예제 #1
0
    public bool descriptorsORB_Old(Mat RGB, Mat cameraFeed, string targetName)//找出特徵的顏色方法三(可運行但效率不佳放棄)
    {
        if (RGB == null)
        {
            Debug.Log("RGB Mat is Null");
            return(false);
        }
        //將傳入的RGB存入Src
        Mat SrcMat = new Mat();

        RGB.copyTo(SrcMat);
        //比對樣本
        Texture2D imgTexture = Resources.Load(targetName) as Texture2D;
        //  Texture2D imgTexture2 = Resources.Load("lenaK") as Texture2D;

        //Texture2D轉Mat
        Mat img1Mat = new Mat(imgTexture.height, imgTexture.width, CvType.CV_8UC3);

        Utils.texture2DToMat(imgTexture, img1Mat);

        //創建 ORB的特徵點裝置
        FeatureDetector     detector  = FeatureDetector.create(FeatureDetector.ORB);
        DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.ORB);
        //產生存放特徵點Mat
        MatOfKeyPoint keypoints1     = new MatOfKeyPoint();
        Mat           descriptors1   = new Mat();
        MatOfKeyPoint keypointsSrc   = new MatOfKeyPoint();
        Mat           descriptorsSrc = new Mat();

        //找特徵點圖1
        detector.detect(img1Mat, keypoints1);
        extractor.compute(img1Mat, keypoints1, descriptors1);
        //找特徵點圖Src
        detector.detect(SrcMat, keypointsSrc);
        extractor.compute(SrcMat, keypointsSrc, descriptorsSrc);

        DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT);
        MatOfDMatch       matches = new MatOfDMatch();

        matcher.match(descriptors1, descriptorsSrc, matches);
        DMatch[] arrayDmatch = matches.toArray();

        for (int i = arrayDmatch.Length - 1; i >= 0; i--)
        {
            //   Debug.Log("match " + i + ": " + arrayDmatch[i].distance);
        }
        //做篩選
        double max_dist = 0;
        double min_dist = 100;
        //-- Quick calculation of max and min distances between keypoints
        double dist = new double();

        for (int i = 0; i < matches.rows(); i++)
        {
            dist = arrayDmatch[i].distance;
            if (dist < min_dist)
            {
                min_dist = dist;
            }
            if (dist > max_dist)
            {
                max_dist = dist;
            }
        }
        Debug.Log("Max dist :" + max_dist);
        Debug.Log("Min dist :" + min_dist);
        //只畫好的點

        List <DMatch> matchesGoodList = new List <DMatch>();

        for (int i = 0; i < matches.rows(); i++)
        {
            //if (arrayDmatch[i].distance < RateDist.value * min_dist)
            //{
            //    //Debug.Log("match " + i + ": " + arrayDmatch[i].distance);
            //    matchesGoodList.Add(arrayDmatch[i]);
            //}
        }
        MatOfDMatch matchesGood = new MatOfDMatch();

        matchesGood.fromList(matchesGoodList);

        //Draw Keypoints
        Features2d.drawKeypoints(SrcMat, keypointsSrc, SrcMat);

        //做輸出的轉換予宣告

        Mat resultImg = new Mat();
        // Features2d.drawMatches(img1Mat, keypoints1, SrcMat, keypointsSrc, matchesGood, resultImg);

        List <Point> P1 = new List <Point>();
        // List<Point> P2 = new List<Point>();
        List <Point> pSrc = new List <Point>();

        Debug.Log("MatchCount" + matchesGoodList.Count);
        for (int i = 0; i < matchesGoodList.Count; i++)
        {
            P1.Add(new Point(keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.x, keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.y));
            pSrc.Add(new Point(keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.x, keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.y));
            //Debug.Log("ID = " + matchesGoodList[i].queryIdx );
            //Debug.Log("x,y =" + (int)keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.x + "," + (int)keypoints1.toArray()[matchesGoodList[i].queryIdx].pt.y);
            //Debug.Log("x,y =" + (int)keypoints2.toArray()[matchesGoodList[i].trainIdx].pt.x + "," + (int)keypoints2.toArray()[matchesGoodList[i].trainIdx].pt.y);
        }

        MatOfPoint2f p2fTarget = new MatOfPoint2f(P1.ToArray());
        MatOfPoint2f p2fSrc    = new MatOfPoint2f(pSrc.ToArray());

        Mat          matrixH         = Calib3d.findHomography(p2fTarget, p2fSrc, Calib3d.RANSAC, 3);
        List <Point> srcPointCorners = new List <Point>();

        srcPointCorners.Add(new Point(0, 0));
        srcPointCorners.Add(new Point(img1Mat.width(), 0));
        srcPointCorners.Add(new Point(img1Mat.width(), img1Mat.height()));
        srcPointCorners.Add(new Point(0, img1Mat.height()));

        Mat          originalRect       = Converters.vector_Point2f_to_Mat(srcPointCorners);
        List <Point> srcPointCornersEnd = new List <Point>();

        srcPointCornersEnd.Add(new Point(0, img1Mat.height()));
        srcPointCornersEnd.Add(new Point(0, 0));
        srcPointCornersEnd.Add(new Point(img1Mat.width(), 0));
        srcPointCornersEnd.Add(new Point(img1Mat.width(), img1Mat.height()));

        Mat changeRect = Converters.vector_Point2f_to_Mat(srcPointCornersEnd);

        Core.perspectiveTransform(originalRect, changeRect, matrixH);
        List <Point> srcPointCornersSave = new List <Point>();

        Converters.Mat_to_vector_Point(changeRect, srcPointCornersSave);

        if ((srcPointCornersSave[2].x - srcPointCornersSave[0].x) < 5 || (srcPointCornersSave[2].y - srcPointCornersSave[0].y) < 5)
        {
            Debug.Log("Match Out Put image is to small");
            SrcMat.copyTo(cameraFeed);
            SrcMat.release();
            Imgproc.putText(cameraFeed, "X-S", new Point(10, 50), 0, 1, new Scalar(255, 255, 255), 2);
            return(false);
        }
        //    Features2d.drawMatches(img1Mat, keypoints1, SrcMat, keypointsSrc, matchesGood, resultImg);
        Imgproc.line(SrcMat, srcPointCornersSave[0], srcPointCornersSave[1], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[1], srcPointCornersSave[2], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[2], srcPointCornersSave[3], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[3], srcPointCornersSave[0], new Scalar(255, 0, 0), 3);

        SrcMat.copyTo(cameraFeed);
        keypoints1.release();
        img1Mat.release();
        SrcMat.release();
        return(true);
    }
예제 #2
0
//============================================================
//=================以下為沒有再使用的函式=====================
//============================================================

    //找出特徵的顏色方法三(ORB特徵點比對)
    public bool descriptorsORB(Mat RGB, Mat cameraFeed, string targetName)
    {
        if (RGB == null)
        {
            Debug.Log("RGB Mat is Null");
            return(false);
        }
        //將傳入的RGB存入Src
        Mat SrcMat = new Mat();

        RGB.copyTo(SrcMat);
        //比對樣本載入
        Texture2D imgTexture = Resources.Load(targetName) as Texture2D;

        //Texture2D轉Mat
        Mat targetMat = new Mat(imgTexture.height, imgTexture.width, CvType.CV_8UC3);

        Utils.texture2DToMat(imgTexture, targetMat);

        //創建 ORB的特徵點裝置
        FeatureDetector     detector  = FeatureDetector.create(FeatureDetector.ORB);
        DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.ORB);

        //產生存放特徵點Mat
        MatOfKeyPoint keypointsTarget   = new MatOfKeyPoint();
        Mat           descriptorsTarget = new Mat();
        MatOfKeyPoint keypointsSrc      = new MatOfKeyPoint();
        Mat           descriptorsSrc    = new Mat();

        //找特徵點圖Target
        detector.detect(targetMat, keypointsTarget);
        extractor.compute(targetMat, keypointsTarget, descriptorsTarget);

        //找特徵點圖Src
        detector.detect(SrcMat, keypointsSrc);
        extractor.compute(SrcMat, keypointsSrc, descriptorsSrc);

        //創建特徵點比對物件
        DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMINGLUT);
        MatOfDMatch       matches = new MatOfDMatch();

        //丟入兩影像的特徵點
        matcher.match(descriptorsTarget, descriptorsSrc, matches);
        DMatch[] arrayDmatch = matches.toArray();

        //做篩選
        double max_dist = 0;
        double min_dist = 100;
        //-- Quick calculation of max and min distances between keypoints
        double dist = new double();

        for (int i = 0; i < matches.rows(); i++)
        {
            dist = arrayDmatch[i].distance;
            if (dist < min_dist)
            {
                min_dist = dist;
            }
            if (dist > max_dist)
            {
                max_dist = dist;
            }
        }
        Debug.Log("Max dist :" + max_dist);
        Debug.Log("Min dist :" + min_dist);

        List <DMatch> matchesGoodList = new List <DMatch>();

        MatOfDMatch matchesGood = new MatOfDMatch();

        matchesGood.fromList(matchesGoodList);

        //Draw Keypoints
        Features2d.drawKeypoints(SrcMat, keypointsSrc, SrcMat);

        List <Point> pTarget = new List <Point>();
        List <Point> pSrc    = new List <Point>();

        Debug.Log("MatchCount" + matchesGoodList.Count);
        for (int i = 0; i < matchesGoodList.Count; i++)
        {
            pTarget.Add(new Point(keypointsTarget.toArray()[matchesGoodList[i].queryIdx].pt.x, keypointsTarget.toArray()[matchesGoodList[i].queryIdx].pt.y));
            pSrc.Add(new Point(keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.x, keypointsSrc.toArray()[matchesGoodList[i].trainIdx].pt.y));
        }

        MatOfPoint2f p2fTarget = new MatOfPoint2f(pTarget.ToArray());
        MatOfPoint2f p2fSrc    = new MatOfPoint2f(pSrc.ToArray());

        Mat matrixH = Calib3d.findHomography(p2fTarget, p2fSrc, Calib3d.RANSAC, 3);

        List <Point> srcPointCorners = new List <Point>();

        srcPointCorners.Add(new Point(0, 0));
        srcPointCorners.Add(new Point(targetMat.width(), 0));
        srcPointCorners.Add(new Point(targetMat.width(), targetMat.height()));
        srcPointCorners.Add(new Point(0, targetMat.height()));
        Mat originalRect = Converters.vector_Point2f_to_Mat(srcPointCorners);

        List <Point> srcPointCornersEnd = new List <Point>();

        srcPointCornersEnd.Add(new Point(0, targetMat.height()));
        srcPointCornersEnd.Add(new Point(0, 0));
        srcPointCornersEnd.Add(new Point(targetMat.width(), 0));
        srcPointCornersEnd.Add(new Point(targetMat.width(), targetMat.height()));
        Mat changeRect = Converters.vector_Point2f_to_Mat(srcPointCornersEnd);

        Core.perspectiveTransform(originalRect, changeRect, matrixH);
        List <Point> srcPointCornersSave = new List <Point>();

        Converters.Mat_to_vector_Point(changeRect, srcPointCornersSave);

        if ((srcPointCornersSave[2].x - srcPointCornersSave[0].x) < 5 || (srcPointCornersSave[2].y - srcPointCornersSave[0].y) < 5)
        {
            Debug.Log("Match Out Put image is to small");
            SrcMat.copyTo(cameraFeed);
            SrcMat.release();
            Imgproc.putText(cameraFeed, targetName, srcPointCornersSave[0], 0, 1, new Scalar(255, 255, 255), 2);
            return(false);
        }
        //畫出框框
        Imgproc.line(SrcMat, srcPointCornersSave[0], srcPointCornersSave[1], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[1], srcPointCornersSave[2], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[2], srcPointCornersSave[3], new Scalar(255, 0, 0), 3);
        Imgproc.line(SrcMat, srcPointCornersSave[3], srcPointCornersSave[0], new Scalar(255, 0, 0), 3);
        //畫中心
        Point middlePoint = new Point((srcPointCornersSave[0].x + srcPointCornersSave[2].x) / 2, (srcPointCornersSave[0].y + srcPointCornersSave[2].y) / 2);

        Imgproc.line(SrcMat, middlePoint, middlePoint, new Scalar(0, 0, 255), 10);


        SrcMat.copyTo(cameraFeed);
        keypointsTarget.release();
        targetMat.release();
        SrcMat.release();
        return(true);
    }
        public void UpdateAttitude(Mat mat)
        {
            int LandmarksCount = 0;
            int MatchsCount    = 0;

            using (MatOfKeyPoint keypoints = new MatOfKeyPoint())
                using (Mat descriptors = new Mat())
                {
                    detector.detect(mat, keypoints);
                    extractor.compute(mat, keypoints, descriptors);

                    var trainPoints = keypoints.toArray();

                    List <List <Vector3> > newLandmarks = new List <List <Vector3> >();
                    foreach (var keyPoint in trainPoints)
                    {
                        var keyVectorL = new List <Vector3>();
                        keyVectorL.Add(ARCameraManager.Instance.ToVector(keyPoint));
                        newLandmarks.Add(keyVectorL);
                        LandmarksCount++;
                    }
                    if (Landmarks.Count > 0)
                    {
                        List <Vector3> FromVectorL = new List <Vector3>();
                        List <Vector3> ToVectorL   = new List <Vector3>();
                        using (MatOfDMatch matches = new MatOfDMatch())
                            using (MatOfDMatch crossMatches = new MatOfDMatch())
                            {
                                matcher.match(MapDescriptors, descriptors, matches);
                                matcher.match(descriptors, MapDescriptors, crossMatches);
                                var matchL      = matches.toArray();
                                var crossMatchL = crossMatches.toArray();
                                int i           = 0;
                                foreach (DMatch match in matchL)
                                {
                                    bool flag = false;
                                    foreach (DMatch crossMatch in crossMatchL)
                                    {
                                        if (match.trainIdx == crossMatch.queryIdx && match.queryIdx == crossMatch.trainIdx)
                                        {
                                            flag = true;
                                            MatchsCount++;
                                        }
                                    }
                                    if (match.distance > MatchFilter)
                                    {
                                        flag = false;
                                    }
                                    if (flag)
                                    {
                                        var trainVectors = newLandmarks[match.trainIdx];
                                        var queryVectors = Landmarks[match.queryIdx];
                                        FromVectorL.Add(trainVectors[0]);
                                        //ToVectorL.Add(queryVectors.ToArray().Median()); START
                                        double[] queryPointsX = new double[queryVectors.Count];
                                        double[] queryPointsY = new double[queryVectors.Count];
                                        for (int j = 0; j < queryVectors.Count; j++)
                                        {
                                            var queryPoint = ARCameraManager.Instance.toPoint(queryVectors[j], Attitude);
                                            queryPointsX[j] = queryPoint.x;
                                            queryPointsY[j] = queryPoint.y;
                                        }
                                        ToVectorL.Add(Attitude * ARCameraManager.Instance.ToVector(new Point(queryPointsX.Median(), queryPointsY.Median())));
                                        //ToVectorL.Add(queryVectors.ToArray().Median()); END
                                        newLandmarks[match.trainIdx].AddRange(queryVectors.ToArray());
                                    }
                                    i++;
                                }
                                Quaternion newAttitude;
                                float      error = ARCameraManager.Instance.LMedS(FromVectorL, ToVectorL, out newAttitude);
                                _matchTestEvent.Invoke(FromVectorL.Count);
                                FromVectorL.Clear();
                                ToVectorL.Clear();
                                if (error > 0 && LMedSFilter > error)
                                {
                                    Attitude = newAttitude;
                                    _trackingTestEvent.Invoke(Attitude);
                                    //ARCameraManager.Instance.UpdateCameraPosture(Attitude);
                                    if (debugMode)
                                    {
                                        Debug.Log(string.Format("Attitude = {0}\nError = {1}", Attitude, error));
                                    }
                                }
                                foreach (var newLandmark in newLandmarks)
                                {
                                    newLandmark[0] = Attitude * newLandmark[0];
                                }
                            }
                    }
                    MapDescriptors.Dispose();
                    Landmarks.Clear();
                    Landmarks      = newLandmarks;
                    MapDescriptors = descriptors.clone();
                }
            float now = Time.time;

            if (debugMode)
            {
                Debug.Log(string.Format("time : {0} Landmarks : {1}, Matchs : {2}.", 1 / (Time.time - startime), LandmarksCount, MatchsCount));
            }
            startime = Time.time;
        }
        // Update is called once per frame
        public void UpdateScreen(Mat mat)
        {
            using (MatOfKeyPoint keypoints = new MatOfKeyPoint())
                using (Mat descriptors = new Mat())
                {
                    detector.detect(mat, keypoints);
                    extractor.compute(mat, keypoints, descriptors);

                    int matchCount  = 0;
                    var trainPoints = keypoints.toArray();

                    var newBuffPointL = new List <List <Point> >();
                    var newBuffColorL = new List <Scalar>();
                    foreach (var keyPoint in trainPoints)
                    {
                        var points = new List <Point>();
                        points.Add(keyPoint.pt);
                        newBuffPointL.Add(points);

                        Scalar color = new Scalar(255, 225, 225, 100);
                        var    x     = Random.Range(0, 256);
                        switch (Random.Range(0, 6))
                        {
                        case 0:
                            color = new Scalar(255, 0, x, 100);
                            break;

                        case 1:
                            color = new Scalar(0, 255, x, 100);
                            break;

                        case 2:
                            color = new Scalar(0, x, 255, 100);
                            break;

                        case 3:
                            color = new Scalar(225, x, 0, 100);
                            break;

                        case 4:
                            color = new Scalar(x, 0, 255, 100);
                            break;

                        case 5:
                            color = new Scalar(x, 255, 0, 100);
                            break;
                        }
                        newBuffColorL.Add(color);
                    }
                    if (buffPointL.Count > 0)
                    {
                        using (MatOfDMatch matches = new MatOfDMatch())
                            using (MatOfDMatch crossMatches = new MatOfDMatch())
                            {
                                matcher.match(buffDescriptors, descriptors, matches);
                                matcher.match(descriptors, buffDescriptors, crossMatches);
                                var matchL      = matches.toArray();
                                var crossMatchL = crossMatches.toArray();
                                int i           = 0;
                                foreach (DMatch match in matchL)
                                {
                                    bool flag = false;
                                    foreach (DMatch crossMatch in crossMatchL)
                                    {
                                        if (match.trainIdx == crossMatch.queryIdx && match.queryIdx == crossMatch.trainIdx)
                                        {
                                            flag = true;
                                        }
                                    }
                                    if (match.distance > filter)
                                    {
                                        flag = false;
                                    }
                                    if (flag)
                                    {
                                        var trainPoint  = trainPoints[match.trainIdx];
                                        var queryPoints = buffPointL[match.queryIdx];
                                        int a           = (int)trainPoint.pt.x / mat.width() * 250;
                                        int b           = (int)trainPoint.pt.y / mat.height() * 250;

                                        Scalar color = buffColorL[match.queryIdx];
                                        Imgproc.circle(mat, trainPoint.pt, 4, color, -1);
                                        Point startPoint = trainPoint.pt;
                                        foreach (Point queryPoint in queryPoints)
                                        {
                                            Imgproc.line(mat, startPoint, queryPoint, color, 2);
                                            Imgproc.circle(mat, queryPoint, 4, color, -1);
                                            startPoint = queryPoint;
                                            newBuffPointL[match.trainIdx].Add(queryPoint);
                                        }
                                        newBuffColorL[match.trainIdx] = buffColorL[match.queryIdx];
                                        matchCount++;
                                    }
                                    i++;
                                }
                            }
                    }

                    buffDescriptors.Dispose();
                    buffPointL      = newBuffPointL;
                    buffColorL      = newBuffColorL;
                    buffDescriptors = descriptors.clone();
                    text            = string.Format("Matching Count : {0}.", matchCount);

                    DestroyImmediate(tex);
                    tex = new Texture2D(ARCameraManager.Instance.Width, ARCameraManager.Instance.Height);
                    OpenCVForUnity.Utils.matToTexture2D(mat, tex);
                    ARCameraManager.Instance.UpdateScreenTexture(tex);
                }
        }
예제 #5
0
        public void Tracking(Mat mat)
        {
            using (MatOfKeyPoint keypoints = new MatOfKeyPoint())
                using (Mat descriptors = new Mat())
                {
                    detector.detect(mat, keypoints);
                    extractor.compute(mat, keypoints, descriptors);

                    var trainPoints = keypoints.toArray();

                    List <List <Vector3> > newLandmarks   = new List <List <Vector3> >();
                    List <List <Mat> >     newDescriptors = new List <List <Mat> >();
                    for (int i = 0; i < trainPoints.Length; i++)
                    {
                        var keyVectorL = new List <Vector3>();
                        keyVectorL.Add(ARCameraManager.Instance.ToVector(trainPoints[i]));
                        var DescriptorL = new List <Mat>();
                        DescriptorL.Add(descriptors.clone().row(i));
                        newLandmarks.Add(keyVectorL);
                        newDescriptors.Add(DescriptorL);
                    }

                    List <Vector3> FromVectorL = new List <Vector3>();
                    List <Vector3> ToVectorL   = new List <Vector3>();
                    List <int>     FinalizingL = new List <int>();
                    bool           finLMedS    = false;

                    if (FinalizingLandmarks.Count > 0)
                    {
                        using (MatOfDMatch matchesFinal = new MatOfDMatch())
                            using (MatOfDMatch crossMatchesFinal = new MatOfDMatch())
                            {
                                matcher.match(FinalizingLandmarkDescriptors, descriptors, matchesFinal);
                                matcher.match(descriptors, FinalizingLandmarkDescriptors, crossMatchesFinal);
                                var matchLFinal      = matchesFinal.toArray();
                                var crossMatchLFinal = crossMatchesFinal.toArray();
                                int i = 0;
                                foreach (DMatch match in matchLFinal)
                                {
                                    bool flag = false;
                                    foreach (DMatch crossMatch in crossMatchLFinal)
                                    {
                                        if (match.trainIdx == crossMatch.queryIdx && match.queryIdx == crossMatch.trainIdx)
                                        {
                                            flag = true;
                                        }
                                    }
                                    if (match.distance > MatchFilter)
                                    {
                                        flag = false;
                                    }
                                    if (flag)
                                    {
                                        FromVectorL.Add(newLandmarks[match.trainIdx][0]);
                                        ToVectorL.Add(FinalizingLandmarks[match.queryIdx]);
                                        FinalizingL.Add(match.trainIdx);
                                        newLandmarks[match.trainIdx][0]   = FinalizingLandmarks[match.queryIdx];
                                        newDescriptors[match.trainIdx][0] = FinalizingLandmarkDescriptors.row(match.queryIdx);
                                    }
                                    i++;
                                }
                                Quaternion newAttitude;
                                float      error = ARCameraManager.Instance.LMedS(FromVectorL, ToVectorL, out newAttitude);
                                if (error > 0 && LMedSFilter > error)
                                {
                                    Attitude = newAttitude;
                                    _trackingEvent.Invoke(Attitude);
                                    _matchingEvent.Invoke(FromVectorL.Count);
                                    //ARCameraManager.Instance.UpdateCameraPosture(Attitude);
                                    Debug.Log(string.Format("Attitude = {0}\nError = {1}\nFinalizMatch = {2}\nAccuracy = {3}", Attitude, error, FinalizingL.Count, 100 * FinalizingL.Count / FromVectorL.Count));
                                    finLMedS = true;
                                }
                            }
                    }

                    if (ProvisioningLandmarks.Count > 0)
                    {
                        using (MatOfDMatch matches = new MatOfDMatch())
                            using (MatOfDMatch crossMatches = new MatOfDMatch())
                            {
                                Mat optimisationDescriptors = OptimisationDescriptors;
                                matcher.match(optimisationDescriptors, descriptors, matches);
                                matcher.match(descriptors, optimisationDescriptors, crossMatches);
                                var matchL      = matches.toArray();
                                var crossMatchL = crossMatches.toArray();
                                int i           = 0;
                                foreach (DMatch match in matchL)
                                {
                                    bool flag = false;
                                    foreach (DMatch crossMatch in crossMatchL)
                                    {
                                        if (match.trainIdx == crossMatch.queryIdx && match.queryIdx == crossMatch.trainIdx)
                                        {
                                            flag = true;
                                        }
                                    }
                                    if (match.distance > MatchFilter)
                                    {
                                        flag = false;
                                    }
                                    if (flag)
                                    {
                                        if (FinalizingL.IndexOf(match.trainIdx) < 0)
                                        {
                                            var     trainVectors = newLandmarks[match.trainIdx];
                                            var     queryVectors = ProvisioningLandmarks[match.queryIdx];
                                            Vector3 queryVector;
                                            int     filter = OptimisationLandmark(queryVectors, Attitude, out queryVector);
                                            if (filter > 0)
                                            {
                                                if ((filter > SufficientCount) && (matchL.Length * FinalizedPercentage < FinalizingL.Count || matchL.Length * FinalizedPercentage > FinalizingLandmarks.Count))
                                                {
                                                    FinalizingLandmarks.Add(queryVector);
                                                    if (FinalizingLandmarkDescriptors != null)
                                                    {
                                                        FinalizingLandmarkDescriptors.push_back(optimisationDescriptors.row(match.queryIdx));
                                                    }
                                                    else
                                                    {
                                                        FinalizingLandmarkDescriptors = optimisationDescriptors.row(match.queryIdx);
                                                    }

                                                    Debug.Log(string.Format("Finalizing :Landmark = {0}\nDescriptors = {1}\nCount ALL = {2}", queryVector, optimisationDescriptors.row(match.queryIdx).ToStringMat(), FinalizingLandmarks.Count));
                                                }
                                                else
                                                {
                                                    FromVectorL.Add(trainVectors[0]);
                                                    ToVectorL.Add(queryVector);
                                                    newLandmarks[match.trainIdx].AddRange(queryVectors.ToArray());
                                                    newDescriptors[match.trainIdx].AddRange(ProvisioningLandmarkDescriptors[match.queryIdx].ToArray());
                                                }
                                            }
                                        }
                                    }
                                    i++;
                                }
                            }
                    }

                    if (FromVectorL.Count == ToVectorL.Count && ToVectorL.Count > 0)
                    {
                        Quaternion newAttitude;
                        float      error = ARCameraManager.Instance.LMedS(FromVectorL, ToVectorL, out newAttitude);
                        if ((error > 0 && LMedSFilter > error) && (!finLMedS))
                        {
                            Attitude = newAttitude;
                            _trackingEvent.Invoke(Attitude);
                            //ARCameraManager.Instance.UpdateCameraPosture(Attitude);
                            Debug.Log(string.Format("Attitude = {0}\nError = {1}\nFinalizMatch = {2}\nAccuracy = {3}", Attitude, error, FinalizingL.Count, 100 * FinalizingL.Count / FromVectorL.Count));
                        }
                        for (int i = 0; i < newLandmarks.Count; i++)
                        {
                            if (FinalizingL.IndexOf(i) < 0)
                            {
                                newLandmarks[i][0] = Attitude * newLandmarks[i][0];
                            }
                        }
                    }
                    _matchingEvent.Invoke(FromVectorL.Count);
                    FromVectorL.Clear();
                    ToVectorL.Clear();
                    ProvisioningLandmarks.Clear();
                    ProvisioningLandmarks           = newLandmarks;
                    ProvisioningLandmarkDescriptors = newDescriptors;
                }
        }