private async void BtnTestNeuralNetwork_Click(object sender, EventArgs e) { //This function will only be called if a neural network has been trained. //Now we want to train a set of images bool gotImages = false; bool gotLabels = false; string strTestingInFile = "t10k-images.idx3-ubyte"; string strTestinglblFile = "t10k-labels.idx1-ubyte"; PrimeNeuralNetwork.ResetMNIST(); PrimeNeuralNetwork.SetEpochCount(1); Task <bool> gettingImagesTask = new Task <bool>(() => { return(PrimeNeuralNetwork.ReadImages(strTestingInFile)); }); Task <bool> gettingLabelsTask = new Task <bool>(() => { return(PrimeNeuralNetwork.ReadLabels(strTestinglblFile)); }); gettingImagesTask.Start(); gettingLabelsTask.Start(); Cursor.Current = Cursors.WaitCursor; DisableActions(); //NOTE: the following function will only end when Images and Labels are done being read GenerateLoadingImgTxt(ref PrimeNeuralNetwork); gotImages = await gettingImagesTask; gotLabels = await gettingLabelsTask; Cursor.Current = Cursors.Default; totalImages = PrimeNeuralNetwork.GetTotalImages(); //Since the testing images and labels have been read, we can now begin testing Task taskTestingNetwork = new Task(() => { PrimeNeuralNetwork.TestNetwork(); }); taskTestingNetwork.Start(); //Generate a testing loading bar screen LoadingScreen currLoadingScreen = new LoadingScreen(); currLoadingScreen.Show(this); while (!PrimeNeuralNetwork.FinishedTesting()) { currLoadingScreen.AdjustLoadBar(PrimeNeuralNetwork.GetImagesRead(), totalImages, 0, totalImages, Mode.TESTING); } await taskTestingNetwork; currLoadingScreen.Close(); DisplayResults(); EnableActions(); BtnNext.Enabled = true; }
private async void BtnTrainNN_Click(object sender, EventArgs e) { int epochSize = 0; //These will be our hard-coded file names. We do this for now because program doesnt work with other files yet. string strTrainingInFile = "train-images.idx3-ubyte"; string strTrainingLblFile = "train-labels.idx1-ubyte"; //Obtain Hyper Parameters from GUI dblEta = double.Parse(txtEta.Text); intNeuronCnt = int.Parse(txtNeuronCnt.Text); intMiniBatchCnt = int.Parse(txtMiniBatch.Text); dblEpochCount = double.Parse(txtEpoch.Text); actFunc = txtActFunc.Text; //Declare tempNeuralNetwork class(C++) and set all the hyper parameters MnistWrapper.MnistWrapperClass tempNeuralNetwork = new MnistWrapper.MnistWrapperClass(); tempNeuralNetwork.SetActFunc(actFunc); tempNeuralNetwork.SetEpochCount(dblEpochCount); tempNeuralNetwork.SetNeuronCount(intNeuronCnt); tempNeuralNetwork.SetEta(dblEta); tempNeuralNetwork.SetBatchSize(intMiniBatchCnt); //Obtain the images and labels from the given file names Task <bool> gettingImagesTask = new Task <bool>(() => { return(tempNeuralNetwork.ReadImages(strTrainingInFile)); }); Task <bool> gettingLabelsTask = new Task <bool>(() => { return(tempNeuralNetwork.ReadLabels(strTrainingLblFile)); }); gettingImagesTask.Start(); gettingLabelsTask.Start(); Cursor.Current = Cursors.WaitCursor; DisableActions(); GenerateLoadingImgTxt(ref tempNeuralNetwork); Cursor.Current = Cursors.Default; epochSize = tempNeuralNetwork.GetEpochSize(); totalImages = tempNeuralNetwork.GetTotalImages(); Task trainingTask = new Task(() => { tempNeuralNetwork.TrainNetwork(); }); trainingTask.Start(); //While the Network is training with read inputs and labels, display a loading screen LoadingScreen currLoadingScreen = new LoadingScreen(); currLoadingScreen.Show(this); while (!(tempNeuralNetwork.FinishedTraining())) { currLoadingScreen.AdjustLoadBar(tempNeuralNetwork.GetImagesRead(), totalImages, tempNeuralNetwork.GetEpochIterator(), epochSize, Mode.TRAINING); } await trainingTask; currLoadingScreen.Close(); EnableActions(); PrimeNeuralNetwork = tempNeuralNetwork; }