public void RnnLSTMRandomTest() { Python.Initialize(); Chainer.Initialize(); Real[,] input = { { 1.0 }, { 3.0 }, { 5.0 }, { 7.0 }, { 9.0 } }; Real[,] teach = { { 3.0 }, { 5.0 }, { 7.0 }, { 9.0 }, { 11.0 } }; Real[,] input2 = { { 3.0 }, { 5.0 }, { 7.0 }, { 9.0 }, { 11.0 } }; Real[,] teach2 = { { 5.0 }, { 7.0 }, { 9.0 }, { 11.0 }, { 13.0 } }; int outputCount = 1; int inputCount = 1; int hiddenCount = 2; Real[,] upwardInit = (Real[, ])Initializer.GetRealNdArray(new[] { hiddenCount, hiddenCount }); Real[,] lateralInit = (Real[, ])Initializer.GetRealNdArray(new[] { hiddenCount, hiddenCount }); Real[,,] biasInit = (Real[, , ])Initializer.GetRealNdArray(new[] { 1, hiddenCount, 1 }); Real[,,] forgetBiasInit = (Real[, , ])Initializer.GetRealNdArray(new[] { 1, hiddenCount, 1 }); //Chainer Real[,] w1 = (Real[, ])Initializer.GetRealNdArray(new[] { hiddenCount, inputCount }); Real[] b1 = Initializer.GetRealArray(hiddenCount); //Chainer NChainer.Linear <Real> cLinear1 = new NChainer.Linear <Real>(inputCount, hiddenCount, false, Real.ToBaseNdArray(w1), Real.ToBaseArray(b1)); NChainer.LSTM <Real> cLstm = new NChainer.LSTM <Real>(hiddenCount, hiddenCount, Real.ToBaseNdArray(lateralInit), Real.ToBaseNdArray(upwardInit), Real.ToBaseNdArray(biasInit), Real.ToBaseNdArray(forgetBiasInit)); Real[,] w2 = (Real[, ])Initializer.GetRealNdArray(new[] { outputCount, hiddenCount }); Real[] b2 = Initializer.GetRealArray(outputCount); NChainer.Linear <Real> cLinear2 = new NChainer.Linear <Real>(hiddenCount, outputCount, false, Real.ToBaseNdArray(w2), Real.ToBaseArray(b2)); Variable <Real> cX1 = new Variable <Real>(Real.ToBaseNdArray(input)); Variable <Real> cY11 = cLinear1.Forward(cX1); Variable <Real> cY12 = cLstm.Forward(cY11); Variable <Real> cY13 = cLinear2.Forward(cY12); Variable <Real> cT = new Variable <Real>(Real.ToBaseNdArray(teach)); Variable <Real> cLoss = new NChainer.MeanSquaredError <Real>().Forward(cY13, cT); cLoss.Backward(); //KelpNet KelpNet.CL.Linear linear1 = new KelpNet.CL.Linear(inputCount, hiddenCount, false, w1, b1); KelpNet.LSTM lstm = new KelpNet.LSTM(hiddenCount, hiddenCount, lateralInit, upwardInit, biasInit, forgetBiasInit); KelpNet.CL.Linear linear2 = new KelpNet.CL.Linear(hiddenCount, outputCount, false, w2, b2); NdArray x1 = new NdArray(Real.ToRealArray(input), new[] { 1 }, 5); NdArray y11 = linear1.Forward(x1)[0]; NdArray y12 = lstm.Forward(y11)[0]; NdArray y13 = linear2.Forward(y12)[0]; NdArray t = new NdArray(Real.ToRealArray(teach), new[] { 1 }, 5); NdArray loss = new KelpNet.MeanSquaredError().Evaluate(y13, t); y13.Backward(); Real[] cY11data = Real.ToRealArray((Real[, ])cY11.Data); Real[] cY12data = Real.ToRealArray((Real[, ])cY12.Data); Real[] cY13data = Real.ToRealArray((Real[, ])cY13.Data); Real[] cXgrad = Real.ToRealArray((Real[, ])cX1.Grad); Real[] cupwardWGrad = Real.ToRealArray((Real[, ])cLstm.upward.W.Grad); Real[] cupwardbGrad = (Real[])cLstm.upward.b.Grad; //許容範囲を設定 double delta = 0.00001; //y11 Assert.AreEqual(cY11data.Length, y11.Data.Length); for (int i = 0; i < cY11data.Length; i++) { Assert.AreEqual(cY11data[i], y11.Data[i], delta); } //y12 Assert.AreEqual(cY12data.Length, y12.Data.Length); for (int i = 0; i < cY12data.Length; i++) { Assert.AreEqual(cY12data[i], y12.Data[i], delta); } //y13 Assert.AreEqual(cY13data.Length, y13.Data.Length); for (int i = 0; i < cY13data.Length; i++) { Assert.AreEqual(cY13data[i], y13.Data[i], delta); } //許容範囲を設定 delta = 0.0001; //loss Assert.AreEqual(cLoss.Data[0], loss.Data[0], delta); //x.Grad Assert.AreEqual(cXgrad.Length, x1.Grad.Length); for (int i = 0; i < cXgrad.Length; i++) { Assert.AreEqual(cXgrad[i], x1.Grad[i], delta); } Real[] cWgrad11 = Real.ToRealArray((Real[, ])cLinear1.W.Grad); Real[] cbgrad11 = (Real[])cLinear1.b.Grad; //W.grad Assert.AreEqual(cWgrad11.Length, linear1.Weight.Grad.Length); for (int i = 0; i < linear1.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad11[i], linear1.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad11.Length, linear1.Bias.Grad.Length); for (int i = 0; i < linear1.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad11[i], linear1.Bias.Grad[i], delta); } Real[] cWgrad12 = Real.ToRealArray((Real[, ])cLinear2.W.Grad); Real[] cbgrad12 = (Real[])cLinear2.b.Grad; //W.grad Assert.AreEqual(cWgrad12.Length, linear2.Weight.Grad.Length); for (int i = 0; i < linear2.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad12[i], linear2.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad12.Length, linear2.Bias.Grad.Length); for (int i = 0; i < linear2.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad12[i], linear2.Bias.Grad[i], delta); } //W.grad int wLen = lstm.upward.Weight.Grad.Length; Assert.AreEqual(cupwardWGrad.Length, lstm.upward.Weight.Grad.Length); for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad int bLen = lstm.upward.Bias.Length; Assert.AreEqual(cupwardbGrad.Length, lstm.upward.Bias.Grad.Length); for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } //2周目 Variable <Real> cX2 = new Variable <Real>(Real.ToBaseNdArray(input2)); Variable <Real> cY21 = cLinear1.Forward(cX2); Variable <Real> cY22 = cLstm.Forward(cY21); Variable <Real> cY23 = cLinear2.Forward(cY22); Variable <Real> cT2 = new Variable <Real>(Real.ToBaseNdArray(teach2)); Variable <Real> cLoss2 = new NChainer.MeanSquaredError <Real>().Forward(cY23, cT2); //KelpNet NdArray x2 = new NdArray(Real.ToRealArray(input2), new[] { 1 }, 5); NdArray y21 = linear1.Forward(x2)[0]; NdArray y22 = lstm.Forward(y21)[0]; NdArray y23 = linear2.Forward(y22)[0]; NdArray t2 = new NdArray(Real.ToRealArray(teach2), new[] { 1 }, 5); NdArray loss2 = new KelpNet.MeanSquaredError().Evaluate(y23, t2); Assert.AreEqual(cLoss2.Data[0], loss2.Data[0], delta); //Backwardを実行 cLoss2.Backward(); y23.Backward(); Real[] cYdata21 = Real.ToRealArray((Real[, ])cY21.Data); Real[] cYdata22 = Real.ToRealArray((Real[, ])cY22.Data); Real[] cYdata23 = Real.ToRealArray((Real[, ])cY23.Data); Real[] cXgrad2 = Real.ToRealArray((Real[, ])cX2.Grad); Real[] cupwardWGrad2 = Real.ToRealArray((Real[, ])cLstm.upward.W.Grad); Real[] cupwardbGrad2 = (Real[])cLstm.upward.b.Grad; Real[] clateralWGrad = Real.ToRealArray((Real[, ])cLstm.lateral.W.Grad); //y21 Assert.AreEqual(cYdata21.Length, y21.Data.Length); for (int i = 0; i < cYdata21.Length; i++) { Assert.AreEqual(cYdata21[i], y21.Data[i], delta); } //y22 Assert.AreEqual(cYdata22.Length, y22.Data.Length); for (int i = 0; i < cYdata22.Length; i++) { Assert.AreEqual(cYdata22[i], y22.Data[i], delta); } //y23 Assert.AreEqual(cYdata23.Length, y23.Data.Length); for (int i = 0; i < cYdata23.Length; i++) { Assert.AreEqual(cYdata23[i], y23.Data[i], delta); } //x.Grad Assert.AreEqual(cXgrad2.Length, x2.Grad.Length); for (int i = 0; i < cXgrad2.Length; i++) { Assert.AreEqual(cXgrad2[i], x2.Grad[i], delta); } //経由が多くかなり誤差が大きい為 delta = 1.0; Real[] cWgrad22 = Real.ToRealArray((Real[, ])cLinear2.W.Grad); Real[] cbgrad22 = (Real[])cLinear2.b.Grad; //W.grad Assert.AreEqual(cWgrad22.Length, linear2.Weight.Grad.Length); for (int i = 0; i < linear2.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad22[i], linear2.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad22.Length, linear2.Bias.Grad.Length); for (int i = 0; i < linear2.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad22[i], linear2.Bias.Grad[i], delta); } delta = 2.0; //W.grad Assert.AreEqual(clateralWGrad.Length, lstm.lateral.Weight.Grad.Length); for (int i = 0; i < clateralWGrad.Length; i++) { Assert.AreEqual(clateralWGrad[i + wLen * 0], lstm.lateral.Weight.Grad[i], delta); } for (int i = 0; i < wLen; i++) { Assert.AreEqual(cupwardWGrad2[i + wLen * 0], lstm.upward.Weight.Grad[i], delta); } //b.grad for (int i = 0; i < bLen; i++) { Assert.AreEqual(cupwardbGrad2[i + wLen * 0], lstm.upward.Bias.Grad[i], delta); } delta = 20.0; Real[] cWgrad21 = Real.ToRealArray((Real[, ])cLinear1.W.Grad); Real[] cbgrad21 = (Real[])cLinear1.b.Grad; //W.grad Assert.AreEqual(cWgrad21.Length, linear1.Weight.Grad.Length); for (int i = 0; i < linear1.Weight.Grad.Length; i++) { Assert.AreEqual(cWgrad21[i], linear1.Weight.Grad[i], delta); } //b.grad Assert.AreEqual(cbgrad21.Length, linear1.Bias.Grad.Length); for (int i = 0; i < linear1.Bias.Grad.Length; i++) { Assert.AreEqual(cbgrad21[i], linear1.Bias.Grad[i], delta); } }
public void MeanSquaredRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int width = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); Real[,,,] inputA = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width }); Real[,,,] inputB = (Real[, , , ])Initializer.GetRealNdArray(new[] { batchCount, ch, height, width }); for (int i = 0; i < inputB.GetLength(0); i++) { for (int j = 0; j < inputB.GetLength(1); j++) { for (int k = 0; k < inputB.GetLength(2); k++) { for (int l = 0; l < inputB.GetLength(3); l++) { inputB[i, j, k, l] *= 3.1415; } } } } //chainer NChainer.MeanSquaredError <Real> cMeanSquaredError = new NChainer.MeanSquaredError <Real>(); Variable <Real> cX = new Variable <Real>(Real.ToBaseNdArray(inputA)); Variable <Real> cY = new Variable <Real>(Real.ToBaseNdArray(inputB)); Variable <Real> cZ = cMeanSquaredError.Forward(cX, cY); cZ.Backward(); Real[] cXgrad = Real.ToRealArray((Real[, , , ])cX.Grad); //KelpNet KelpNet.MeanSquaredError meanSquaredError = new KelpNet.MeanSquaredError(); NdArray x = new NdArray(Real.ToRealArray(inputA), new[] { ch, height, width }, batchCount); NdArray y = new NdArray(Real.ToRealArray(inputB), new[] { ch, height, width }, batchCount); //KelpNetはBackwaward側のみEvaluateで実行される NdArray z = meanSquaredError.Evaluate(x, y); //許容範囲を算出(内部の割引順が違うため誤差が大きい) double delta = 0.001; //Loss Assert.AreEqual(cZ.Data[0], z.Data[0], delta); //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }
public void MeanSquaredRandomTest() { Python.Initialize(); Chainer.Initialize(); int batchCount = Mother.Dice.Next(1, 5); int ch = Mother.Dice.Next(1, 5); int width = Mother.Dice.Next(1, 16); int height = Mother.Dice.Next(1, 16); Real[,,,] inputA = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width); Real[,,,] inputB = Initializer.GetRandomValues <Real[, , , ]>(batchCount, ch, height, width); for (int i = 0; i < inputB.GetLength(0); i++) { for (int j = 0; j < inputB.GetLength(1); j++) { for (int k = 0; k < inputB.GetLength(2); k++) { for (int l = 0; l < inputB.GetLength(3); l++) { inputB[i, j, k, l] *= (Real)3.1415f; } } } } //chainer NChainer.MeanSquaredError <Real> cMeanSquaredError = new NChainer.MeanSquaredError <Real>(); Variable <Real> cX = new Variable <Real>(inputA); Variable <Real> cY = new Variable <Real>(inputB); Variable <Real> cZ = cMeanSquaredError.Forward(cX, cY); cZ.Backward(); Real[] cXgrad = ((Real[, , , ])cX.Grad).Flatten(); //KelpNet KelpNet.MeanSquaredError <Real> meanSquaredError = new KelpNet.MeanSquaredError <Real>(); NdArray <Real> x = new NdArray <Real>(inputA, asBatch: true); NdArray <Real> y = new NdArray <Real>(inputB, asBatch: true); //KelpNetはBackwaward側のみEvaluateで実行される NdArray <Real> z = meanSquaredError.Evaluate(x, y); //許容範囲を算出(内部の割引順が違うため誤差が大きい) Real delta = 0.001f; //Loss Assert.AreEqual(cZ.Data[0], z.Data[0], delta); //x.grad Assert.AreEqual(cXgrad.Length, x.Grad.Length); for (int i = 0; i < x.Grad.Length; i++) { Assert.AreEqual(cXgrad[i], x.Grad[i], delta); } }