예제 #1
0
        private void ListFragementStructure(GlycanStructure argStructure)
        {
            //dgDetail
            DataTable  dtDetail    = new DataTable();
            DataColumn dcID        = new DataColumn("ID", Type.GetType("System.Int32"));
            DataColumn dcMass      = new DataColumn("Mass", Type.GetType("System.Single"));
            DataColumn dcScore     = new DataColumn("Score", Type.GetType("System.Single"));
            DataColumn dcStructure = new DataColumn("Structure", typeof(Image));

            dtDetail.Columns.Add(dcID);
            dtDetail.Columns.Add(dcMass);
            dtDetail.Columns.Add(dcScore);
            dtDetail.Columns.Add(dcStructure);

            //dgDetail.DataSource = dtDetail;
            //dgDetail.Columns[0].Width = 30;
            //dgDetail.Columns[1].Width = 70;
            //dgDetail.Columns[2].Width = 50;
            //dgDetail.Columns[3].Width = 315;

            dtDetail.DefaultView.Sort = "Mass";
            int           idx        = 0;
            float         TotalScore = 0.0f;
            GlycansDrawer GDRaw;

            foreach (GlycanTreeNode frm in argStructure.TheoreticalFragment)
            {
                DataRow row = dtDetail.NewRow();
                row[0] = idx;
                float glycanmass = COL.GlycoLib.GlycanMass.GetGlycanMasswithCharge(frm.GlycanType, argStructure.Charge) + argStructure.Y1.Mass - GlycanMass.GetGlycanMasswithCharge(Glycan.Type.HexNAc, argStructure.Charge);

                int closepeakidx = MassUtility.GetClosestMassIdx(scan.MSPeaks, glycanmass);
                row[1] = glycanmass;

                if (MassUtility.GetMassPPM(glycanmass, scan.MSPeaks[closepeakidx].MonoisotopicMZ) < _torelance)
                {
                    row[2] = scan.MSPeaks[closepeakidx].MonoIntensity / scan.MaxIntensity;
                }
                else
                {
                    row[2] = 0.0f;
                }
                GDRaw  = new GlycansDrawer(frm.GetIUPACString(), false);
                row[3] = GDRaw.GetImage();
                idx++;
                dtDetail.Rows.Add(row);
                TotalScore = TotalScore + Convert.ToSingle(row[2]);
            }

            DataRow dtrow = dtDetail.NewRow();

            dtrow[0] = idx;
            dtrow[1] = GlycanMass.GetGlycanMasswithCharge(argStructure.Root.GlycanType, argStructure.Charge) + argStructure.Y1.Mass - GlycanMass.GetGlycanMasswithCharge(Glycan.Type.HexNAc, argStructure.Charge);
            dtrow[2] = TotalScore;
            GDRaw    = new GlycansDrawer(argStructure.IUPACString, false);
            dtrow[3] = GDRaw.GetImage();
            dtDetail.Rows.Add(dtrow);
        }
예제 #2
0
        /// <summary>
        /// Scan No,Charge,Peptide Seq, MaxMz,Y1Mz,Y1Intensity,Y2Mz,Y2Intensity,Y3Mz,Y3Intensity,Y4Mz,Y4Intensity
        /// </summary>
        /// <returns></returns>
        public List <string> Process(int argMissCleavage)
        {
            List <string> result = new List <string>();
            AminoAcidMass AAMW   = new AminoAcidMass();

            foreach (ProteinInfo p in _pInfo)
            {
                p.CreateCleavage(argMissCleavage);
                List <string> Glycopeptide = p.Glycopeptide(0);
                foreach (string Pep in Glycopeptide)
                {
                    for (int i = 0; i <= 2; i++)
                    {
                        float        PeptideMass  = AAMW.GetMonoMW(Pep, true);
                        List <float> Peakmz       = GetPeakCluster(PeptideMass, _scan.ParentCharge - i);
                        List <int>   ClosePeakIdx = new List <int>();
                        int          foundpeak    = 0;
                        double       MaxIntensity = 0.0;
                        double       MaxMz        = 0.0;
                        foreach (float peak in Peakmz)
                        {
                            int closepeakidx = MassUtility.GetClosestMassIdx(_scan.MSPeaks, peak);
                            ClosePeakIdx.Add(closepeakidx);
                            if (MassUtility.GetMassPPM(peak, _scan.MSPeaks[closepeakidx].MonoMass) < _torelance)
                            {
                                if (_scan.MSPeaks[closepeakidx].MonoIntensity > MaxIntensity)
                                {
                                    MaxIntensity = _scan.MSPeaks[closepeakidx].MonoIntensity;
                                    MaxMz        = _scan.MSPeaks[closepeakidx].MonoMass;
                                }
                                foundpeak++;
                            }
                        }
                        if (foundpeak >= 3)
                        {
                            string tmp = _scan.ScanNo + "," + Convert.ToString(_scan.ParentCharge - i) + "," + Pep + "," + MaxMz.ToString() + ",";
                            for (int j = 0; j < 4; j++)
                            {
                                if (MassUtility.GetMassPPM(_scan.MSPeaks[ClosePeakIdx[j]].MonoMass, Peakmz[j]) < _torelance)
                                {
                                    tmp = tmp + _scan.MSPeaks[ClosePeakIdx[j]].MonoMass + "," + (_scan.MSPeaks[ClosePeakIdx[j]].MonoIntensity / MaxIntensity) + ",";
                                }
                                else
                                {
                                    tmp = tmp + ",,";
                                }
                            }
                            result.Add(tmp);
                        }
                    }
                }
            }
            return(result);
        }
예제 #3
0
파일: frmMain.cs 프로젝트: chpaul/COL_Lib
 private void btnGetPeaks_Click(object sender, EventArgs e)
 {
     if (raw != null)
     {
         int ScanNo = 1;
         if (!int.TryParse(txtScanNo_CSMSL.Text, out ScanNo))
         {
             MessageBox.Show("Fill number in Scan number");
             return;
         }
         MSScan scan = raw.ReadScan(ScanNo);
         int ClosedIdx = MassUtility.GetClosestMassIdx(scan.MZs, Convert.ToSingle(txtTargetMZ.Text));
         List<int> Peaks = FindPeakIdx(scan.MZs, ClosedIdx, Convert.ToInt32(txtCharge.Text), Convert.ToSingle(txtPPM_CSMSL.Text));
         string optStr = "";
         for (int i = 0; i < Peaks.Count; i++)
         {
             optStr = optStr + "[" + Peaks[i] + "]" + scan.MZs[Peaks[i]] + "\t   " + scan.Intensities[Peaks[i]] + Environment.NewLine;
         }
         txtPeak.Text = optStr;
     }
 }
예제 #4
0
        public YxFinder(List <MSPeak> argSpectrum, float argY1, int argCharge, float argTolerance)
        {
            _y1      = argY1;
            _YxCount = 0;
            _charge  = argCharge;
            GeneratedYxPeak();
            _YxMzIdx = new float[5];
            for (int i = 0; i <= 4; i++)
            {
                _YxMzIdx[i] = -1;
            }

            for (int i = 1; i <= 4; i++)
            {
                int idx = MassUtility.GetClosestMassIdx(argSpectrum, _YxMz[i]);
                if (MassUtility.GetMassPPM(argSpectrum[idx].MonoMass, _YxMz[i]) < argTolerance)
                {
                    _YxMzIdx[i] = idx;
                    _YxCount++;
                }
            }
        }
예제 #5
0
        private static MSScan GetScanFromFile(int argScanNo, double argSingleToNoise, double argPeakBackground, double argPeptideBackground, short argMaxCharge, GlypID.Readers.clsRawData Raw)
        {
            float[] _cidMzs                     = null;
            float[] _cidIntensities             = null;
            GlypID.Peaks.clsPeak[] _cidPeaks    = new GlypID.Peaks.clsPeak[1];
            GlypID.Peaks.clsPeak[] _parentPeaks = new GlypID.Peaks.clsPeak[1];

            GlypID.HornTransform.clsHornTransform           mobjTransform           = new GlypID.HornTransform.clsHornTransform();
            GlypID.HornTransform.clsHornTransformParameters mobjTransformParameters = new GlypID.HornTransform.clsHornTransformParameters();
            GlypID.HornTransform.clsHornTransformResults[]  _transformResult;


            GlypID.Peaks.clsPeakProcessor           cidPeakProcessor  = new GlypID.Peaks.clsPeakProcessor();
            GlypID.Peaks.clsPeakProcessorParameters cidPeakParameters = new GlypID.Peaks.clsPeakProcessorParameters();

            GlypID.Peaks.clsPeakProcessor           parentPeakProcessor  = new GlypID.Peaks.clsPeakProcessor();
            GlypID.Peaks.clsPeakProcessorParameters parentPeakParameters = new GlypID.Peaks.clsPeakProcessorParameters();

            //Start Read Scan
            MSScan scan = new MSScan(argScanNo);


            Raw.GetSpectrum(argScanNo, ref _cidMzs, ref _cidIntensities);
            scan.MsLevel = Raw.GetMSLevel(Convert.ToInt32(argScanNo));

            double min_peptide_intensity = 0;

            scan.Time       = Raw.GetScanTime(scan.ScanNo);
            scan.ScanHeader = Raw.GetScanDescription(scan.ScanNo);
            if (scan.MsLevel != 1)
            {
                float[] _parentRawMzs        = null;
                float[] _parentRawIntensitys = null;

                string Header = Raw.GetScanDescription(argScanNo);
                cidPeakProcessor.ProfileType = GlypID.enmProfileType.CENTROIDED;
                if (Header.Substring(Header.IndexOf("+") + 1).Trim().StartsWith("p"))
                {
                    cidPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;
                }

                // cidPeakProcessor.DiscoverPeaks(ref _cidMzs, ref _cidIntensities, ref _cidPeaks,
                //         Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), false);

                for (int chNum = 0; chNum < _cidMzs.Length; chNum++)
                {
                    scan.MSPeaks.Add(new MSPeak(
                                         Convert.ToSingle(_cidMzs[chNum]),
                                         Convert.ToSingle(_cidIntensities[chNum])));
                }

                //for (int chNum = 0; chNum < _cidMzs.Length; chNum++)
                //{
                //    scan.MSPeaks.Add(new MSPeak(
                //        Convert.ToSingle(_cidMzs[chNum]),
                //        Convert.ToSingle(_cidIntensities[chNum])));
                //}

                // Get parent information
                scan.ParentScanNo = Raw.GetParentScan(scan.ScanNo);

                Raw.GetSpectrum(scan.ParentScanNo, ref _parentRawMzs, ref _parentRawIntensitys);
                parentPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;
                parentPeakProcessor.DiscoverPeaks(ref _parentRawMzs, ref _parentRawIntensitys, ref _parentPeaks, Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), true);
                float _parentBackgroundIntensity = (float)parentPeakProcessor.GetBackgroundIntensity(ref _parentRawIntensitys);
                _transformResult = new GlypID.HornTransform.clsHornTransformResults[1];
                bool found = false;
                if (Raw.IsFTScan(scan.ParentScanNo))
                {
                    // High resolution data
                    found = mobjTransform.FindPrecursorTransform(Convert.ToSingle(_parentBackgroundIntensity), Convert.ToSingle(min_peptide_intensity), ref _parentRawMzs, ref _parentRawIntensitys, ref _parentPeaks, Convert.ToSingle(scan.ParentMZ), ref _transformResult);
                }
                if (!found)//de-isotope fail
                {
                    // Low resolution data or bad high res spectra
                    short        cs        = Raw.GetMonoChargeFromHeader(scan.ScanNo);
                    double       monoMZ    = Raw.GetMonoMzFromHeader(scan.ScanNo);
                    List <float> ParentMzs = new List <float>(_parentRawMzs);
                    int          CloseIdx  = MassUtility.GetClosestMassIdx(ParentMzs, Convert.ToSingle(monoMZ));

                    if (cs > 0)
                    {
                        short[] charges = new short[1];
                        charges[0] = cs;
                        mobjTransform.AllocateValuesToTransform(Convert.ToSingle(scan.ParentMZ), Convert.ToInt32(_parentRawIntensitys[CloseIdx]), ref charges, ref _transformResult);
                    }
                    else
                    {
                        // instrument has no charge just store 2 and 3.
                        short[] charges = new short[2];
                        charges[0] = 2;
                        charges[1] = 3;
                        mobjTransform.AllocateValuesToTransform(Convert.ToSingle(scan.ParentMZ), Convert.ToInt32(_parentRawIntensitys[CloseIdx]), ref charges, ref _transformResult);
                    }
                }

                if (_transformResult[0].mint_peak_index == -1) //De-isotope parent scan
                {
                    //Get parent info
                    MSScan  _parentScan    = GetScanFromFile(scan.ParentScanNo, argSingleToNoise, argPeakBackground, argPeptideBackground, argMaxCharge, Raw);
                    float[] _MSMzs         = null;
                    float[] _MSIntensities = null;

                    Raw.GetSpectrum(scan.ParentScanNo, ref _MSMzs, ref _MSIntensities);
                    // Now find peaks
                    parentPeakParameters.SignalToNoiseThreshold = 0;
                    parentPeakParameters.PeakBackgroundRatio    = 0.01;
                    parentPeakProcessor.SetOptions(parentPeakParameters);
                    parentPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;

                    parentPeakProcessor.DiscoverPeaks(ref _MSMzs, ref _MSIntensities, ref _cidPeaks,
                                                      Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), true);



                    //Look for charge and mono.


                    float[] monoandcharge = FindChargeAndMono(_cidPeaks, Convert.ToSingle(Raw.GetParentMz(scan.ScanNo)), scan.ScanNo, Raw);
                    //scan.ParentMonoMW = _parentScan.MSPeaks[ClosedIdx].MonoMass;
                    //scan.ParentAVGMonoMW = _parentScan.MSPeaks[ClosedIdx].;
                    scan.ParentMZ = monoandcharge[0];
                    if (monoandcharge[1] == 0.0f)
                    {
                        scan.ParentCharge = Convert.ToInt32(Raw.GetMonoChargeFromHeader(scan.ParentScanNo));
                    }
                    else
                    {
                        scan.ParentCharge = Convert.ToInt32(monoandcharge[1]);
                    }

                    scan.ParentMonoMW = (monoandcharge[0] - Atoms.ProtonMass) * monoandcharge[1];
                }
                else
                {
                    scan.ParentMonoMW    = (float)_transformResult[0].mdbl_mono_mw;
                    scan.ParentAVGMonoMW = (float)_transformResult[0].mdbl_average_mw;
                    scan.ParentMZ        = (float)_transformResult[0].mdbl_mz;
                    scan.ParentCharge    = (int)_transformResult[0].mshort_cs;
                }
                scan.IsCIDScan = Raw.IsCIDScan(argScanNo);
                scan.IsFTScan  = Raw.IsFTScan(argScanNo);

                Array.Clear(_transformResult, 0, _transformResult.Length);
                Array.Clear(_cidPeaks, 0, _cidPeaks.Length);
                Array.Clear(_cidMzs, 0, _cidMzs.Length);
                Array.Clear(_cidIntensities, 0, _cidIntensities.Length);
                Array.Clear(_parentRawMzs, 0, _parentRawMzs.Length);
                Array.Clear(_parentRawIntensitys, 0, _parentRawIntensitys.Length);
            }
            else //MS Scan
            {
                scan.ParentMZ = 0.0f;
                double mdbl_current_background_intensity = 0;

                // Now find peaks
                parentPeakParameters.SignalToNoiseThreshold = argSingleToNoise;
                parentPeakParameters.PeakBackgroundRatio    = argPeakBackground;
                parentPeakProcessor.SetOptions(parentPeakParameters);
                parentPeakProcessor.ProfileType = GlypID.enmProfileType.PROFILE;

                parentPeakProcessor.DiscoverPeaks(ref _cidMzs, ref _cidIntensities, ref _cidPeaks,
                                                  Convert.ToSingle(mobjTransformParameters.MinMZ), Convert.ToSingle(mobjTransformParameters.MaxMZ), true);
                mdbl_current_background_intensity = parentPeakProcessor.GetBackgroundIntensity(ref _cidIntensities);

                // Settings
                min_peptide_intensity = mdbl_current_background_intensity * mobjTransformParameters.PeptideMinBackgroundRatio;
                if (mobjTransformParameters.UseAbsolutePeptideIntensity)
                {
                    if (min_peptide_intensity < mobjTransformParameters.AbsolutePeptideIntensity)
                    {
                        min_peptide_intensity = mobjTransformParameters.AbsolutePeptideIntensity;
                    }
                }
                mobjTransformParameters.PeptideMinBackgroundRatio = argPeptideBackground;
                mobjTransformParameters.MaxCharge = argMaxCharge;
                mobjTransform.TransformParameters = mobjTransformParameters;


                //  Now perform deisotoping
                _transformResult = new GlypID.HornTransform.clsHornTransformResults[1];
                mobjTransform.PerformTransform(Convert.ToSingle(mdbl_current_background_intensity), Convert.ToSingle(min_peptide_intensity), ref _cidMzs, ref _cidIntensities, ref _cidPeaks, ref _transformResult);
                // for getting results

                for (int chNum = 0; chNum < _transformResult.Length; chNum++)
                {
                    double sumintensity         = 0.0;
                    double mostIntenseIntensity = 0.0;
                    for (int i = 0; i < _transformResult[chNum].marr_isotope_peak_indices.Length; i++)
                    {
                        sumintensity = sumintensity + _cidPeaks[_transformResult[chNum].marr_isotope_peak_indices[i]].mdbl_intensity;
                        if (Math.Abs(_transformResult[chNum].mdbl_most_intense_mw -
                                     (_cidPeaks[_transformResult[chNum].marr_isotope_peak_indices[i]].mdbl_mz * _transformResult[chNum].mshort_cs - Atoms.ProtonMass * _transformResult[chNum].mshort_cs))
                            < 1.0 / _transformResult[chNum].mshort_cs)
                        {
                            mostIntenseIntensity = _cidPeaks[_transformResult[chNum].mint_peak_index].mdbl_intensity;
                        }
                    }
                    scan.MSPeaks.Add(new MSPeak(
                                         Convert.ToSingle(_transformResult[chNum].mdbl_mono_mw),
                                         _transformResult[chNum].mint_mono_intensity,
                                         _transformResult[chNum].mshort_cs,
                                         Convert.ToSingle(_transformResult[chNum].mdbl_mz),
                                         Convert.ToSingle(_transformResult[chNum].mdbl_fit),
                                         Convert.ToSingle(_transformResult[chNum].mdbl_most_intense_mw),
                                         mostIntenseIntensity,
                                         sumintensity
                                         ));
                }
                Array.Clear(_transformResult, 0, _transformResult.Length);
                Array.Clear(_cidPeaks, 0, _cidPeaks.Length);
                Array.Clear(_cidMzs, 0, _cidMzs.Length);
                Array.Clear(_cidIntensities, 0, _cidIntensities.Length);
            }
            return(scan);
        }
예제 #6
0
        private void bgWorker_Process_DoWork(object sender, DoWorkEventArgs e)
        {
            AAMW = new AminoAcidMass();
            this.lblStatus.SafeBeginInvoke(new Action(() => lblStatus.Text = "Begin initial raw file"));
            Raw = new ThermoRawReader(_rawFile);
            this.lblStatus.SafeBeginInvoke(new Action(() => lblStatus.Text = "Initial raw file completed"));
            List <GlycanSequencing> lstGS = new List <GlycanSequencing>();

            if (_UseGlycanList)
            {
                _GlycanCompounds        = ReadGlycanListFromFile.ReadGlycanList(_glycanFile, false, _Human, false);
                _MassGlycanMapping      = new Dictionary <double, GlycanCompound>();
                _GlycanCompoundMassList = new List <float>();
                foreach (GlycanCompound G in _GlycanCompounds)
                {
                    if (!_MassGlycanMapping.ContainsKey(G.AVGMass))
                    {
                        _MassGlycanMapping.Add(G.AVGMass, G);
                        _GlycanCompoundMassList.Add((float)G.AVGMass);
                    }
                }
            }

            for (int i = 0; i < lstScans.Count; i++)
            {
                int ScanNo = lstScans[i];
                if (Raw.GetMsLevel(ScanNo) == 1)
                {
                    CurrentScan = ScanNo;
                    int ProcessReport = Convert.ToInt32((i / (float)lstScans.Count) * 100);
                    //Console.WriteLine("Scan:" + ScanNo.ToString()+"\t Peptide:" + Peptide + "  completed");
                    bgWorker_Process.ReportProgress(ProcessReport);
                    this.lblStatus.SafeBeginInvoke(new Action(() => lblStatus.Text = "MS scan pass:"******"Scan:" + ScanNo.ToString()+"\t Peptide:" + Peptide + "  completed");
                    bgWorker_Process.ReportProgress(ProcessReport);
                    this.lblStatus.SafeBeginInvoke(new Action(() => lblStatus.Text = "Not CID scan pass:"******"ms2")+4, _scan.ScanHeader.IndexOf("@") - _scan.ScanHeader.IndexOf("ms2")-3) + "hcd";
                    do
                    {
                        CheckScanNO++;
                        //    if (Raw.GlypIDReader.GetScanDescription(CheckScanNO).Contains(ScanHeader))
                        //    {
                        //        HCDScanNo = CheckScanNO;
                        //        HCD = new HCDInfo(Raw.GlypIDReader, HCDScanNo);
                        //        break;
                        //    }
                        if (Raw.GetHCDInfo(CheckScanNO) != null)
                        {
                            HCD = Raw.GetHCDInfo(CheckScanNO);
                            break;
                        }
                    } while (Raw.GetMsLevel(CheckScanNO) != 1); //Check Until hit Next Full MS

                    //CA: Complex Asialyated, CS:Complex Sialylated, HM:High mannose, HY:Hybrid and NA
                }
                if (HCD != null)
                {
                    Console.WriteLine("CID Scan No:" + ScanNo.ToString() + "\tHCD Scan No:" + HCDScanNo.ToString() + "\tGlycanType:" + HCD.GlycanType.ToString());
                }

                this.lblStatus.SafeBeginInvoke(new Action(() => lblStatus.Text = "Sequencing:" + ScanNo.ToString()));
                foreach (string Peptide in _Peptides)
                {
                    float PeptideMass = AAMW.GetMonoMW(Peptide, true);
                    for (int j = PrecursorCharge - 1; j <= PrecursorCharge; j++)
                    {
                        int Y1ChargeSt = j;
                        if (j == 0)
                        {
                            continue;
                        }
                        float PredictedY1 = 0.0f;
                        PredictedY1 = (float)(PeptideMass + GlycanMass.GetGlycanAVGMass(Glycan.Type.HexNAc) + COL.MassLib.Atoms.ProtonMass * Y1ChargeSt) / Y1ChargeSt;
                        GlycanSequencing GS = null;
                        if (_UseGlycanList)
                        {
                            float GlycanMonoMass = (_scan.ParentMZ - Atoms.ProtonMass) * _scan.ParentCharge - AAMW.GetAVGMonoMW(Peptide, true);
                            float PrecursorMono  = _scan.ParentMonoMW;
                            //if (_scan.ParentAVGMonoMW != 0.0)
                            //{
                            //    GlycanMonoMass = _scan.ParentAVGMonoMW - PeptideMass + (Atoms.HydrogenAVGMass * 2 + Atoms.OxygenAVGMass);
                            //    PrecursorMono = _scan.ParentAVGMonoMW;
                            //}
                            //else
                            //{
                            //    GlycanMonoMass = (_scan.ParentMZ - Atoms.ProtonMass) * _scan.ParentCharge - PeptideMass + (Atoms.HydrogenAVGMass * 2 + Atoms.OxygenAVGMass);
                            //    PrecursorMono = _scan.ParentMonoMW;
                            //}

                            List <GlycanCompound> ClosedGlycans = new List <GlycanCompound>();
                            foreach (float gMass in _GlycanCompoundMassList)
                            {
                                if (Math.Abs(gMass - GlycanMonoMass) < 100.0f)
                                {
                                    ClosedGlycans.Add(_GlycanCompounds[MassUtility.GetClosestMassIdx(_GlycanCompoundMassList, gMass)]);
                                }
                            }

                            //if (HCD != null)
                            //{
                            //    if ((HCD.GlycanType == GlypID.enmGlycanType.CA && ClosedGlycan.NoOfSia>0) ||
                            //         (HCD.GlycanType == GlypID.enmGlycanType.HM && (ClosedGlycan.NoOfSia!=0||ClosedGlycan.NoOfHexNAc!=2 || ClosedGlycan.NoOfDeHex!=0) ) ||
                            //         (HCD.GlycanType == GlypID.enmGlycanType.CS && ClosedGlycan.NoOfSia==0))
                            //    {
                            //        continue;
                            //    }
                            //}
                            //if (Math.Abs(ClosedGlycan.AVGMass - GlycanMonoMass) <= _MSMSTol)
                            foreach (GlycanCompound ClosedGlycan in ClosedGlycans)
                            {
                                if (_Human) //NeuAc
                                {
                                    int NoOfSia   = ClosedGlycan.NoOfSia;
                                    int NoOfDeHex = ClosedGlycan.NoOfDeHex;
                                    if (HCD != null && HCD.GlycanType == COL.MassLib.enumGlycanType.CA && ClosedGlycan.NoOfSia > 0)
                                    {
                                        NoOfDeHex = NoOfDeHex + NoOfSia * 2;
                                        NoOfSia   = 0;
                                    }
                                    GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, ClosedGlycan.NoOfHex, ClosedGlycan.NoOfHexNAc, NoOfDeHex, NoOfSia, 0, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                }
                                else //NeuGc
                                {
                                    GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, ClosedGlycan.NoOfHex, ClosedGlycan.NoOfHexNAc, ClosedGlycan.NoOfDeHex, 0, ClosedGlycan.NoOfSia, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                }
                                GS.NumbersOfPeaksForSequencing = 140;
                                GS.UseAVGMass        = _AverageMass;
                                GS.CreatePrecursotMZ = true;
                                if (!_CompletedOnly)
                                {
                                    GS.RewardForCompleteStructure = 0.0f;
                                }
                                if (HCD != null)
                                {
                                    GS.GlycanType = HCD.GlycanType;
                                }
                                GS.StartSequencing();
                                if (_CompletedOnly && GS.FullSequencedStructures.Count == 0)
                                {
                                    continue;
                                }
                                lstGS.Add(GS);
                                CurrentScan    = ScanNo;
                                CurrentPeptide = GS.PeptideSeq;
                                int ProcessReport = Convert.ToInt32((i / (float)lstScans.Count) * 100);
                                //Console.WriteLine("Scan:" + ScanNo.ToString()+"\t Peptide:" + Peptide + "  completed");
                                bgWorker_Process.ReportProgress(ProcessReport);
                            }
                        }
                        else // no list
                        {
                            if (_Human) //NeuAc
                            {
                                if (HCD != null)
                                {
                                    //CA: Complex Asialyated, CS:Complex Sialylated, HM:High mannose, HY:Hybrid and NA
                                    if (HCD.GlycanType == enumGlycanType.CA)
                                    {
                                        GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, _NoHexNAc, _NoDeHex, 0, 0, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                    }
                                    else if (HCD.GlycanType == enumGlycanType.HM)
                                    {
                                        GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, 2, 0, 0, 0, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                    }
                                    else
                                    {
                                        GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, _NoHexNAc, _NoDeHex, _NoSia, 0, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                    }
                                }
                                else
                                {
                                    GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, _NoHexNAc, _NoDeHex, _NoSia, 0, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                }
                            }
                            else //NeuGc
                            {
                                if (HCD != null)
                                {
                                    //CA: Complex Asialyated, CS:Complex Sialylated, HM:High mannose, HY:Hybrid and NA
                                    if (HCD.GlycanType == enumGlycanType.CA)
                                    {
                                        GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, _NoHexNAc, _NoDeHex, 0, 0, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                    }
                                    else if (HCD.GlycanType == enumGlycanType.HM)
                                    {
                                        GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, 2, 0, 0, 0, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                    }
                                    else
                                    {
                                        GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, _NoHexNAc, _NoDeHex, 0, _NoSia, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                    }
                                }
                                else
                                {
                                    GS = new GlycanSequencing(_scan, Peptide, true, Y1ChargeSt, _NoHex, _NoHexNAc, _NoDeHex, 0, _NoSia, @"d:\tmp", _NGlycan, _MSMSTol, _PrecursorTol);
                                }
                            }
                            GS.NumbersOfPeaksForSequencing = 140;
                            GS.UseAVGMass        = _AverageMass;
                            GS.CreatePrecursotMZ = true;
                            if (!_CompletedOnly)
                            {
                                GS.RewardForCompleteStructure = 0.0f;
                            }
                            if (HCD != null)
                            {
                                GS.GlycanType = HCD.GlycanType;
                            }
                            GS.StartSequencing();
                            if (_CompletedOnly && GS.FullSequencedStructures.Count == 0)
                            {
                                continue;
                            }
                            lstGS.Add(GS);
                            CurrentScan    = ScanNo;
                            CurrentPeptide = GS.PeptideSeq;
                            int ProcessReport = Convert.ToInt32((i / (float)lstScans.Count) * 100);
                            //Console.WriteLine("Scan:" + ScanNo.ToString()+"\t Peptide:" + Peptide + "  completed");
                            bgWorker_Process.ReportProgress(ProcessReport);
                        }
                    } //Foreach charge
                }     //Foreach peptide
                if (lstGS.Count > 0)
                {
                    GenerateReportBody(lstGS);
                }
            }//Foreach Scan
        }
        public static void Processing(ref MultiGlycanESI argMultiGlycan)
        {
            try
            {
                List <string> identifiedGlycan = argMultiGlycan.IdentifiedGlycanCompounds.Select(x => x.GlycanKey).Distinct().ToList();
                Dictionary <string, List <int> > dictGlycanKeySearchRange = new Dictionary <string, List <int> >();


                int LastScan = argMultiGlycan.RawReader.NumberOfScans;
                foreach (string glycanKey in identifiedGlycan)
                {
                    List <int> identifedScans =
                        argMultiGlycan.MatchedPeakInScan.Where(x => x.GlycanComposition.GlycanKey == glycanKey)
                        .Select(y => y.ScanNum)
                        .ToList();
                    identifedScans.Sort();

                    int    frontEdge           = identifedScans[0];
                    double FirstIdentifiedTime = argMultiGlycan.RawReader.ReadScan(frontEdge).Time;
                    while (frontEdge > 1)
                    {
                        frontEdge -= 1;
                        if (argMultiGlycan.RawReader.GetMsLevel(frontEdge) != 1)
                        {
                            continue;
                        }
                        MSScan s = argMultiGlycan.RawReader.ReadScan(frontEdge);
                        if (FirstIdentifiedTime - s.Time > 5)
                        {
                            break;
                        }
                    }
                    int    backEdge          = identifedScans[identifedScans.Count - 1];
                    double LastIdentifedTime = argMultiGlycan.RawReader.ReadScan(backEdge).Time;

                    while (backEdge < LastScan)
                    {
                        backEdge += 1;
                        if (argMultiGlycan.RawReader.GetMsLevel(backEdge) != 1)
                        {
                            continue;
                        }
                        MSScan s = argMultiGlycan.RawReader.ReadScan(backEdge);
                        if (s.Time - LastIdentifedTime > 5)
                        {
                            break;
                        }
                    }
                    dictGlycanKeySearchRange.Add(glycanKey, new List <int>()
                    {
                        frontEdge, backEdge
                    });
                }

                List <MSScan> msScans           = new List <MSScan>();
                string        previousGlycanKey = "";
                foreach (GlycanCompound g in argMultiGlycan.GlycanList.OrderBy(x => x.GlycanKey))
                {
                    if (!identifiedGlycan.Contains(g.GlycanKey))
                    {
                        continue;
                    }
                    if (previousGlycanKey != g.GlycanKey)
                    {
                        msScans.Clear();
                        //Read Scans
                        int startScan = dictGlycanKeySearchRange[g.GlycanKey][0] >= 1 ? dictGlycanKeySearchRange[g.GlycanKey][0] : 1;
                        int endScan   = dictGlycanKeySearchRange[g.GlycanKey][1] <= LastScan ? dictGlycanKeySearchRange[g.GlycanKey][1] : LastScan;
                        msScans.AddRange(argMultiGlycan.RawReader.ReadScanWMSLevel(startScan, endScan, 1));
                        previousGlycanKey = g.GlycanKey;
                    }

                    //FindPeaks
                    int charge = g.Charge;
                    List <List <MSScan> > scanSectionsContainPeaks = new List <List <MSScan> >();
                    for (int i = 0; i < msScans.Count; i++)
                    {
                        MSScan scan      = msScans[i];
                        int    closedIdx = MassUtility.GetClosestMassIdx(scan.MZs, (float)g.MZ);
                        if (MassUtility.GetMassPPM(scan.MZs[closedIdx], g.MZ) <= argMultiGlycan.MassPPM)
                        {
                            List <int> peaks = FindPeakIdx(scan.MZs, closedIdx, charge, argMultiGlycan.IsotopePPM);
                            if (peaks.Count - peaks.IndexOf(closedIdx) < argMultiGlycan.MininumIsotopePeakCount)
                            {
                                continue;
                            }
                            //Found peaks
                            if (scanSectionsContainPeaks.Count > 0)
                            {
                                MSScan lastSectionLastScan = scanSectionsContainPeaks.Last().Last();
                                if (scan.Time - lastSectionLastScan.Time > 2.5)
                                {
                                    scanSectionsContainPeaks.Add(new List <MSScan>()
                                    {
                                        scan
                                    });
                                }
                                else
                                {
                                    scanSectionsContainPeaks.Last().Add(scan);
                                }
                            }
                            else
                            {
                                scanSectionsContainPeaks.Add(new List <MSScan>()
                                {
                                    scan
                                });
                            }
                        }
                    }

                    //If scans can form an elution profile add to identifed result;

                    foreach (List <MSScan> sectionScans in scanSectionsContainPeaks)
                    {
                        if (sectionScans.Count < 3)
                        {
                            continue;
                        }
                        else
                        {
                            //Add matched peak
                            foreach (MSScan s in sectionScans)
                            {
                                int PeakIdx             = MassUtility.GetClosestMassIdx(s.MZs, (float)g.MZ);
                                MatchedGlycanPeak mPeak = new MatchedGlycanPeak(s.ScanNo, s.Time, s.MSPeaks[PeakIdx], g);

                                List <int>     peaks       = FindPeakIdx(s.MZs, PeakIdx, charge, argMultiGlycan.IsotopePPM);
                                int            startIdx    = peaks.IndexOf(PeakIdx);
                                List <MSPoint> lstIsotopes = new List <MSPoint>();
                                for (int i = startIdx; i < peaks.Count; i++)
                                {
                                    lstIsotopes.Add(new MSPoint(s.MZs[peaks[i]], s.Intensities[peaks[i]]));
                                }
                                mPeak.MSPoints = lstIsotopes;
                                if (!argMultiGlycan.MatchedPeakInScan.Contains(mPeak))
                                {
                                    argMultiGlycan.MatchedPeakInScan.Add(mPeak);
                                }
                            }
                        }
                    }
                }



                //foreach (GlycanCompound g in argMultiGlycan.IdentifiedGlycanCompounds)
                //{
                //    processed = g;
                //    //Search Peak in front of the peak
                //    ThermoRawReader raw = (ThermoRawReader)argMultiGlycan.RawReader;
                //    List<int> identifedScans = argMultiGlycan.MatchedPeakInScan.Where(x => x.GlycanComposition == g).Select(y => y.ScanNum).ToList();
                //    for (int i = 0; i < identifedScans.Count; i++)
                //    {
                //        int identifiedScanNum = identifedScans[i];
                //        while (true)
                //        {
                //            identifiedScanNum -= 1;
                //            if (identifiedScanNum < 1 || raw.GetRetentionTime(identifedScans[i]) - raw.GetRetentionTime(identifiedScanNum) > argMultiGlycan.MaxLCFrontMin)
                //            {
                //                break;
                //            }
                //            if (raw.GetMsLevel((identifiedScanNum)) != 1)
                //            {
                //                continue;
                //            }
                //            MSScan scan = raw.ReadScan(identifiedScanNum);
                //            int PeakIdx = MassUtility.GetClosestMassIdx(scan.MZs, (float)g.MZ);
                //            if (MassUtility.GetMassPPM(scan.MZs[PeakIdx], g.MZ) > argMultiGlycan.MassPPM)
                //            {
                //                continue;
                //            }
                //            //Find isotope cluster
                //            List<MSPoint> lstIsotopes = new List<MSPoint>();
                //            lstIsotopes.Add(new MSPoint(scan.MZs[PeakIdx],scan.Intensities[PeakIdx]));
                //            float targetMZ = (float)g.MZ;
                //            do
                //            {
                //                targetMZ += 1.0f/g.Charge;
                //                PeakIdx = MassUtility.GetClosestMassIdx(scan.MZs, targetMZ);
                //                if (MassUtility.GetMassPPM(scan.MZs[PeakIdx], targetMZ) <= argMultiGlycan.MassPPM)
                //                {
                //                    lstIsotopes.Add(new MSPoint(scan.MZs[PeakIdx],scan.Intensities[PeakIdx]));
                //                }
                //                else
                //                {
                //                    break;
                //                }
                //            } while (true);
                //            if (lstIsotopes.Count < argMultiGlycan.MininumIsotopePeakCount)
                //            {
                //                continue;
                //            }
                //            MatchedGlycanPeak mPeak = new MatchedGlycanPeak(scan.ScanNo, scan.Time, scan.MSPeaks[PeakIdx], g);
                //            mPeak.MSPoints = lstIsotopes;
                //            if (!argMultiGlycan.MatchedPeakInScan.Contains(mPeak))
                //            {
                //                argMultiGlycan.MatchedPeakInScan.Add(mPeak);
                //            }
                //        }
                //        identifiedScanNum = identifedScans[i];
                //        while (true)
                //        {
                //            identifiedScanNum += 1;
                //            if (identifiedScanNum > raw.NumberOfScans || raw.GetRetentionTime(identifiedScanNum) - raw.GetRetentionTime(identifedScans[i]) > argMultiGlycan.MaxLCBackMin)
                //            {
                //                break;
                //            }
                //            if (raw.GetMsLevel((identifiedScanNum)) != 1)
                //            {
                //                continue;
                //            }
                //            MSScan scan = raw.ReadScan(identifiedScanNum);
                //            int PeakIdx = MassUtility.GetClosestMassIdx(scan.MZs, (float)g.MZ);
                //            if (MassUtility.GetMassPPM(scan.MZs[PeakIdx], g.MZ) > argMultiGlycan.MassPPM)
                //            {
                //                continue;
                //            }
                //            //Find isotope cluster
                //            List<MSPoint> lstIsotopes = new List<MSPoint>();
                //            lstIsotopes.Add(new MSPoint(scan.MZs[PeakIdx], scan.Intensities[PeakIdx]));
                //            float targetMZ = (float)g.MZ;
                //            do
                //            {
                //                targetMZ += 1.0f / g.Charge;
                //                PeakIdx = MassUtility.GetClosestMassIdx(scan.MZs, targetMZ);
                //                if (MassUtility.GetMassPPM(scan.MZs[PeakIdx], targetMZ) <= argMultiGlycan.MassPPM)
                //                {
                //                    lstIsotopes.Add(new MSPoint(scan.MZs[PeakIdx], scan.Intensities[PeakIdx]));
                //                }
                //                else
                //                {
                //                    break;
                //                }
                //            } while (true);
                //            if (lstIsotopes.Count < argMultiGlycan.MininumIsotopePeakCount)
                //            {
                //                continue;
                //            }
                //            MatchedGlycanPeak mPeak = new MatchedGlycanPeak(scan.ScanNo, scan.Time, scan.MSPeaks[PeakIdx], g);
                //            mPeak.MSPoints = lstIsotopes;
                //            if (!argMultiGlycan.MatchedPeakInScan.Contains(mPeak))
                //            {
                //                argMultiGlycan.MatchedPeakInScan.Add(mPeak);
                //            }
                //        }
                //    }
                //}
            }
            catch (Exception ex)
            {
                throw ex;
            }
        }