public static double[][] Transform(double[][] input) { double[][] output = model.Transform(input); return(output); }
public void learn_test() { #region doc_learn // Create some sample input data instances. This is the same // data used in the Gutierrez-Osuna's example available on: // http://research.cs.tamu.edu/prism/lectures/pr/pr_l10.pdf double[][] inputs = { // Class 0 new double[] { 4, 1 }, new double[] { 2, 4 }, new double[] { 2, 3 }, new double[] { 3, 6 }, new double[] { 4, 4 }, // Class 1 new double[] { 9, 10 }, new double[] { 6, 8 }, new double[] { 9, 5 }, new double[] { 8, 7 }, new double[] { 10, 8 } }; int[] output = { 0, 0, 0, 0, 0, // The first five are from class 0 1, 1, 1, 1, 1 // The last five are from class 1 }; // We'll create a KDA using a Linear kernel var kda = new KernelDiscriminantAnalysis() { Kernel = new Linear() // We can choose any kernel function }; // Compute the analysis and create a classifier var classifier = kda.Learn(inputs, output); // Now we can project the data into KDA space: double[][] projection = kda.Transform(inputs); // Or perform classification using: int[] results = kda.Classify(inputs); // Note: The classifier generated by the KDA analysis is composed // of a two-step transformation. The first transformation projects // the input data into a new space using a kernel regression: MultivariateKernelRegression kernelRegression = classifier.First; // While the second is a classifier that attempts to map the outputs // of the kernel regression to each class according to their average: MinimumMeanDistanceClassifier meanClassifier = classifier.Second; // As such, calling kda.Classify is equivalent to calling: int[] results2 = classifier.Decide(inputs); // which in turn is equivalent to calling: int[] results3 = meanClassifier.Decide(kernelRegression.Transform(inputs)); #endregion Assert.AreEqual(results, results2); Assert.AreEqual(results, results3); double[][] classifierProjection = kda.Classifier.First.Transform(inputs); Assert.IsTrue(projection.IsEqual(classifierProjection)); double[][] expected = new double[][] { new double[] { 80.7607049998409, -5.30485371541545E-06, 6.61304584781419E-06, 4.52807990036774E-06, -3.44409628150189E-06, 3.69094504515388E-06, -1.33641000168438E-05, -0.000132874977040842, -0.000261921590627878, 1.22137997452386 }, new double[] { 67.6629612351861, 6.80622743409742E-06, -8.48466262226566E-06, -5.80961187779394E-06, 4.4188405141643E-06, -4.73555212510135E-06, 1.71463925084936E-05, 0.000170481102685471, 0.000336050342774286, -1.5670535522193 }, new double[] { 59.8679301679674, 4.10375477777336E-06, -5.11575246520124E-06, -3.50285421113483E-06, 2.66430090034575E-06, -2.85525936627451E-06, 1.03382660725515E-05, 0.00010279007663172, 0.000202618589039361, -0.944841112367518 }, new double[] { 101.494441852779, 1.02093411395998E-05, -1.27269939227403E-05, -8.71441780958548E-06, 6.62826077091339E-06, -7.10332818965043E-06, 2.57195887591877E-05, 0.000255721654028207, 0.000504075514164981, -2.35058032832894 }, new double[] { 104.145798201497, 2.80256425000402E-06, -3.49368461627364E-06, -2.39219308895144E-06, 1.81952256639306E-06, -1.94993321933623E-06, 7.06027928387698E-06, 7.01981011275166E-05, 0.000138373670580449, -0.645257345031474 }, new double[] { 242.123077020588, 9.00824221261587E-06, -1.12297005614437E-05, -7.689192102589E-06, 5.84846541151762E-06, -6.26764250277745E-06, 2.26937548148953E-05, 0.000225636753569347, 0.000444772512580016, -2.07404146617259 }, new double[] { 171.808759436683, 9.60879168943052E-06, -1.19783472456447E-05, -8.2018049702981E-06, 6.23836308744075E-06, -6.68548535731617E-06, 2.42066717959233E-05, 0.000240679203812988, 0.000474424013376051, -2.21231089725078 }, new double[] { 203.147921684494, -4.5041210583463E-06, 5.61485022387842E-06, 3.8445962076139E-06, -2.92423269243614E-06, 3.13382127359318E-06, -1.13468773577097E-05, -0.000112818376692303, -0.000222386256126583, 1.03702073308629 }, new double[] { 200.496565335776, 2.90265583302585E-06, -3.61845908969372E-06, -2.47762852723099E-06, 1.88450551963371E-06, -2.01957368695105E-06, 7.31243213181187E-06, 7.27051762225983E-05, 0.000143315587422421, -0.668302250211177 }, new double[] { 244.774433369306, 1.60146531058558E-06, -1.99639123366069E-06, -1.36696743169296E-06, 1.0397271781315E-06, -1.11424755644407E-06, 4.03444536090092E-06, 4.01132006970784E-05, 7.90706689741683E-05, -0.368718482875124 } }; Assert.IsTrue(expected.Get(null, 0, 2).IsEqual(projection, 1e-6)); // Test the classify method for (int i = 0; i < 5; i++) { int actual = results[i]; Assert.AreEqual(0, actual); } for (int i = 5; i < 10; i++) { int actual = results[i]; Assert.AreEqual(1, actual); } }