private static void SolveMinCostFlow() { Console.WriteLine("Min Cost Flow Problem"); int numSources = 4; int numTargets = 4; int[,] costs = { { 90, 75, 75, 80 }, { 35, 85, 55, 65 }, { 125, 95, 90, 105 }, { 45, 110, 95, 115 } }; int expectedCost = 275; MinCostFlow minCostFlow = new MinCostFlow(); for (int source = 0; source < numSources; ++source) { for (int target = 0; target < numTargets; ++target) { minCostFlow.AddArcWithCapacityAndUnitCost( source, /*target=*/ numSources + target, /*capacity=*/ 1, /*flow unit cost=*/ costs[source, target]); } } for (int source = 0; source < numSources; ++source) { minCostFlow.SetNodeSupply(source, 1); } for (int target = 0; target < numTargets; ++target) { minCostFlow.SetNodeSupply(numSources + target, -1); } Console.WriteLine("Solving min cost flow with " + numSources + " sources, and " + numTargets + " targets."); int solveStatus = minCostFlow.Solve(); if (solveStatus == MinCostFlow.OPTIMAL) { Console.WriteLine("total computed flow cost = " + minCostFlow.OptimalCost() + ", expected = " + expectedCost); } else { Console.WriteLine("Solving the min cost flow problem failed." + " Solver status: " + solveStatus); } }
private static void SolveMinCostFlow() { Console.WriteLine("Min Cost Flow Problem"); int numSources = 4; int numTargets = 4; int[,] costs = { { 90, 75, 75, 80 }, { 35, 85, 55, 65 }, { 125, 95, 90, 105 }, { 45, 110, 95, 115 } }; int expectedCost = 275; StarGraph graph = new StarGraph(numSources + numTargets, numSources * numTargets); MinCostFlow minCostFlow = new MinCostFlow(graph); for (int source = 0; source < numSources; ++source) { for (int target = 0; target < numTargets; ++target) { int arc = graph.AddArc(source, numSources + target); minCostFlow.SetArcUnitCost(arc, costs[source, target]); minCostFlow.SetArcCapacity(arc, 1); } } for (int source = 0; source < numSources; ++source) { minCostFlow.SetNodeSupply(source, 1); } for (int target = 0; target < numTargets; ++target) { minCostFlow.SetNodeSupply(numSources + target, -1); } Console.WriteLine("Solving min cost flow with " + numSources + " sources, and " + numTargets + " targets."); if (minCostFlow.Solve()) { long totalFlowCost = minCostFlow.GetOptimalCost(); Console.WriteLine("total computed flow cost = " + totalFlowCost + ", expected = " + expectedCost); } else { Console.WriteLine("No solution found"); } }
public void PrintNetworkFlowSolution(MinCostFlow networkFlowSolution) { long optimalCost = networkFlowSolution.OptimalCost(); Console.WriteLine("Minimum cost: " + optimalCost); Console.WriteLine(""); Console.WriteLine(" Edge Flow / Capacity Cost"); for (int i = 0; i < numArcs; ++i) { long cost = networkFlowSolution.Flow(i) * networkFlowSolution.UnitCost(i); Console.WriteLine(networkFlowSolution.Tail(i) + " -> " + networkFlowSolution.Head(i) + " " + string.Format("{0,3}", networkFlowSolution.Flow(i)) + " / " + string.Format("{0,3}", networkFlowSolution.Capacity(i)) + " " + string.Format("{0,3}", cost)); } }
public long solve(CFMAStar.CostFunction costFunction) { // Independence Detection List <List <TimedMove> > nonConflictsPaths = null; IndependentDetection id = new IndependentDetection(this.problemInstance, this.goalState); MAM_AgentState[] newStartPositions = id.Detect(out nonConflictsPaths); if (newStartPositions.Length != 0) { this.problemInstance = problemInstance.ReplanProblem(newStartPositions); this.reducer = new CFMAM_MCMF_Reducer(this.problemInstance, this.goalState); reducer.reduce(costFunction); if (reducer.outputProblem == null) { return(-1); } MinCostMaxFlow mcmfSolver = new MinCostMaxFlow(reducer.outputProblem); timer = Stopwatch.StartNew(); solution = mcmfSolver.SolveMinCostFlow(); List <TimedMove>[] partialPlan = this.reducer.GetCFMAMSolution(this.solution, this.mcmfTime, true); if (costFunction == CFMAStar.CostFunction.MakeSpan) { while (!isPathForEachAgent(partialPlan)) { this.reducer.addNetworkLayer(); mcmfSolver = new MinCostMaxFlow(reducer.outputProblem); solution = mcmfSolver.SolveMinCostFlow(); partialPlan = this.reducer.GetCFMAMSolution(this.solution, this.mcmfTime, true); } } timer.Stop(); this.plan = mergePlans(partialPlan, nonConflictsPaths); this.mcmfTime = timer.ElapsedMilliseconds; this.solutionCost = calculateCost(this.plan, costFunction); } else { this.plan = nonConflictsPaths; this.solutionCost = calculateCost(this.plan, costFunction); } return(this.solutionCost); }
static object Solve() { var(p, q) = Read2(); var s = Array.ConvertAll(new bool[p], _ => Console.ReadLine()); var ps = Array.ConvertAll(new bool[p], _ => Read2L()); var qs = Array.ConvertAll(new bool[q], _ => Read2L()); var sv = p + q; var ev = sv + 1; var mf = new MinCostFlow(ev + 1); for (int i = 0; i < p; ++i) { mf.AddEdge(sv, i, 1, 0); } for (int j = 0; j < q; ++j) { mf.AddEdge(p + j, ev, 1, 0); } for (int i = 0; i < p; ++i) { var pa = ps[i].a - ps[i].b; for (int j = 0; j < q; ++j) { var qa = qs[j].a - qs[j].b; if (s[i][j] == '1' && pa + qa > 0) { mf.AddEdge(i, p + j, 1, -pa - qa); } } } var r0 = ps.Sum(_ => _.b) + qs.Sum(_ => _.b); var r = mf.GetMinCostForRange(sv, ev, Math.Min(p, q)); if (r == long.MaxValue) { r = 0; } return(r0 - r); }
private static void SolveMinCostFlow() { Console.WriteLine("Min Cost Flow Problem"); int numSources = 4; int numTargets = 4; int[,] costs = { {90, 75, 75, 80}, {35, 85, 55, 65}, {125, 95, 90, 105}, {45, 110, 95, 115} }; int expectedCost = 275; MinCostFlow minCostFlow = new MinCostFlow(); for (int source = 0; source < numSources; ++source) { for (int target = 0; target < numTargets; ++target) { minCostFlow.AddArcWithCapacityAndUnitCost( source, /*target=*/numSources + target, /*capacity=*/1, /*flow unit cost=*/costs[source, target]); } } for (int source = 0; source < numSources; ++source) { minCostFlow.SetNodeSupply(source, 1); } for (int target = 0; target < numTargets; ++target) { minCostFlow.SetNodeSupply(numSources + target, -1); } Console.WriteLine("Solving min cost flow with " + numSources + " sources, and " + numTargets + " targets."); int solveStatus = minCostFlow.Solve(); if (solveStatus == MinCostFlow.OPTIMAL) { Console.WriteLine("total computed flow cost = " + minCostFlow.OptimalCost() + ", expected = " + expectedCost); } else { Console.WriteLine("Solving the min cost flow problem failed." + " Solver status: " + solveStatus); } }
static object Solve() { var(n, c) = Read2(); var a = Read(); var sv = 2 * n; var ev = sv + 1; var mf = new MinCostFlow(ev + 1); for (int i = 0; i < n; ++i) { mf.AddEdge(sv, i, 1, c); mf.AddEdge(n + i, ev, 1, 0); mf.AddEdge(i, n + i, 1, -max); for (int j = i + 1; j < n; j++) { mf.AddEdge(n + i, j, 1, Math.Abs(a[i] - a[j])); } } return(mf.GetMinCostForRange(sv, ev, n) + n * max); }
public MinCostFlow SolveMinCostFlow() { // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Add each arc. for (int i = 0; i < numArcs; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < numNodes; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); } // Find the min cost flow. int solveStatus = (int)minCostFlow.SolveMaxFlowWithMinCost(); if (solveStatus == (int)MinCostFlow.Status.OPTIMAL) { //PrintNetworkFlowSolution(minCostFlow); return(minCostFlow); } else { Console.WriteLine("Solving the min cost flow problem failed. Solver status: " + solveStatus); return(null); } }
static void Main() { // [START data] // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. For instance, the arc from node 0 to node 1 has a // capacity of 15. // Problem taken From Taha's 'Introduction to Operations Research', // example 6.4-2. int[] startNodes = { 0, 0, 1, 1, 1, 2, 2, 3, 4 }; int[] endNodes = { 1, 2, 2, 3, 4, 3, 4, 4, 2 }; int[] capacities = { 15, 8, 20, 4, 10, 15, 4, 20, 5 }; int[] unitCosts = { 4, 4, 2, 2, 6, 1, 3, 2, 3 }; // Define an array of supplies at each node. int[] supplies = { 20, 0, 0, -5, -15 }; // [END data] // [START constraints] // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); } // [END constraints] // [START solve] // Find the min cost flow. MinCostFlow.Status solveStatus = minCostFlow.Solve(); // [END solve] // [START print_solution] if (solveStatus == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Minimum cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); Console.WriteLine(" Edge Flow / Capacity Cost"); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { long cost = minCostFlow.Flow(i) * minCostFlow.UnitCost(i); Console.WriteLine(minCostFlow.Tail(i) + " -> " + minCostFlow.Head(i) + " " + string.Format("{0,3}", minCostFlow.Flow(i)) + " / " + string.Format("{0,3}", minCostFlow.Capacity(i)) + " " + string.Format("{0,3}", cost)); } } else { Console.WriteLine("Solving the min cost flow problem failed. Solver status: " + solveStatus); } // [END print_solution] }
static void Main() { // [START solver] // Instantiate a SimpleMinCostFlow solver. MinCostFlow minCostFlow = new MinCostFlow(); // [END solver] // [START data] // Define the directed graph for the flow. int[] teamA = { 1, 3, 5 }; int[] teamB = { 2, 4, 6 }; // Define four parallel arrays: sources, destinations, capacities, and unit costs // between each pair. int[] startNodes = { 0, 0, 11, 11, 11, 12, 12, 12, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 9, 10 }; int[] endNodes = { 11, 12, 1, 3, 5, 2, 4, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 13, 13, 13, 13 }; int[] capacities = { 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; int[] unitCosts = { 0, 0, 0, 0, 0, 0, 0, 0, 90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115, 60, 105, 80, 75, 45, 65, 110, 95, 0, 0, 0, 0 }; int source = 0; int sink = 13; // Define an array of supplies at each node. int[] supplies = { 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -4 }; // [END data] // [START constraints] // Add each arc. for (int i = 0; i < startNodes.Length; ++i) { int arc = minCostFlow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], unitCosts[i]); if (arc != i) { throw new Exception("Internal error"); } } // Add node supplies. for (int i = 0; i < supplies.Length; ++i) { minCostFlow.SetNodeSupply(i, supplies[i]); } // [END constraints] // [START solve] // Find the min cost flow. MinCostFlow.Status status = minCostFlow.Solve(); // [END solve] // [START print_solution] if (status == MinCostFlow.Status.OPTIMAL) { Console.WriteLine("Total cost: " + minCostFlow.OptimalCost()); Console.WriteLine(""); for (int i = 0; i < minCostFlow.NumArcs(); ++i) { // Can ignore arcs leading out of source or into sink. if (minCostFlow.Tail(i) != 0 && minCostFlow.Tail(i) != 11 && minCostFlow.Tail(i) != 12 && minCostFlow.Head(i) != 13) { // Arcs in the solution have a flow value of 1. Their start and end nodes // give an assignment of worker to task. if (minCostFlow.Flow(i) > 0) { Console.WriteLine("Worker " + minCostFlow.Tail(i) + " assigned to task " + minCostFlow.Head(i) + " Cost: " + minCostFlow.UnitCost(i)); } } } } else { Console.WriteLine("Solving the min cost flow problem failed."); Console.WriteLine("Solver status: " + status); } // [END print_solution] }
public List <TimedMove>[] GetCFMAMSolution(MinCostFlow mcmfSolution, long mcmfTime, bool printPath = false) { Stack <NFReducerNode>[] paths = new Stack <NFReducerNode> [startPositions.Length]; Stack <NFReducerNode[]>[] nodesForEachTime = new Stack <NFReducerNode[]> [this.T + 1]; for (int i = 0; i < nodesForEachTime.Length; i++) { nodesForEachTime[i] = new Stack <NFReducerNode[]>(); } // Sorting each move to it's time for (int i = 0; i < outputProblem.numArcs; i++) { long cost = mcmfSolution.Flow(i) * mcmfSolution.UnitCost(i); if (cost != 0) { NFReducerNode fromNode = GetNode(mcmfSolution.Tail(i)); NFReducerNode toNode = GetNode(mcmfSolution.Head(i)); if (T - fromNode.nodeTime == 0) { NFReducerNode[] nodesStartArray = { null, fromNode }; nodesForEachTime[0].Push(nodesStartArray); } NFReducerNode[] nodesArray = { fromNode, toNode }; nodesForEachTime[T - toNode.nodeTime].Push(nodesArray); } } // Inserting start nodes to each agent path int startNodesCounter = 0; foreach (NFReducerNode[] startNode in nodesForEachTime[0]) { paths[startNodesCounter] = new Stack <NFReducerNode>(); paths[startNodesCounter].Push(startNode[1]); startNodesCounter++; } // Searching agents that started on the meeting points for (int i = 0; i < paths.Length; i++) { if (paths[i] == null) { if (isAgentStartedOnGoalNode()) { paths[i] = new Stack <NFReducerNode>(); paths[i].Push(new NFReducerNode(0, goalState.x, goalState.y)); } else { paths = paths.Where(p => p != null).ToArray(); } break; } } // Adding each node of each agent to his path for (int i = 1; i < nodesForEachTime.Length; i++) { while (nodesForEachTime[i].Count != 0) { NFReducerNode[] move = nodesForEachTime[i].Pop(); for (int j = 0; j < paths.Length; j++) { NFReducerNode lastNode = paths[j].Peek(); if (lastNode.x == move[0].x && lastNode.y == move[0].y && lastNode.nodeTime == move[0].nodeTime) { paths[j].Push(move[1]); break; } } } } List <TimedMove>[] agentPaths = new List <TimedMove> [startPositions.Length]; for (int i = 0; i < agentPaths.Length; i++) { agentPaths[i] = new List <TimedMove>(); } for (int i = 0; i < paths.Length; i++) { int pathLength = paths[i].Count; while (paths[i].Count != 0) { int nodeTime = pathLength - paths[i].Count; NFReducerNode node = paths[i].Pop(); agentPaths[i].Insert(0, new TimedMove(node.x, node.y, Move.Direction.NO_DIRECTION, nodeTime)); } } return(agentPaths); }