllLoFreq_Hz / 1000000.0).ToString(), (settings.rxPllLoFreq_Hz / 1000000.0).ToString(), settings.mykSettings.txProfileName, settings.mykSettings.rxProfileName, "N/A", "N/A"); Helper.AddAllChartsToPdf(container, path + ".pdf", pcbInfo); // open result pdf System.Diagnostics.Process.Start(path + ".pdf"); #endif // open result pdf System.Diagnostics.Process.Start(path + ".pdf"); /* * NUnit.Framework.Assert.Greater(IMin, ((-1) * (IQExptVal + ((IQExptVal * 10) / 100)))); * NUnit.Framework.Assert.Less(IMin, (IQExptVal * (-1))); * NUnit.Framework.Assert.Less(IMax, ((IQExptVal + ((IQExptVal * 10) / 100)))); * NUnit.Framework.Assert.Greater(IMax, IQExptVal); * * NUnit.Framework.Assert.Greater(QMin, ((-1) * (IQExptVal + ((IQExptVal * 10) / 100)))); * NUnit.Framework.Assert.Less(QMin, (IQExptVal * (-1))); * NUnit.Framework.Assert.Less(QMax, ((IQExptVal + ((IQExptVal * 10) / 100)))); * NUnit.Framework.Assert.Greater(QMax, IQExptVal); */ NUnit.Framework.Assert.Greater(IMax, 5000); NUnit.Framework.Assert.Greater(QMax, 5000); }
public static void ORxPassbandSweep([Values(Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO, Mykonos.OBSRXCHANNEL.OBS_RX2_TXLO)] Mykonos.OBSRXCHANNEL channel) { //Retrieve Profile Information, samplingFreq_Hz, ProfileBW, LO Frequency Information double[] profileInfo = new double[3]; profileInfo[0] = settings.rxProfileData.IqRate_kHz; profileInfo[1] = settings.rxPllLoFreq_Hz; profileInfo[2] = settings.rxProfileData.PrimarySigBw_Hz; double samplingFreq_MHz = profileInfo[0] / 1000; double profileBW_MHz = profileInfo[2] / 1000000; Console.WriteLine("Rx Sampling Freq (MHz): " + samplingFreq_MHz); Console.WriteLine("Rx Profile Bandwdith (MHz): " + profileBW_MHz); double freqLo_MHz = profileInfo[1] / 1000000; Console.WriteLine("Rx LO Frequency (MHz): " + freqLo_MHz); //Define Test Parameters Based on Profile Info & Lo Frequency //Allow for testing 50% over & under PassBand //Hard coded values for amplitude & Frequency Setups settings const int NUM_SAMPLES = 8192; double SwpSigAmp = -20; double SwpMinFreq = freqLo_MHz - (profileBW_MHz / 2) * 1.5; double SwpMaxFreq = freqLo_MHz + (profileBW_MHz / 2) * 1.5; int SwpNumSteps = 150; SwpParamStruct param = new SwpParamStruct(SwpMinFreq, SwpMaxFreq, SwpSigAmp, SwpNumSteps); Console.WriteLine("SwpMinFreq (MHz): " + SwpMinFreq); Console.WriteLine("SwpMaxMax (MHz): " + SwpMaxFreq); Console.WriteLine("SwpSigAmp (MHz): " + SwpSigAmp); //Define Data Array for storing Fundamental short[] rxDataArray = new short[16384]; double[,] outputData = new double[param.numSteps, 4]; string[] pcbInfo; AdiMath.FftAnalysis analysisData = new AdiMath.FftAnalysis(); //Configure Signal Generator SG_AgilentESG sigGen = new SG_AgilentESG(measEquipment.ESGAddress); Console.WriteLine(sigGen.Identify()); sigGen.SetFrequency(param.freqMin); sigGen.SetAmplitude(param.amplitude); sigGen.SetRfOutput(true); //Enable Mykonos Rx Datapath AdiCommandServerClient Link = AdiCommandServerClient.Instance; Link.hw.Connect(TestSetupConfig.ipAddr, TestSetupConfig.port); //Link.Mykonos.setEnsmState(Mykonos.ENSM_STATE.TX_RX); //Link.Mykonos.powerUpRxPath(channel); Link.Mykonos.radioOn(); Link.Disconnect(); //Test Sequence //Sweep Thru Rx Passband & Capture Data //Capture Received data from FPGA //Process Sampled Data to Determine //Fundemental Frequency Detected (MHz) //Fundamental Power of Signal (dBFS) //Image Power(dBFS) for (int i = 0; i < param.numSteps; i++) { double test_freq = param.freqMin + i * (param.freqMax - param.freqMin) / param.numSteps; sigGen.SetFrequency(test_freq); System.Threading.Thread.Sleep(100); rxDataArray = Helper.MykonosOrxCapture(channel, NUM_SAMPLES); byte sampleBitWidth = 16; double[] fftMagnitudeData = AdiMath.complexfftAndScale(rxDataArray, samplingFreq_MHz, sampleBitWidth, true, out analysisData); outputData[i, 0] = test_freq; //outputData[i, 0] = analysisData.FundamentalFrequency_MHz; outputData[i, 1] = analysisData.FundamentalPower_dBFS; outputData[i, 2] = analysisData.ImagePower_dBFS; outputData[i, 3] = analysisData.DcOffset_dBFS; } string path = RxRfTests.ResPath + "RxPassbandSweep"; if (channel == Mykonos.OBSRXCHANNEL.OBS_RX1_TXLO) { path = path + "RX1"; } else { path = path + "RX2"; } #if WR_RES_TO_PDF var doc1 = new Document(); iTextSharp.text.Image[] container = new iTextSharp.text.Image[1]; string[] timeLabels = new string[] { "FFT Statistics versus CW Input Frequency for " + channel.ToString(), "CW Input Frequency (MHz)", "Amplitude (dBFS)", "Fundamental Tone", "Image Amplitude", "DC Offset Amplitude" }; pcbInfo = Helper.PcbInfo((settings.txPllLoFreq_Hz / 1000000.0).ToString(), (settings.rxPllLoFreq_Hz / 1000000.0).ToString(), settings.mykSettings.txProfileName, settings.mykSettings.rxProfileName, "N/A", "N/A"); container[0] = Helper.MakeChartObject(outputData, timeLabels, path); Helper.AddAllChartsToPdf(container, path + ".pdf", pcbInfo); //Open Result PDF System.Diagnostics.Process.Start(path + ".pdf"); #endif #if WR_RES_TO_TXT // Write data to txt file using (System.IO.StreamWriter file = new System.IO.StreamWriter(path + ".txt")) { file.WriteLine("Sample, Frequency MHz, Fundamental Power(dBFS), Image Power(dBFS), DC Offset(dBFS)"); for (int i = 0; i < param.numSteps; i++) { file.WriteLine(i + "," + outputData[i, 0].ToString() + "," + outputData[i, 1].ToString() + "," + outputData[i, 2].ToString() + "," + outputData[i, 3].ToString()); } } #endif //Check Min Max Fund Amplitudes are within 0.5db of each other. //var MinFundPower_dBFS = System.Linq.Enumerable.Range(50, 100).Select(i => outputData[i, 1]).Min(); //var MaxFundPower_dBFS = System.Linq.Enumerable.Range(50, 100).Select(i => outputData[i, 1]).Max(); double MinFundPower_dBFS = outputData[50, 1]; double MaxFundPower_dBFS = outputData[50, 1]; for (int i = 50; i < 100; i++) { if (outputData[i, 1] < MinFundPower_dBFS) { MinFundPower_dBFS = outputData[i, 1]; } if (outputData[i, 1] > MaxFundPower_dBFS) { MaxFundPower_dBFS = outputData[i, 1]; } } Console.WriteLine("MinFundAmp: " + MinFundPower_dBFS); Console.WriteLine("MaxFundAmp: " + MaxFundPower_dBFS); Console.WriteLine("MaxDiffFundAmp: " + (MaxFundPower_dBFS - MinFundPower_dBFS)); NUnit.Framework.Assert.IsTrue((MaxFundPower_dBFS - MinFundPower_dBFS) <= 0.5); }