public async System.Threading.Tasks.Task <IActionResult> PostAsync([FromForm] IFormFile image, [FromForm] string scale) { MLSharpPython ml = new MLSharpPython(); if (System.IO.File.Exists(Constants.InputImage)) { System.IO.File.Delete(Constants.InputImage); } using (var fileStream = new FileStream(Constants.InputImage, FileMode.Create)) { await image.CopyToAsync(fileStream); } string error = string.Empty; ml.ExecutePythonScript("../../super_resolution/super_resolve.py " + $"--model_pth \"{Constants.ModelBasic}\" " + $"--input_image \"{Constants.InputImage}\" " + $"--output_image \"{Constants.OutputImage}\" " + $"--scale {scale}" , out error); Console.WriteLine(error); return(this.Ok()); }
private void btnSubmit_Click(object sender, EventArgs e) { string scriptAndArgs = scriptDir + "savesommatrix.py"; scriptAndArgs += " " + scriptDir + "params.json"; // Load values from the form string[] dataColumns = new string[lstColumns.Items.Count]; for (int i = 0; i < lstColumns.Items.Count; i++) { dataColumns[i] = lstColumns.Items[i].Text; } Dictionary <string, string> data = new Dictionary <string, string>(); data.Add("trainingData", inputDir + txtInputFile.Text); data.Add("colsToLoad", JsonConvert.SerializeObject(dataColumns)); data.Add("indexCol", ((int)nudIDColumn.Value).ToString()); data.Add("matrixFile", outputDir + txtOutputFile.Text); data.Add("mapWidth", ((int)nudMapWidth.Value).ToString()); data.Add("mapHeight", ((int)nudMapHeight.Value).ToString()); data.Add("iterLim", ((int)nudIterLim.Value).ToString()); data.Add("initLR", ((float)nudLearnRate.Value).ToString()); data.Add("initRad", ((float)nudRadius.Value).ToString()); // Save parameters to the params.json file for the Python script to see string json = JsonConvert.SerializeObject(data); File.WriteAllText(scriptDir + "params.json", json); MLSharpPython scriptRunner = new MLSharpPython(pythonExe); scriptRunner.ExecutePythonScript(scriptAndArgs, out string stdError1); /*scriptRunner.ExecutePythonScript(@"D:\Matt\Documents\GitRepos\Dataset-Visualisation-Dissertation\python\Kohonen\savecoords.py" + * @" D:\Matt\Documents\GitRepos\Dataset-Visualisation-Dissertation\python\Kohonen\params.json", * out string stdError2);*/ }
public ActionResult Home() { var filePythonNamePath = @"C:\Users\tejoh\python\Face_Registration.py"; var filePythonExePath = @"C:\Users\tejoh\AppData\Local\Programs\Python\Python38\python.exe"; var filename1 = @"C:\Users\tejoh\python\john1.jpg"; var filename2 = @"C:\Users\tejoh\python\john2.jpg"; byte[] imageArray = System.IO.File.ReadAllBytes(filename1); string base64ImageRepresentation = Convert.ToBase64String(imageArray); string outputText, standardError; // Instantiate Machine Learning C# - Python class object IMLSharpPython mlSharpPython = new MLSharpPython(filePythonExePath); // Define Python script file and input parameter name string fileNameParameter = $"{filePythonNamePath}" /*{filePythonParameterName} {imagePathName}*/; string arguments = $"{base64ImageRepresentation}" /*{filePythonParameterName} {imagePathName}*/; // Execute the python script file outputText = mlSharpPython.ExecutePythonScript(fileNameParameter, arguments, out standardError); if (string.IsNullOrEmpty(standardError)) { } else { Console.WriteLine(standardError); } Console.ReadKey(); return(Ok("Testing page")); }
//private static string filePythonParameterName = Properties.Settings.Default.FilePythonParameterName; static void Main() { string outputText, standardError; // Instantiate Machine Learning C# - Python class object IMLSharpPython mlSharpPython = new MLSharpPython(filePythonExePath); // Define Python script file and input parameter name string fileNameParameter = $"{filePythonNamePath} {$"sth"}"; // Execute the python script file outputText = mlSharpPython.ExecutePythonScript(fileNameParameter, out standardError); if (string.IsNullOrEmpty(standardError)) { //if there aren't some execptions in python and c# Console.WriteLine(outputText); } else { //if there are some execption in python and c# Console.WriteLine(standardError); } Console.ReadKey(); }