async Task FetchBatchResults(int num) { var batch = new MLArrayBatchProvider(inputs.Take(num).ToArray()); var options = new MLPredictionOptions() { UsesCpuOnly = false }; Stopwatch stopWatch = Stopwatch.StartNew(); await Task.Run(() => { model.GetPredictions(batch, options, out NSError error); }); stopWatch.Stop(); batchMilliseconds = stopWatch.ElapsedMilliseconds; }
/// <summary> /// Make a prediction using the standard interface /// </summary> /// <param name="input">an instance of hate_coremlInput to predict from</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public hate_coremlOutput GetPrediction(hate_coremlInput input, MLPredictionOptions options, out NSError error) { if (input == null) { throw new ArgumentNullException(nameof(input)); } if (options == null) { throw new ArgumentNullException(nameof(options)); } var prediction = model.GetPrediction(input, options, out error); if (prediction == null) { return(null); } var output1Value = prediction.GetFeatureValue("output1").MultiArrayValue; return(new hate_coremlOutput(output1Value)); }
/// <summary> /// Make a prediction using the standard interface /// </summary> /// <param name="input">an instance of MarsHabitatPricerInput to predict from</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public MarsHabitatPricerOutput GetPrediction(MarsHabitatPricerInput input, MLPredictionOptions options, out NSError error) { if (input == null) { throw new ArgumentNullException(nameof(input)); } if (options == null) { throw new ArgumentNullException(nameof(options)); } var prediction = model.GetPrediction(input, options, out error); if (prediction == null) { return(null); } var priceValue = prediction.GetFeatureValue("price").DoubleValue; return(new MarsHabitatPricerOutput(priceValue)); }
/// <summary> /// Make a prediction using the standard interface /// </summary> /// <param name="input">an instance of CookHappyJuneInput to predict from</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public CookHappyJuneOutput GetPrediction(CookHappyJuneInput input, MLPredictionOptions options, out NSError error) { if (input == null) { throw new ArgumentNullException(nameof(input)); } if (options == null) { throw new ArgumentNullException(nameof(options)); } var prediction = model.GetPrediction(input, options, out error); if (prediction == null) { return(null); } var lossValue = prediction.GetFeatureValue("loss").DictionaryValue; var classLabelValue = prediction.GetFeatureValue("classLabel").StringValue; return(new CookHappyJuneOutput(lossValue, classLabelValue)); }
/// <summary> /// Make a prediction using the standard interface /// </summary> /// <param name="input">an instance of FreeSoundsModel25Input to predict from</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public FreeSoundsModel25Output GetPrediction(FreeSoundsModel25Input input, MLPredictionOptions options, out NSError error) { if (input == null) { throw new ArgumentNullException(nameof(input)); } if (options == null) { throw new ArgumentNullException(nameof(options)); } var prediction = model.GetPrediction(input, options, out error); if (prediction == null) { return(null); } var classLabelProbsValue = prediction.GetFeatureValue("classLabelProbs").DictionaryValue; var classLabelValue = prediction.GetFeatureValue("classLabel").StringValue; return(new FreeSoundsModel25Output(classLabelProbsValue, classLabelValue)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="audioSamples">Input audio samples to be classified as 15600 1-dimensional array of floats</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public FreeSoundsPlusModel25Output GetPrediction(MLMultiArray audioSamples, MLPredictionOptions options, out NSError error) { var input = new FreeSoundsPlusModel25Input(audioSamples); return(GetPrediction(input, options, out error)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="data"> as color (kCVPixelFormatType_32BGRA) image buffer, 224 pizels wide by 224 pixels high</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public CookHappyJuneOutput GetPrediction(CVPixelBuffer data, MLPredictionOptions options, out NSError error) { var input = new CookHappyJuneInput(data); return(GetPrediction(input, options, out error)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="data"> as color (kCVPixelFormatType_32BGRA) image buffer, 224 pizels wide by 224 pixels high</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public RamenOutput GetPrediction(CVPixelBuffer data, MLPredictionOptions options, out NSError error) { var input = new RamenInput(data); return(GetPrediction(input, options, out error)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="input1"> as 1 1-dimensional array of doubles</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public hate_coremlOutput GetPrediction(MLMultiArray input1, MLPredictionOptions options, out NSError error) { var input = new hate_coremlInput(input1); return(GetPrediction(input, options, out error)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="data"> as color (kCVPixelFormatType_32BGRA) image buffer, 224 pizels wide by 224 pixels high</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public jankenmodelOutput GetPrediction(CVPixelBuffer data, MLPredictionOptions options, out NSError error) { var input = new jankenmodelInput(data); return(GetPrediction(input, options, out error)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="data"> as color (kCVPixelFormatType_32BGRA) image buffer, 224 pizels wide by 224 pixels high</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public coil100Model_CoreMLOutput GetPrediction(CVPixelBuffer data, MLPredictionOptions options, out NSError error) { var input = new coil100Model_CoreMLInput(data); return(GetPrediction(input, options, out error)); }
/// <summary> /// Make a prediction using the convenience interface /// </summary> /// <param name="solarPanels">Number of solar panels as double</param> /// <param name="greenhouses">Number of greenhouses as double</param> /// <param name="size">Size in acres as double</param> /// <param name="options">prediction options</param> /// <param name="error">If an error occurs, upon return contains an NSError object that describes the problem.</param> public MarsHabitatPricerOutput GetPrediction(double solarPanels, double greenhouses, double size, MLPredictionOptions options, out NSError error) { var input = new MarsHabitatPricerInput(solarPanels, greenhouses, size); return(GetPrediction(input, options, out error)); }