예제 #1
0
        public void Logistic_Regression_Test_Generator()
        {
            Matrix m = new[, ] {
                { 0.0512670, 0.6995600 },
                { -0.0927420, 0.6849400 },
                { -0.2137100, 0.6922500 },
                { -0.3750000, 0.5021900 },
                { -0.5132500, 0.4656400 },
                { -0.5247700, 0.2098000 },
                { -0.3980400, 0.0343570 },
                { -0.3058800, -0.1922500 },
                { 0.0167050, -0.4042400 },
                { 0.1319100, -0.5138900 },
                { -0.6111800, -0.0679820 },
                { -0.6630200, -0.2141800 },
                { -0.5996500, -0.4188600 },
                { -0.7263800, -0.0826020 },
                { -0.8300700, 0.3121300 },
                { -0.7206200, 0.5387400 },
                { -0.5938900, 0.4948800 },
                { -0.4844500, 0.9992700 },
                { -0.0063364, 0.9992700 },
                { 0.6326500, -0.0306120 },
            };

            Vector y = new Vector(new double[] {
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0
            });

            Vector test = new Vector(new double[] { 0.1319100, -0.513890 });

            var generator = new LogisticRegressionGenerator()
            {
                Lambda = 1, LearningRate = 0.01, PolynomialFeatures = 6, MaxIterations = 400
            };

            var    model2 = generator.Generate(m, y);
            double p      = model2.Predict(test);

            Assert.AreEqual(1d, p);
        }
        //[Test]
        public void Save_And_Load_LogisticRegression()
        {
            Matrix m = new[, ] {
                { 0.0512670, 0.6995600 },
                { -0.0927420, 0.6849400 },
                { -0.2137100, 0.6922500 },
                { -0.3750000, 0.5021900 },
                { -0.5132500, 0.4656400 },
                { -0.5247700, 0.2098000 },
                { -0.3980400, 0.0343570 },
                { -0.3058800, -0.1922500 },
                { 0.0167050, -0.4042400 },
                { 0.1319100, -0.5138900 },
                { -0.6111800, -0.0679820 },
                { -0.6630200, -0.2141800 },
                { -0.5996500, -0.4188600 },
                { -0.7263800, -0.0826020 },
                { -0.8300700, 0.3121300 },
                { -0.7206200, 0.5387400 },
                { -0.5938900, 0.4948800 },
                { -0.4844500, 0.9992700 },
                { -0.0063364, 0.9992700 },
                { 0.6326500, -0.0306120 },
            };

            Vector y = new Vector(new double[] {
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                1,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0,
                0
            });

            var generator = new LogisticRegressionGenerator()
            {
                Lambda = 1, LearningRate = 0.01, PolynomialFeatures = 6, MaxIterations = 400
            };

            var model = generator.Generate(m, y) as LogisticRegressionModel;

            Serialize(model);

            var lmodel = Deserialize <LogisticRegressionModel>();

            Assert.AreEqual(model.Theta, lmodel.Theta);
            Assert.AreEqual(model.PolynomialFeatures, lmodel.PolynomialFeatures);
            Assert.AreEqual(model.LogisticFunction, lmodel.LogisticFunction);
        }