public void TrainAndEvaluateRanking() { var mlContext = new MLContext(seed: 1, conc: 1); var data = Iris.LoadAsRankingProblem(mlContext, GetDataPath(TestDatasets.iris.trainFilename), hasHeader: TestDatasets.iris.fileHasHeader, separatorChar: TestDatasets.iris.fileSeparator); // Create a training pipeline. var pipeline = mlContext.Transforms.Concatenate("Features", Iris.Features) .Append(mlContext.Ranking.Trainers.FastTree(new FastTreeRankingTrainer.Options { NumThreads = 1 })); // Train the model. var model = pipeline.Fit(data); // Evaluate the model. var scoredData = model.Transform(data); var metrics = mlContext.Ranking.Evaluate(scoredData, label: "Label", groupId: "GroupId"); // Check that the metrics returned are valid. Common.AssertMetrics(metrics); }
public Hierarchy Irises() { var hierarchyCluster = new KHierarchyClustering(Iris.GetFromFile(), 3, 4); var root = hierarchyCluster.Start(); return(new Hierarchy(root)); }
public void Descriptor_Save_And_Load_Json() { var data = Iris.Load(); var description = Descriptor.Create <Iris>(); // to populate dictionaries var examples = description.ToExamples(data); var file = GetPath(); Register.Type <Iris>(); var d = SaveAndLoadJson(description); Assert.Equal(description.Type, d.Type); Assert.Equal(description.Features.Length, d.Features.Length); for (int i = 0; i < description.Features.Length; i++) { Assert.Equal(description.Features[i].Type, d.Features[i].Type); Assert.Equal(description.Features[i].Name, d.Features[i].Name); Assert.Equal(description.Features[i].Start, d.Features[i].Start); } Assert.Equal(description.Label.Type, d.Label.Type); Assert.Equal(description.Label.Name, d.Label.Name); Assert.Equal(description.Label.Start, d.Label.Start); }
public Enter() { InitializeComponent(); LbVersion.Text = Program.VERSION; PbEnter.Hide(); iris = new Iris(); }
private void MutateClassifier(float mutationDistance) { int classifiersCount = irisClassifiers.Count; classifierIndexToMutate = seed.Next(classifiersCount); Iris toMutate = irisClassifiers[classifierIndexToMutate]; oldClassifier = toMutate.Copy(toMutate); switch (seed.Next(4)) { case 0: toMutate.PetalLength += GetRandomNumber(-mutationDistance, mutationDistance); break; case 1: toMutate.PetalWidth += GetRandomNumber(-mutationDistance, mutationDistance); break; case 2: toMutate.SepalLength += GetRandomNumber(-mutationDistance, mutationDistance); break; case 3: toMutate.SepalWidth += GetRandomNumber(-mutationDistance, mutationDistance); break; } }
private void CsvParse(string pathFile) { using (TextFieldParser csvParser = new TextFieldParser(pathFile)) { csvParser.CommentTokens = new string[] { "#" }; csvParser.SetDelimiters(new string[] { "," }); csvParser.ReadLine(); while (!csvParser.EndOfData) { string[] fields = csvParser.ReadFields(); Iris iris = new Iris( double.Parse(fields[1]), double.Parse(fields[2]), double.Parse(fields[3]), double.Parse(fields[4])); listOfIris.Add(iris); listString.Add(fields[1]); } } }
public IActionResult Predict([FromBody] Iris iris) { var pipeline = new LearningPipeline { new TextLoader <IrisData>("iris-data.txt", separator: ","), new Dictionarizer("Label"), new ColumnConcatenator("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth"), new StochasticDualCoordinateAscentClassifier(), new PredictedLabelColumnOriginalValueConverter { PredictedLabelColumn = "PredictedLabel" } }; var data = new IrisData { PetalLength = iris.PetalLength, PetalWidth = iris.PetalWidth, SepalLength = iris.SepalLength, SepalWidth = iris.SepalWidth }; var model = pipeline.Train <IrisData, IrisPrediction>(); var prediction = model.Predict(data); return(Ok(prediction)); }
public void learn_linear_multiclass() { #region doc_learn_multiclass // In this example, we will learn a multi-class SVM using the one-vs-one (OvO) // approach. The OvO approacbh can decompose decision problems involving multiple // classes into a series of binary ones, which can then be solved using SVMs. // Ensure we have reproducible results Accord.Math.Random.Generator.Seed = 0; // We will try to learn a classifier // for the Fisher Iris Flower dataset var iris = new Iris(); double[][] inputs = iris.Instances; // get the flower characteristics int[] outputs = iris.ClassLabels; // get the expected flower classes // We will use mini-batches of size 32 to learn a SVM using SGD var batches = MiniBatches.Create(batchSize: 32, maxIterations: 1000, shuffle: ShuffleMethod.EveryEpoch, input: inputs, output: outputs); // Now, we can create a multi-class teaching algorithm for the SVMs var teacher = new MulticlassSupportVectorLearning <Linear, double[]> { // We will use SGD to learn each of the binary problems in the multi-class problem Learner = (p) => new StochasticGradientDescent <Linear, double[], LogisticLoss>() { LearningRate = 1e-3, MaxIterations = 1 // so the gradient is only updated once after each mini-batch } }; // The following line is only needed to ensure reproducible results. Please remove it to enable full parallelization teacher.ParallelOptions.MaxDegreeOfParallelism = 1; // (Remove, comment, or change this line to enable full parallelism) // Now, we can start training the model on mini-batches: foreach (var batch in batches) { teacher.Learn(batch.Inputs, batch.Outputs); } // Get the final model: var svm = teacher.Model; // Now, we should be able to use the model to predict // the classes of all flowers in Fisher's Iris dataset: int[] prediction = svm.Decide(inputs); // And from those predictions, we can compute the model accuracy: var cm = new GeneralConfusionMatrix(expected: outputs, predicted: prediction); double accuracy = cm.Accuracy; // should be approximately 0.973 #endregion Assert.AreEqual(0.97333333333333338, cm.Accuracy); Assert.AreEqual(150, batches.NumberOfSamples); Assert.AreEqual(32, batches.MiniBatchSize); Assert.AreEqual(213, batches.CurrentEpoch); Assert.AreEqual(1001, batches.CurrentIteration); Assert.AreEqual(82, batches.CurrentSample); }
public void learn_test_multiclass() { #region doc_learn_multiclass // Ensure results are reproducible Accord.Math.Random.Generator.Seed = 0; // This is a sample code on how to use Train-Val validation (split-set) // to assess the performance of multi-class Support Vector Machines. // Let's try to learn a SVM model for the famous Fisher's Iris dataset: var iris = new Iris(); double[][] inputs = iris.Instances; int[] classes = iris.ClassLabels; // Create a new Split-Set validation algorithm passing the learning algorithm to be used var splitset = new SplitSetValidation <MulticlassSupportVectorMachine <Gaussian, double[]>, double[]>() { // In this example, we will be learning one-vs-one multi-class machines Learner = (s) => new MulticlassSupportVectorLearning <Gaussian, double[]>() { Learner = (m) => new SequentialMinimalOptimization <Gaussian, double[]>() }, // Optionally, set the proportion of the dataset that // should be used for validation (the default is 20%): ValidationSetProportion = 0.2 // this is the default }; // If desired, we can also control paralellism using splitset.ParallelOptions.MaxDegreeOfParallelism = 1; // Compute the cross-validation var result = splitset.Learn(inputs, classes); // Finally, access the measured performance. double trainingErrors = result.Training.Value; // should be 0.016666666666666718 (+/- var. 0) double validationErrors = result.Validation.Value; // should be 0.033333333333333326 (+/- var. 0) #endregion Assert.AreEqual(0.2, splitset.ValidationSetProportion, 1e-10); Assert.AreEqual(0.2, splitset.ValidationSetProportion, 1e-6); Assert.AreEqual(0.8, splitset.TrainingSetProportion, 1e-6); Assert.AreEqual(0.016666666666666718, result.Training.Value, 1e-10); Assert.AreEqual(0.033333333333333326, result.Validation.Value, 1e-10); Assert.AreEqual(0, result.Training.Variance, 1e-10); Assert.AreEqual(0, result.Validation.Variance, 1e-10); Assert.AreEqual(0, result.Training.StandardDeviation, 1e-10); Assert.AreEqual(0, result.Validation.StandardDeviation, 1e-10); Assert.AreEqual(0.8, result.Training.Proportion); Assert.AreEqual(0.2, result.Validation.Proportion); Assert.AreEqual(150, result.NumberOfSamples); Assert.AreEqual(75, result.AverageNumberOfSamples); }
void handleSeparateColors(ColorPicker cpa, UndoInfo fs, Button x) { Iris lr = cpa.getLeftRight(); TurnCanvas(lr.transform, true); string lt, rt; switch (PlayerPrefs.GetInt("Lang")) { case 1: //chinese lt = "左"; rt = "右"; break; case 2: //ja lt = "左"; rt = "右"; break; case 3: //rus lt = "слева"; rt = "направо"; break; case 4: //thai lt = "izquierda"; rt = "derecho"; break; case 5: //thai lt = "ไปทางซ้าย"; rt = "ทางขวา"; break; case 6: //thai lt = "gauche"; rt = "droite"; break; default: //english lt = "left"; rt = "right"; break; } lr.fillButtons(lt, rt, () => { fs.set.color = cpa.Color; }, () => { fs.set2.color = cpa.Color; } ); cpa.Color = fs.set.color; x.onClick.AddListener(() => { lr.gameObject.SetActive(false); TurnCanvas(lr.transform, false); }); cpa.gameObject.SetActive(true); cpa.Reset(); }
public double DistanceSquare(Iris another) { var DD1 = DIM1 - another.DIM1; var DD2 = DIM2 - another.DIM2; var DD3 = DIM3 - another.DIM3; var DD4 = DIM4 - another.DIM4; return(DD1 * DD1 + DD2 * DD2 + DD3 * DD3 + DD4 * DD4); }
public int PredictClass(Iris irisToClassify) { int predictedClass = int.MaxValue; float bestError = float.MaxValue; irisRecords.Add(irisToClassify); for (int i = 0; i < irisClassifiers.Count; i++) { irisRecords[^ 1].ClassificationLabel = irisClassifiers[i].ClassificationLabel;
public double Get(Iris a, Iris b) { double dist = Math.Sqrt(((a.sepallen - b.sepallen) * (a.sepallen - b.sepallen) + (a.sepalwid - b.sepalwid) * (a.sepalwid - b.sepalwid) + (a.petallen - b.petallen) * (a.petallen - b.petallen) + (a.petalwid - b.petalwid) * (a.petalwid - b.petalwid) )); return(dist); }
private float CalculateCategoryDistance(Iris classifier, Iris record) { float sumOfPropDistances = 0; sumOfPropDistances += (float)Math.Pow(classifier.PetalLength - record.PetalLength, 2); sumOfPropDistances += (float)Math.Pow(classifier.PetalWidth - record.PetalWidth, 2); sumOfPropDistances += (float)Math.Pow(classifier.SepalLength - record.SepalLength, 2); sumOfPropDistances += (float)Math.Pow(classifier.SepalWidth - record.SepalWidth, 2); return(sumOfPropDistances); }
public static void Main(string[] args) { //getting example data Iris iris = new Iris(); //we are creating training data arrays double[][] input = new double[147][]; int[] output = new int[147]; //we process 'Iris' data and delete 1 from each type for later test purpose int j = 0; for (int i = 0; i < 147; i++) { if (i != 0 || i != 50 || i != 100) { input[j] = new double[4]; output[j] = iris.ClassLabels[i]; for (int k = 0; k < 4; k++) { input[j][k] = iris.Instances[i][k]; } j++; } } //learning algorithm for decision tree C45Learning teacher = new C45Learning(new[] { DecisionVariable.Continuous(iris.VariableNames[0]), DecisionVariable.Continuous(iris.VariableNames[1]), DecisionVariable.Continuous(iris.VariableNames[2]), DecisionVariable.Continuous(iris.VariableNames[3]), }); //model learning DecisionTree tree = teacher.Learn(input, output); //If we would have some other irises we could just wrote like this //DecisionTree tree = teacher.Learn(iris.Instances, iris.ClassLabels); //but we prefer to left some for test purpose (to check if our programm is working fine) //testing our model double[][] test = { iris.Instances[0], iris.Instances[50], iris.Instances[100] }; int[] answers = tree.Decide(test); Console.WriteLine("Answer should be as follow:\n0,1,2,\nAnswer is:"); foreach (int ans in answers) { Console.Write(ans + ","); } Console.Write("\nPress any key to continue . . . "); Console.ReadKey(true); }
public void Iris_Naive_Bayes_Save_And_Load_Test() { var data = Iris.Load(); var description = Descriptor.Create <Iris>(); var generator = new NaiveBayesGenerator(2); var model = generator.Generate(description, data); Serialize(model); var lmodel = Deserialize <NaiveBayesModel>(); }
static void c_Message(Client sender, Iris.Irc.ServerMessages.Message message) { ircSettings i = iSettings[sender]; if (i.log == true) { } Console.WriteLine(message.Line); Console.Write("> "); }
public HttpResponseMessage Post(Data data) { JObject response = new JObject(); string logPath = System.Web.Hosting.HostingEnvironment.MapPath("~/Log/"); LogUtility ut = new LogUtility(logPath); try { //if(string.IsNullOrWhiteSpace(data.id) && (string.IsNullOrWhiteSpace(data.photo_one) || string.IsNullOrWhiteSpace(data.photo_two))) //{ // throw new Exception("id is required"); //} //else if (!("iris".Equals(data.type) || "face".Equals(data.type))) { throw new Exception("type is required and it should be iris or face."); } else if (string.IsNullOrWhiteSpace(data.photo_one) || string.IsNullOrWhiteSpace(data.photo_two)) { throw new Exception("photo_one and photo_two are required"); } //else if("face".Equals(data.type) && string.IsNullOrWhiteSpace(data.photo_one)) //{ // throw new Exception("photo_one is required if you are verifying face"); //} if ("iris".Equals(data.type)) { Iris iris = new Iris(); iris.PhotoOne = data.photo_one; iris.PhotoTwo = data.photo_two; float score = iris.Compare(); response.Add("score", score); } else if ("face".Equals(data.type)) { Face face = new Face(); face.PhotoOne = data.photo_one; face.PhotoTwo = data.photo_two; float score = face.Compare(); response.Add("score", score); } string s = response.ToString(Newtonsoft.Json.Formatting.None, null); ut.Write(data.type + " | Success", s, "Post", "/api/v1/compare", "OK"); return(Request.CreateResponse(HttpStatusCode.OK, response)); } catch (Exception ex) { response.Add("error", ex.Message); string s = response.ToString(Newtonsoft.Json.Formatting.None, null); ut.Write(data.type + " | Error", s, "Post", "/api/v1/compare", "Bad Request"); return(Request.CreateResponse(HttpStatusCode.BadRequest, response)); } }
public static DataTable Iris() { var iris = new Iris(); DataTable dt = ToDataTable(iris.ClassLabels, iris.ClassNames, iris.Instances, iris.VariableNames); dt.Rows[37]["sepalwidth"] = 3.6; dt.Rows[37]["petallength"] = 1.4; dt.Rows[34]["petalwidth"] = 0.2; return(dt); }
private void MutateIris() { int irisCount = irisRecords.Count; int classifiersCount = irisClassifiers.Count; irisIndexToMutate = seed.Next(irisCount); Iris toMutate = irisRecords[irisIndexToMutate]; oldIris = toMutate.Copy(toMutate); toMutate.ClassificationLabel = (toMutate.ClassificationLabel + seed.Next(classifiersCount)) % classifiersCount; }
public IEnumerable <Iris> Irises() { var kMeansCluster = new KMeansClustering(Iris.GetFromFile(), 3, 4); var kclusters = kMeansCluster.Start2(); List <Iris> irises = new List <Iris>(); for (int i = 0; i < 3; i++) { irises.AddRange(Iris.Convert(kclusters.ElementAt(i), Iris.irisNames[i], "")); } return(irises); }
public Welcome(Enter enter) { oEnter = enter; InitializeComponent(); LbVersion.Text = Program.VERSION; iris = new Iris(); PbLive.Hide(); Id = enter.Id; License = enter.License; Credits = enter.Credits; LblLincense.Text = "****" + oEnter.License.Substring(4, oEnter.License.Length - 4); LblCredits.Text = Credits.ToString(); }
public void Save_And_Load_Iris_DT() { var data = Iris.Load(); var description = Descriptor.Create <Iris>(); var generator = new DecisionTreeGenerator(50); var model = generator.Generate(description, data) as DecisionTreeModel; Serialize(model); var lmodel = Deserialize <DecisionTreeModel>(); Assert.AreEqual(model.Hint, lmodel.Hint); AreEqual(model.Tree, lmodel.Tree, false); }
public void Iris_Naive_Bayes_Save_And_Load_Test_Json() { var data = Iris.Load(); var description = Descriptor.Create <Iris>(); var generator = new NaiveBayesGenerator(2); var model = generator.Generate(description, data) as NaiveBayesModel; var file = GetPath(); Register.Type <Iris>(); var lmodel = SaveAndLoadJson(model); Assert.Equal(model.Root, lmodel.Root); }
static void Main(string[] args) { var Flower1 = new Iris("Pink", 20); var Flower2 = new Pion("Red", 22); var Flower3 = new Rose("Pink", 78); var Flower4 = new Iris("Blue", 23); var Flower5 = new Scaevola("Blue", 67); var Bouquet = new Bouquet(Flower1, Flower2, Flower3, Flower4, Flower5); System.Console.WriteLine("Bouquet information"); Bouquet.BouqetInfo(); }
public void RunAsync() { LoadData(); SetupClusterIndicators(); float oldError = CalculateError(); float error = float.PositiveInfinity; int epochs = 2000000; float temperature = 1f; float coolingFactor = .99999f; for (int i = 0; i < epochs; i++) { temperature *= coolingFactor; Mutate(); error = CalculateError(); if (AcceptanceProbability(oldError, error, temperature) > (float)seed.NextDouble()) // keep solution { oldError = error; } else if (error < oldError) { oldError = error; } else { RevertLastMutation(); } Console.WriteLine($"old error: {Math.Sqrt(oldError)} error: {Math.Sqrt(error)} temperature: {temperature}"); } Console.WriteLine("classification label, original label"); for (int i = 0; i < irisRecords.Count(); i++) { Console.WriteLine($"{irisRecords[i].ClassificationLabel}, {irisRecords[i].OriginalCategory} "); } Iris irisToClassify = new Iris {//5.0,3.5,1.6,0.6 OriginalCategory = "Should be a setosa", SepalLength = 5f, SepalWidth = 3.5f, PetalLength = 1.6f, PetalWidth = 0.6f }; int predictedClass = PredictClass(irisToClassify); Console.WriteLine($"predicted Class for last iris: {predictedClass}, {irisToClassify.ClassificationLabel}"); }
private void CsvParse(string pathFile) { using (TextFieldParser csvParser = new TextFieldParser(pathFile)) { csvParser.CommentTokens = new string[] { "#" }; csvParser.SetDelimiters(new string[] { "," }); csvParser.ReadLine(); while (!csvParser.EndOfData) { string[] fields = csvParser.ReadFields(); /*Iris iris = new Iris( * Convert.ToDouble(fields[1]), * Convert.ToDouble(fields[2]), * Convert.ToDouble(fields[3]), * Convert.ToDouble(fields[4])); */ Iris iris = new Iris( double.Parse(fields[1]), double.Parse(fields[2]), double.Parse(fields[3]), double.Parse(fields[4])); /*Iris iris = new Iris( * double.Parse(fields[1]), * double.Parse(fields[2]), * double.Parse(fields[3]), * double.Parse(fields[4]));*/ /*Iris iris = new Iris( * fields[1], * fields[2], * fields[3], * fields[4]);*/ /*Iris iris = new Iris( * double.Parse(fields[1].Replace('.', ',')), * double.Parse(fields[2].Replace('.', ',')), * double.Parse(fields[3].Replace('.', ',')), * double.Parse(fields[4].Replace('.', ',')));*/ //listOfIris.Add(iris); //listString.Add(fields[1]); } } }
public void Save_And_Load_Iris_DT_Json() { var data = Iris.Load(); var description = Descriptor.Create <Iris>(); var generator = new DecisionTreeGenerator(50); var model = generator.Generate(description, data) as DecisionTreeModel; var file = GetPath(); Register.Type <Iris>(); var lmodel = SaveAndLoadJson(model); Assert.Equal(model.Descriptor, lmodel.Descriptor); Assert.Equal(model.Hint, lmodel.Hint); Assert.Equal(model.Tree, lmodel.Tree); }
public List <Iris> InitData(string filename) { var reader = new StreamReader(File.OpenRead(filename)); List <Iris> output = new List <Iris>(); reader.ReadLine(); while (!reader.EndOfStream) { var line = reader.ReadLine(); line = line.Replace(",", "."); var values = line.Split(';'); Iris result_line = new Iris(Convert.ToDouble(values[0]), Convert.ToDouble(values[1]), Convert.ToDouble(values[2]), Convert.ToDouble(values[3]), values[4]); output.Add(result_line); } return(output); }
public void Iris_Tests() { // need to run multiple times since // this model is a bit more sensitive LearnerPrediction <Iris>( new NeuralNetworkGenerator(), Iris.Load(), new Iris { PetalWidth = 0.5m, PetalLength = 2.3m, SepalLength = 2.1m, SepalWidth = 2.1m }, i => "Iris-setosa".Sanitize() == i.Class ); }
///<summary> ///Cosine similarity between two specific points in the dataset. ///</summary> public double CosineSimilarity(Iris a, Iris b) { double dist1 = (a.sepallen * b.sepallen) + (a.sepalwid * b.sepalwid) + (a.petallen * b.petallen) + (a.petalwid * b.petalwid); double dist2 = Math.Sqrt( (a.sepallen * a.sepallen) + (a.sepalwid * a.sepalwid) + (a.petallen * a.petallen) + (a.petalwid * a.petalwid) ) * Math.Sqrt( (b.sepallen * b.sepallen) + (b.sepalwid * b.sepalwid) + (b.petallen * b.petallen) + (b.petalwid * b.petalwid) ); return(dist1 / dist2); }
private void sampleing() { testData_id = getTestData(); // get records randomly int count = 0; string line; // read iris dataset System.IO.StreamReader file = new System.IO.StreamReader(filepath); while ((line = file.ReadLine()) != null) { string[] tmparr = line.Split(new Char[] { ',', '\t' }); if (testData_id.Contains(count)) { Iris test = new Iris(); test.s_length = Convert.ToSingle(tmparr[0]); test.s_width = Convert.ToSingle(tmparr[1]); test.p_length = Convert.ToSingle(tmparr[2]); test.p_width = Convert.ToSingle(tmparr[3]); test.iris_class = tmparr[4]; testData.Add(test); DataGridViewRow Row = new DataGridViewRow(); Row.CreateCells(dataGridView1); Row.Cells[dataGridView1.Columns["s_length"].Index].Value = tmparr[0]; Row.Cells[dataGridView1.Columns["s_width"].Index].Value = tmparr[1]; Row.Cells[dataGridView1.Columns["p_length"].Index].Value = tmparr[2]; Row.Cells[dataGridView1.Columns["p_width"].Index].Value = tmparr[3]; Row.Cells[dataGridView1.Columns["iris_class"].Index].Value = tmparr[4]; dataGridView1.Rows.Add(Row); } Iris data = new Iris(); data.s_length = Convert.ToSingle(tmparr[0]); data.s_width = Convert.ToSingle(tmparr[1]); data.p_length = Convert.ToSingle(tmparr[2]); data.p_width = Convert.ToSingle(tmparr[3]); data.iris_class = tmparr[4]; dataSet.Add(data); count++; } }
partial void IndexOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.ForgottenPasswordModel model);
partial void EditOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.AdminModel.EditLabelModel labelModel);
partial void DataTableOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, string term, int page, int count, Iris.Servicelayer.EFServices.Enums.Order order, Iris.Servicelayer.EFServices.Enums.LabelOrderBy orderBy, Iris.Servicelayer.EFServices.Enums.LabelSearchBy searchBy);
public override System.Web.Mvc.ActionResult Edit(Iris.DomainClasses.Entities.Category model) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.Edit); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "model", model); EditOverride(callInfo, model); return callInfo; }
public override System.Web.Mvc.ActionResult Add(Iris.DomainClasses.Entities.Category category) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.Add); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "category", category); AddOverride(callInfo, category); return callInfo; }
partial void SubmitOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.ContactUsModel model);
partial void EditOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.AdminModel.AddUpdateArticleModel model);
public override System.Web.Mvc.ActionResult Add(Iris.Model.AdminModel.AddUpdateArticleModel model) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.Add); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "model", model); AddOverride(callInfo, model); return callInfo; }
partial void RegisterOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.RegisterModel model);
partial void GetPostDataTableOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, int page, int count, Iris.Servicelayer.EFServices.Enums.Order order, Iris.Servicelayer.EFServices.Enums.PostOrderBy orderBy);
public override System.Web.Mvc.ActionResult GetPostDataTable(int page, int count, Iris.Servicelayer.EFServices.Enums.Order order, Iris.Servicelayer.EFServices.Enums.PostOrderBy orderBy) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.GetPostDataTable); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "page", page); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "count", count); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "order", order); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "orderBy", orderBy); GetPostDataTableOverride(callInfo, page, count, order, orderBy); return callInfo; }
partial void AddPostOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.AdminModel.AddPostModel postModel);
public byte[] CameraIrisSwitch(uint deviceAddress,Iris action) { return Message.GetMessage(deviceAddress,(byte)action,0x00,0x00,0x00); }
public override System.Web.Mvc.ActionResult AddUser(Iris.Model.AdminModel.AddUserModel userModel) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.AddUser); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "userModel", userModel); AddUserOverride(callInfo, userModel); return callInfo; }
partial void EditUserOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.AdminModel.EditUserModel userModel);
public override System.Web.Mvc.ActionResult UpdateProfile(Iris.Model.EditProfileModel model) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.UpdateProfile); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "model", model); UpdateProfileOverride(callInfo, model); return callInfo; }
public override System.Web.Mvc.ActionResult Submit(Iris.Model.ContactUsModel model) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.Submit); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "model", model); SubmitOverride(callInfo, model); return callInfo; }
partial void UpdateProfileOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.EditProfileModel model);
partial void EditOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.DomainClasses.Entities.Category model);
public override System.Web.Mvc.ActionResult LogOn(Iris.Model.LogOnModel model, string returnUrl) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.LogOn); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "model", model); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "returnUrl", returnUrl); LogOnOverride(callInfo, model, returnUrl); return callInfo; }
private void data_preprocessing() { System.IO.StreamReader file = new System.IO.StreamReader(filepath); int count = 0; string line; while ((line = file.ReadLine()) != null) // read iris dataset { string[] tmparr = line.Split(new Char[] { ',', '\t' }); Iris data = new Iris(); data.s_length = Convert.ToSingle(tmparr[0]); data.s_width = Convert.ToSingle(tmparr[1]); data.p_length = Convert.ToSingle(tmparr[2]); data.p_width = Convert.ToSingle(tmparr[3]); data.iris_class = tmparr[4]; dataSet.Add(data); count++; } cal_mean(); cal_variance(); showToDatagried(); }
partial void LogOnOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, Iris.Model.LogOnModel model, string returnUrl);
public override System.Web.Mvc.ActionResult Send(Iris.Model.AdminModel.SendingMailModel mailModel) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.Send); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "mailModel", mailModel); SendOverride(callInfo, mailModel); return callInfo; }
partial void AutoCompleteSearchOverride(T4MVC_System_Web_Mvc_ActionResult callInfo, string term, Iris.Servicelayer.EFServices.Enums.UserSearchBy searchBy);
public override System.Web.Mvc.ActionResult DataTable(string term, int page, int count, Iris.Servicelayer.EFServices.Enums.Order order, Iris.Servicelayer.EFServices.Enums.LabelOrderBy orderBy, Iris.Servicelayer.EFServices.Enums.LabelSearchBy searchBy) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.DataTable); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "term", term); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "page", page); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "count", count); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "order", order); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "orderBy", orderBy); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "searchBy", searchBy); DataTableOverride(callInfo, term, page, count, order, orderBy, searchBy); return callInfo; }
public override System.Web.Mvc.ActionResult AutoCompleteSearch(string term, Iris.Servicelayer.EFServices.Enums.UserSearchBy searchBy) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.AutoCompleteSearch); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "term", term); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "searchBy", searchBy); AutoCompleteSearchOverride(callInfo, term, searchBy); return callInfo; }
public override System.Web.Mvc.ActionResult Edit(Iris.Model.AdminModel.EditLabelModel labelModel) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.Edit); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "labelModel", labelModel); EditOverride(callInfo, labelModel); return callInfo; }
public override System.Web.Mvc.ActionResult Index(Iris.Model.ForgottenPasswordModel model) { var callInfo = new T4MVC_System_Web_Mvc_ActionResult(Area, Name, ActionNames.Index); ModelUnbinderHelpers.AddRouteValues(callInfo.RouteValueDictionary, "model", model); IndexOverride(callInfo, model); return callInfo; }