예제 #1
0
        public static double rhoDinvA(MsrMatrix A, out MsrMatrix DinvA)
        {
            double rho;

            // extract diagonal matrix
            double[] Diag = A.GetDiagVector();
            int      n    = Diag.Length;

            // % form (D^-1) A
            //Diag = spdiags(1./Diag, 0, n, n);
            //DinvA = Diag*A;
            DinvA = new MsrMatrix(A.RowPartitioning, A.ColPartition);
            int i0 = A.RowPartitioning.i0;

            int Lr;

            int[]    ColumnIdx = null;
            double[] Values    = null;

            for (int i = 0; i < n; i++)
            {
                Lr = A.GetRow(i + i0, ref ColumnIdx, ref Values);
                for (int k = 0; k < Lr; k++)
                {
                    Values[k] *= 1.0 / Diag[i];
                }
                DinvA.SetRow(i + i0, ColumnIdx, Values, Lr);
            }
#if DEBUG
            for (int i = 0; i < n; i++)
            {
                Debug.Assert(Math.Abs(1.0 - DinvA[i + i0, i + i0]) < BLAS.MachineEps * 10);
            }
#endif

            // estimate the largest eigen value from Arnoldi iteration
            int        kk = 20;
            var        rand = new Random(0);
            double[]   v0 = n.ForLoop(i => rand.NextDouble());
            double[][] V; double[,] H; int kact;
            arnoldi(out V, out H, out kact, DinvA, v0, kk, false);
            kk = Math.Min(H.GetLength(0), H.GetLength(1));
            H  = H.GetSubMatrix(0, kk, 0, kk);

            rho = MaxAbsEigen(H);

            return(rho);
        }
예제 #2
0
        /// <summary>
        /// Create Spatial Operators and build the corresponding Matrices
        /// </summary>
        public void ComputeMatrices(IList <DGField> InterfaceParams, bool nearfield)
        {
            OpMatrix = new MsrMatrix(this.Extension.Mapping, this.Extension.Mapping);
            OpAffine = new double[OpMatrix.RowPartitioning.LocalLength];

            OpMatrix_bulk = new MsrMatrix(this.Extension.Mapping, this.Extension.Mapping);
            OpAffine_bulk = new double[OpMatrix.RowPartitioning.LocalLength];

            OpMatrix_interface = new MsrMatrix(this.Extension.Mapping, this.Extension.Mapping);
            OpAffine_interface = new double[OpMatrix.RowPartitioning.LocalLength];


            //LevelSetTracker.GetLevelSetGradients(0,);

            // bulk part of the matrix
            //Operator_bulk.ComputeMatrix(
            //    Extension.Mapping,
            //    LevelSetGradient.ToArray(),
            //    Extension.Mapping,
            //    OpMatrix_bulk, OpAffine_bulk,
            //    OnlyAffine: false, sgrd: null);

            switch (Control.FluxVariant)
            {
            case FluxVariant.GradientBased:
                // Flux Direction based on Mean Level Set Gradient
                BulkParams = new List <DGField> {
                };                                      // Hack, to make ArrayTools.Cat produce a List of DGFields
                // second Hack: Does only work, when InterfaceParams is according to a single component flux,
                // else, we will have to change the boundary edge flux
                BulkParams = ArrayTools.Cat(BulkParams, LevelSetGradient.ToArray(), Phi, MeanLevelSetGradient.ToArray(), InterfaceParams.ToArray());
                MeanLevelSetGradient.Clear();
                MeanLevelSetGradient.AccLaidBack(1.0, LevelSetGradient);
                break;

            case FluxVariant.ValueBased:
                // Flux Direction Based on Cell-Averaged Level-Set Value
                BulkParams = ArrayTools.Cat(LevelSetGradient.ToArray(), Phi, MeanLevelSet);
                MeanLevelSet.Clear();
                MeanLevelSet.AccLaidBack(1.0, Phi);
                break;

            case FluxVariant.SWIP:
                BulkParams = LevelSetGradient.ToArray();
                break;

            default:
                throw new Exception();
            }

            // Build Operator

            Operator_bulk.ComputeMatrixEx(Extension.Mapping,
                                          BulkParams,
                                          Extension.Mapping,
                                          OpMatrix_bulk, OpAffine_bulk,
                                          OnlyAffine: false,
                                          time: 0.0,
                                          edgeQuadScheme: new EdgeQuadratureScheme(true, nearfield ? LevelSetTracker.Regions.GetNearFieldSubgrid(1).InnerEdgesMask : null),
                                          volQuadScheme: new CellQuadratureScheme(true, nearfield ? LevelSetTracker.Regions.GetNearFieldSubgrid(1).VolumeMask : null)
                                          );

            Operator_interface.ComputeMatrixEx(
                LevelSetTracker,
                Extension.Mapping,
                InterfaceParams,
                Extension.Mapping,
                OpMatrix_interface,
                OpAffine_interface,
                OnlyAffine: false,
                time: 0,
                MPIParameterExchange: false,
                whichSpc: LevelSetTracker.GetSpeciesId("A")
                );
#if DEBUG
            OpMatrix_bulk.CheckForNanOrInfM();
            OpAffine_bulk.CheckForNanOrInfV();

            OpMatrix_interface.CheckForNanOrInfM();
            OpAffine_interface.CheckForNanOrInfV();
#endif

            //Only for Debugging purposes
            //OpMatrix.SaveToTextFileSparse("C:\\tmp\\EllipticReInit.txt");

            Debug.Assert(OpMatrix_interface.GetDiagVector().L2Norm() > 0, "L2-Norm of Diagonal of InterfaceOperator is 0");
            Debug.Assert(OpMatrix_bulk.GetDiagVector().L2Norm() > 0, "L2-Norm of Diagonal of BulkOperator is 0");
#if DEBUG
            //Console.WriteLine( "L2-Norm of Diagonal of InterfaceOperator is {0}", OpMatrix_interface.GetDiagVector().L2Norm() );
#endif
            OpMatrix.Clear();
            OpMatrix.Acc(1.0, OpMatrix_bulk);
            OpMatrix.Acc(1.0, OpMatrix_interface);
            //Console.WriteLine("Op-Matrix Symmetry-Deviation: {0}", OpMatrix.SymmetryDeviation());
            OpMatrix.AssumeSymmetric = false;

            OpAffine.Clear();
            OpAffine.AccV(1.0, OpAffine_bulk);
            OpAffine.AccV(1.0, OpAffine_interface);
#if DEBUG
            //Console.WriteLine("Condition Number of Extension Operator {0}", OpMatrix.condest());
#endif
        }
예제 #3
0
        /// <summary>
        /// Create Spatial Operators and build the corresponding Matrices
        /// </summary>
        public void ComputeMatrices(IList <DGField> InterfaceParams, bool nearfield)
        {
            OpMatrix = new MsrMatrix(this.Extension.Mapping, this.Extension.Mapping);
            OpAffine = new double[OpMatrix.RowPartitioning.LocalLength];

            OpMatrix_bulk = new MsrMatrix(this.Extension.Mapping, this.Extension.Mapping);
            OpAffine_bulk = new double[OpMatrix.RowPartitioning.LocalLength];

            OpMatrix_interface = new MsrMatrix(this.Extension.Mapping, this.Extension.Mapping);
            OpAffine_interface = new double[OpMatrix.RowPartitioning.LocalLength];


            //LevelSetTracker.GetLevelSetGradients(0,);

            // bulk part of the matrix
            //Operator_bulk.ComputeMatrix(
            //    Extension.Mapping,
            //    LevelSetGradient.ToArray(),
            //    Extension.Mapping,
            //    OpMatrix_bulk, OpAffine_bulk,
            //    OnlyAffine: false, sgrd: null);

            switch (Control.FluxVariant)
            {
            case FluxVariant.GradientBased:
                // Flux Direction based on Mean Level Set Gradient
                BulkParams = new List <DGField> {
                };                                      // Hack, to make ArrayTools.Cat produce a List of DGFields
                // second Hack: Does only work, when InterfaceParams is according to a single component flux,
                // else, we will have to change the boundary edge flux
                BulkParams = ArrayTools.Cat(BulkParams, LevelSetGradient.ToArray(), Phi, MeanLevelSetGradient.ToArray(), InterfaceParams.ToArray());
                MeanLevelSetGradient.Clear();
                MeanLevelSetGradient.AccLaidBack(1.0, LevelSetGradient);
                break;

            case FluxVariant.ValueBased:
                // Flux Direction Based on Cell-Averaged Level-Set Value
                BulkParams = ArrayTools.Cat(LevelSetGradient.ToArray(), Phi, MeanLevelSet);
                MeanLevelSet.Clear();
                MeanLevelSet.AccLaidBack(1.0, Phi);
                break;

            case FluxVariant.SWIP:
                BulkParams = LevelSetGradient.ToArray();
                break;

            default:
                throw new Exception();
            }

            // Build Operator

            Operator_bulk.ComputeMatrixEx(Extension.Mapping,
                                          BulkParams,
                                          Extension.Mapping,
                                          OpMatrix_bulk, OpAffine_bulk,
                                          OnlyAffine: false,
                                          time: 0.0,
                                          edgeQuadScheme: new EdgeQuadratureScheme(true, nearfield ? LevelSetTracker.Regions.GetNearFieldSubgrid(1).InnerEdgesMask : null),
                                          volQuadScheme: new CellQuadratureScheme(true, nearfield ? LevelSetTracker.Regions.GetNearFieldSubgrid(1).VolumeMask : null)
                                          );



            //Operator_interface.ComputeMatrixEx(
            //    LevelSetTracker,
            //    Extension.Mapping,
            //    InterfaceParams,
            //    Extension.Mapping,
            //    OpMatrix_interface,
            //    OpAffine_interface,
            //    OnlyAffine: false,
            //    time: 0,
            //    MPIParameterExchange: false,
            //    whichSpc: LevelSetTracker.GetSpeciesId("A")
            //    );

            Operator_interface.OperatorCoefficientsProvider =
                delegate(LevelSetTracker lstrk, SpeciesId spc, int quadOrder, int TrackerHistoryIdx, double time) {
                var r = new CoefficientSet()
                {
                };

                //throw new NotImplementedException("todo");
                return(r);
            };
            XSpatialOperatorMk2.XEvaluatorLinear mtxBuilder = Operator_interface.GetMatrixBuilder(LevelSetTracker,
                                                                                                  Extension.Mapping, InterfaceParams, Extension.Mapping);

            MultiphaseCellAgglomerator dummy = LevelSetTracker.GetAgglomerator(LevelSetTracker.SpeciesIdS.ToArray(), 2 * Extension.Basis.Degree + 2, 0.0);

            mtxBuilder.CellLengthScales.Add(LevelSetTracker.GetSpeciesId("A"), dummy.CellLengthScales[LevelSetTracker.GetSpeciesId("A")]);

            mtxBuilder.time           = 0;
            mtxBuilder.MPITtransceive = false;
            mtxBuilder.ComputeMatrix(OpMatrix_interface, OpAffine_interface);

#if DEBUG
            OpMatrix_bulk.CheckForNanOrInfM();
            OpAffine_bulk.CheckForNanOrInfV();

            OpMatrix_interface.CheckForNanOrInfM();
            OpAffine_interface.CheckForNanOrInfV();
#endif

            //Only for Debugging purposes

            Debug.Assert(OpMatrix_interface.GetDiagVector().L2Norm() > 0, "L2-Norm of Diagonal of InterfaceOperator is 0");
            Debug.Assert(OpMatrix_bulk.GetDiagVector().L2Norm() > 0, "L2-Norm of Diagonal of BulkOperator is 0");
#if DEBUG
            //Console.WriteLine( "L2-Norm of Diagonal of InterfaceOperator is {0}", OpMatrix_interface.GetDiagVector().L2Norm() );
#endif
            OpMatrix.Clear();
            OpMatrix.Acc(1.0, OpMatrix_bulk);
            OpMatrix.Acc(1.0, OpMatrix_interface);
            //Console.WriteLine("Op-Matrix Symmetry-Deviation: {0}", OpMatrix.SymmetryDeviation());
            OpMatrix.AssumeSymmetric = false;

            OpAffine.Clear();
            OpAffine.AccV(1.0, OpAffine_bulk);
            OpAffine.AccV(1.0, OpAffine_interface);
#if DEBUG
            //Console.WriteLine("Condition Number of Extension Operator {0}", OpMatrix.condest());
#endif
        }