/// <summary> /// Run example /// </summary> /// <seealso cref="http://en.wikipedia.org/wiki/Random_number_generation">Random number generation</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Linear_congruential_generator">Linear congruential generator</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Mersenne_twister">Mersenne twister</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Lagged_Fibonacci_generator">Lagged Fibonacci generator</seealso> /// <seealso cref="http://en.wikipedia.org/wiki/Xorshift">Xorshift</seealso> public void Run() { // All RNG classes in MathNet have next counstructors: // - RNG(int seed, bool threadSafe): initializes a new instance with specific seed value and thread safe property // - RNG(int seed): iуууnitializes a new instance with specific seed value. Thread safe property is set to Control.ThreadSafeRandomNumberGenerators // - RNG(bool threadSafe) : initializes a new instance with the seed value set to DateTime.Now.Ticks and specific thread safe property // - RNG(bool threadSafe) : initializes a new instance with the seed value set to DateTime.Now.Ticks and thread safe property set to Control.ThreadSafeRandomNumberGenerators // All RNG classes in MathNet have next methods to produce random values: // - double[] NextDouble(int n): returns an "n"-size array of uniformly distributed random doubles in the interval [0.0,1.0]; // - int Next(): returns a nonnegative random number; // - int Next(int maxValue): returns a random number less then a specified maximum; // - int Next(int minValue, int maxValue): returns a random number within a specified range; // - void NextBytes(byte[] buffer): fills the elements of a specified array of bytes with random numbers; // All RNG classes in MathNet have next extension methods to produce random values: // - long NextInt64(): returns a nonnegative random number less than "Int64.MaxValue"; // - int NextFullRangeInt32(): returns a random number of the full Int32 range; // - long NextFullRangeInt64(): returns a random number of the full Int64 range; // - decimal NextDecimal(): returns a nonnegative decimal floating point random number less than 1.0; // 1. Multiplicative congruential generator using a modulus of 2^31-1 and a multiplier of 1132489760 var mcg31M1 = new Mcg31m1(1); Console.WriteLine(@"1. Generate 10 random double values using Multiplicative congruential generator with a modulus of 2^31-1 and a multiplier of 1132489760"); var randomValues = mcg31M1.NextDouble(10); for (var i = 0; i < randomValues.Length; i++) { Console.Write(randomValues[i].ToString("N") + @" "); } Console.WriteLine(); Console.WriteLine(); // 2. Multiplicative congruential generator using a modulus of 2^59 and a multiplier of 13^13 var mcg59 = new Mcg59(1); Console.WriteLine(@"2. Generate 10 random integer values using Multiplicative congruential generator with a modulus of 2^59 and a multiplier of 13^13"); for (var i = 0; i < 10; i++) { Console.Write(mcg59.Next() + @" "); } Console.WriteLine(); Console.WriteLine(); // 3. Random number generator using Mersenne Twister 19937 algorithm var mersenneTwister = new MersenneTwister(1); Console.WriteLine(@"3. Generate 10 random integer values less then 100 using Mersenne Twister 19937 algorithm"); for (var i = 0; i < 10; i++) { Console.Write(mersenneTwister.Next(100) + @" "); } Console.WriteLine(); Console.WriteLine(); // 4. Multiple recursive generator with 2 components of order 3 var mrg32K3A = new Mrg32k3a(1); Console.WriteLine(@"4. Generate 10 random integer values in range [50;100] using multiple recursive generator with 2 components of order 3"); for (var i = 0; i < 10; i++) { Console.Write(mrg32K3A.Next(50, 100) + @" "); } Console.WriteLine(); Console.WriteLine(); // 5. Parallel Additive Lagged Fibonacci pseudo-random number generator var palf = new Palf(1); Console.WriteLine(@"5. Generate 10 random bytes using Parallel Additive Lagged Fibonacci pseudo-random number generator"); var bytes = new byte[10]; palf.NextBytes(bytes); for (var i = 0; i < bytes.Length; i++) { Console.Write(bytes[i] + @" "); } Console.WriteLine(); Console.WriteLine(); // 6. A random number generator based on the "System.Security.Cryptography.RandomNumberGenerator" class in the .NET library var systemCryptoRandomNumberGenerator = new SystemCryptoRandomNumberGenerator(); Console.WriteLine(@"6. Generate 10 random decimal values using RNG based on the 'System.Security.Cryptography.RandomNumberGenerator'"); for (var i = 0; i < 10; i++) { Console.Write(systemCryptoRandomNumberGenerator.NextDecimal().ToString("N") + @" "); } Console.WriteLine(); Console.WriteLine(); // 7. Wichmann-Hill’s 1982 combined multiplicative congruential generator var rngWh1982 = new WH1982(); Console.WriteLine(@"7. Generate 10 random full Int32 range values using Wichmann-Hill’s 1982 combined multiplicative congruential generator"); for (var i = 0; i < 10; i++) { Console.Write(rngWh1982.NextFullRangeInt32() + @" "); } Console.WriteLine(); Console.WriteLine(); // 8. Wichmann-Hill’s 2006 combined multiplicative congruential generator. var rngWh2006 = new WH2006(); Console.WriteLine(@"8. Generate 10 random full Int64 range values using Wichmann-Hill’s 2006 combined multiplicative congruential generator"); for (var i = 0; i < 10; i++) { Console.Write(rngWh2006.NextFullRangeInt32() + @" "); } Console.WriteLine(); Console.WriteLine(); // 9. Multiply-with-carry Xorshift pseudo random number generator var xorshift = new Xorshift(); Console.WriteLine(@"9. Generate 10 random nonnegative values less than Int64.MaxValue using Multiply-with-carry Xorshift pseudo random number generator"); for (var i = 0; i < 10; i++) { Console.Write(xorshift.NextInt64() + @" "); } Console.WriteLine(); }
public List <int> GetRandomGenes() { Restart: Schedule = new Scheduler(); Schedule.InitObjects(); bool isFeasible; int counter; int randJobIndex; // If IsAllMachinesUtilized, randomly assigned one job to each compulsary machine if (Settings.IsAllMachinesUtilized) { foreach (Machine machine in Schedule.Machines.Where(mc => !mc.IsThirdParty || mc.IsCompulsary)) { randJobIndex = Random.Next(Schedule.Jobs.Count); while (Schedule.Jobs[randJobIndex].AssignedMachine != null) { randJobIndex = Random.Next(Schedule.Jobs.Count); } isFeasible = false; counter = 0; while (!isFeasible) { if (Schedule.IsFeasible(machine, Schedule.Jobs[randJobIndex])) { Schedule.Assign(machine, Schedule.Jobs[randJobIndex]); isFeasible = true; } else { counter++; if (counter > 20) { //Console.WriteLine(counter); goto Restart; } } } } } int numRemainingJobs = Schedule.Jobs.Where(x => x.AssignedMachine == null).Count(); for (int j = 0; j < numRemainingJobs; j++) { randJobIndex = Random.Next(Schedule.Jobs.Count); while (Schedule.Jobs[randJobIndex].AssignedMachine != null) { randJobIndex = Random.Next(Schedule.Jobs.Count); } if (Schedule.Jobs[randJobIndex].AssignedMachine == null) { isFeasible = false; counter = 0; int selectedMachine; List <double> randSelectionColumn = new List <double>(); for (int i = 0; i < Schedule.Machines.Count; i++) { randSelectionColumn.Add(Schedule.CalculateIncrementalFitness(Schedule.Machines[i], Schedule.Jobs[randJobIndex])); } while (!isFeasible) { selectedMachine = ProbabilityMachineSelection(randSelectionColumn); if (Schedule.IsFeasible(Schedule.Machines[selectedMachine], Schedule.Jobs[randJobIndex])) { Schedule.Assign(Schedule.Machines[selectedMachine], Schedule.Jobs[randJobIndex]); //Console.WriteLine("job.Index: {0}", Schedule.Jobs[randJobIndex].Index); //Console.WriteLine("machine.Index: {0}", Schedule.Machines[selectedMachine].Index); //Console.WriteLine("machine.Name: {0}", Schedule.Machines[selectedMachine].Name); //Console.WriteLine("selectedMachine: " + selectedMachine); //Console.WriteLine(); isFeasible = true; } else { counter++; randSelectionColumn[selectedMachine] = float.MaxValue; } } } } Schedule.ScheduleToGenes(); Genes = Schedule.Genes.ToList(); //Console.WriteLine("Schedule.IsOverallFeasible: {0}", Schedule.IsOverallFeasible()); //Console.WriteLine("Genes: {0}", GetReadableGenes()); //Console.WriteLine("========================"); return(Schedule.Genes); }