void trainLinearMulticlass() { print("Starting trainning"); _outputTrainningMulticlass.Clear(); _outputTrainningMulticlass = new List <double[]>(); int outputLength = trainningOuput.Length / _outputSize; for (int i = 0; i < _outputSize; i++) { List <double> tmp = new List <double>(); for (int j = 0; j < outputLength; j++) { tmp.Add(trainningOuput[j * _outputSize + i]); } _outputTrainningMulticlass.Add(tmp.ToArray()); } for (int i = 0; i < _outputTrainningMulticlass.Count; i++) { MlDllWrapper.trainLinearClass(_myMulticlassModel[i], trainningInput, trainningInput.Length, _inputSize, _outputTrainningMulticlass[i], _outputTrainningMulticlass[i].Length, 1, learningRate, isClassification, epochs); } print("Trainning Finished"); }
void trainModel() { print("Model start trainning"); MlDllWrapper.trainLinearClass(MyModel, trainningInput, trainningInput.Length, 2, trainningOuput, trainningOuput.Length, 1, learningRate, true, epochs); print("Model finished train"); }