private void computeInformation(double[][] inputData, double[] outputData, double[] weights)
        {
            // Store model information
#pragma warning disable 612, 618
            result = regression.Compute(inputData);
#pragma warning restore 612, 618

            if (weights == null)
            {
                this.deviance      = regression.GetDeviance(inputData, outputData);
                this.logLikelihood = regression.GetLogLikelihood(inputData, outputData);
                this.chiSquare     = regression.ChiSquare(inputData, outputData);
            }
            else
            {
                this.deviance      = regression.GetDeviance(inputData, outputData, weights);
                this.logLikelihood = regression.GetLogLikelihood(inputData, outputData, weights);
                this.chiSquare     = regression.ChiSquare(inputData, outputData, weights);
            }

            // Store coefficient information
            for (int i = 0; i < regression.Coefficients.Length; i++)
            {
                this.standardErrors[i] = regression.StandardErrors[i];

                this.waldTests[i]    = regression.GetWaldTest(i);
                this.coefficients[i] = regression.Coefficients[i];
                this.confidences[i]  = regression.GetConfidenceInterval(i);
                this.oddsRatios[i]   = regression.GetOddsRatio(i);
            }
        }
예제 #2
0
        /// <summary>
        ///   Computes the Logistic Regression Analysis.
        /// </summary>
        /// <remarks>The likelihood surface for the
        ///   logistic regression learning is convex, so there will be only one
        ///   peak. Any local maxima will be also a global maxima.
        /// </remarks>
        /// <param name="limit">
        ///   The difference between two iterations of the regression algorithm
        ///   when the algorithm should stop. If not specified, the value of
        ///   10e-4 will be used. The difference is calculated based on the largest
        ///   absolute parameter change of the regression.
        /// </param>
        /// <param name="maxIterations">
        ///   The maximum number of iterations to be performed by the regression
        ///   algorithm.
        /// </param>
        /// <returns>
        ///   True if the model converged, false otherwise.
        /// </returns>
        ///
        public bool Compute(double limit, int maxIterations)
        {
            double delta;
            int    iteration = 0;

            do // learning iterations until convergence
            {
                delta = regression.Regress(inputData, outputData);
                iteration++;
            } while (delta > limit && iteration < maxIterations);

            // Check if the full model has converged
            bool converged = iteration <= maxIterations;


            // Store model information
            this.result        = regression.Compute(inputData);
            this.deviance      = regression.GetDeviance(inputData, outputData);
            this.logLikelihood = regression.GetLogLikelihood(inputData, outputData);
            this.chiSquare     = regression.ChiSquare(inputData, outputData);

            // Store coefficient information
            for (int i = 0; i < regression.Coefficients.Length; i++)
            {
                this.waldTests[i]      = regression.GetWaldTest(i);
                this.standardErrors[i] = regression.GetStandardError(i);
                this.coefficients[i]   = regression.Coefficients[i];
                this.confidences[i]    = regression.GetConfidenceInterval(i);
                this.oddsRatios[i]     = regression.GetOddsRatio(i);
            }


            // Perform likelihood-ratio tests against diminished nested models
            for (int i = 0; i < inputCount; i++)
            {
                // Create a diminished inner model without the current variable
                double[][]         data  = inputData.RemoveColumn(i);
                LogisticRegression inner = new LogisticRegression(inputCount - 1);

                iteration = 0;

                do // learning iterations until convergence
                {
                    delta = inner.Regress(data, outputData);
                    iteration++;
                } while (delta > limit && iteration < maxIterations);

                double ratio = 2.0 * (logLikelihood - inner.GetLogLikelihood(data, outputData));
                ratioTests[i + 1] = new ChiSquareTest(ratio, 1);
            }



            // Returns true if the full model has converged, false otherwise.
            return(converged);
        }
예제 #3
0
        private void computeInformation()
        {
            // Store model information
            this.result        = regression.Compute(inputData);
            this.deviance      = regression.GetDeviance(inputData, outputData);
            this.logLikelihood = regression.GetLogLikelihood(inputData, outputData);
            this.chiSquare     = regression.ChiSquare(inputData, outputData);

            // Store coefficient information
            for (int i = 0; i < regression.Coefficients.Length; i++)
            {
                this.standardErrors[i] = regression.StandardErrors[i];

                this.waldTests[i]    = regression.GetWaldTest(i);
                this.coefficients[i] = regression.Coefficients[i];
                this.confidences[i]  = regression.GetConfidenceInterval(i);
                this.oddsRatios[i]   = regression.GetOddsRatio(i);
            }
        }