/// <summary>
        /// Attempts a calibration through <see cref="SwaptionHW1OptimizationProblem"/>
        /// using swaption matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            LambdaCalibrationSettings lsettings = (LambdaCalibrationSettings)settings;

            if (lsettings.Years > lsettings.BondMaturity)
            {
                throw new Exception("Bond maturity has to be greater of the historical series time span.");
            }

            InterestRateMarketData irmd     = data[0] as InterestRateMarketData;
            List <object>          IrmdData = new List <object>();

            IrmdData.Add(irmd);
            CapletEstimator  CapEst = new CapletEstimator();
            EstimationResult er1    = CapEst.Estimate(IrmdData);

            DiscountingCurveMarketData[] dcmd = Array.ConvertAll <IMarketData, DiscountingCurveMarketData>
                                                    ((IMarketData[])data[1], el => (DiscountingCurveMarketData)el);
            MarketPriceOfRiskCalculator mporc = new MarketPriceOfRiskCalculator();
            double lambda = mporc.Calculate(dcmd, lsettings);

            string[] names = new string[er1.Names.Length + 1];
            for (int i = 0; i < er1.Names.Length; i++)
            {
                names[i] = er1.Names[i];
            }
            names[er1.Names.Length] = "lambda0";
            Vector values = new Vector(er1.Values.Length + 1);

            values[new Range(0, values.Length - 2)] = (Vector)er1.Values;
            values[Range.End] = lambda;
            EstimationResult result = new EstimationResult(names, values);

            return(result);
        }
        /// <summary>
        /// Constructor for the Cox-Ingersoll-Ross Calibration Problem based on caps matrices,
        /// using an <see cref="InterestRateMarketData"/> to derive the required data.
        /// </summary>
        /// <param name="irmd">
        /// An <see cref="InterestRateMarketData"/> containing the
        /// required information for the optimization problem.
        /// </param>
        public CapCIROptimizationProblem(InterestRateMarketData irmd)
        {
            this.capMaturity = irmd.CapMaturity;
            this.capRate     = irmd.CapRate;
            this.tau         = irmd.CapTenor;

            PFunction zr = new PFunction(null);

            zr.m_Function.iType = DVPLUtils.EInterpolationType.LINEAR;
            double[,] zrval     = (double[, ])ArrayHelper.Concat(irmd.ZRMarketDates.ToArray(),
                                                                 irmd.ZRMarket.ToArray());
            zr.Expr = zrval;

            this.r0 = zr.Evaluate(0.0);

            BlackModel bm = new BlackModel(zr);

            this.blackCaps = new Matrix(this.capMaturity.Length, this.capRate.Length);
            for (int i = 0; i < this.capMaturity.Length; i++)
            {
                for (int j = 0; j < this.capRate.Length; j++)
                {
                    if (irmd.CapVolatility[i, j] == 0)
                    {
                        this.blackCaps[i, j] = 0;
                    }
                    else
                    {
                        this.blackCaps[i, j] = bm.Cap(this.capRate[j], irmd.CapVolatility[i, j],
                                                      this.tau, this.capMaturity[i]);
                    }

                    if (double.IsNaN(this.blackCaps[i, j]))
                    {
                        throw new Exception("Error on cap market price calculation");
                    }
                }
            }
        }
예제 #3
0
        public void TestCalibration()
        {
            InterestRateMarketData IData = InterestRateMarketData.FromFile("../../TestData/IRMD-sample.xml");
            CallPriceMarketData    HData = CallPriceMarketData.FromFile("../../TestData/CallData-sample.xml");
            //InterestRateMarketData IData = InterestRateMarketData.FromFile("../../../EquityModels.Tests/TestData/IRMD-EU-30102012-close.xml");
            //CallPriceMarketData HData = CallPriceMarketData.FromFile("../../../EquityModels.Tests/TestData/30102012-SX5E_Index-HestonData.xml");
            //CallPriceMarketData HData = ObjectSerialization.ReadFromXMLFile("../../../EquityModels.Tests/TestData/FTSE.xml") as CallPriceMarketData;


            List <object> l = new List <object>();

            l.Add(IData.DiscountingCurve);
            l.Add(HData);

            DupireEstimator           DE       = new DupireEstimator();
            DupireCalibrationSettings settings = new DupireCalibrationSettings();

            settings.LocalVolatilityCalculation = LocalVolatilityCalculation.Method1;


            //settings.LocalVolatilityCalculation = LocalVolatilityCalculation.QuantLib;
            EstimationResult res = DE.Estimate(l, settings);
            //int nmat = HData.Maturity.Length;
            //int nstrike = HData.Strike.Length;

            int i = 5; // Maturity.
            int j = 4; // Strike.

            Engine.MultiThread = true;

            Document   doc = new Document();
            ProjectROV rov = new ProjectROV(doc);

            doc.Part.Add(rov);
            doc.DefaultProject.NMethods.m_UseAntiteticPaths = true;
            int    n_sim   = 10000;
            int    n_steps = 500;
            double strike  = HData.Strike[j];
            //double volatility = HData.Volatility[i, j];

            /*
             * PFunction2D.PFunction2D impvolfunc = new PFunction2D.PFunction2D(rov);
             * impvolfunc = res.Objects[3] as PFunction2D.PFunction2D;
             * impvolfunc.VarName = "impvol";
             * rov.Symbols.Add(impvolfunc);
             * double volatility = impvolfunc.Evaluate(HData.Maturity[i], HData.Strike[j]);
             */
            double volatility = 0.2;
            double maturity   = HData.Maturity[i];

            ModelParameter Pstrike = new ModelParameter(strike, string.Empty, "strike");

            rov.Symbols.Add(Pstrike);
            AFunction payoff = new AFunction(rov);

            payoff.VarName = "payoff";
            payoff.m_IndependentVariables = 1;
            payoff.m_Value = (RightValue)("max(x1 - strike ; 0)");
            rov.Symbols.Add(payoff);

            bool           found;
            double         S0  = PopulateHelper.GetValue("S0", res.Names, res.Values, out found);
            ModelParameter PS0 = new ModelParameter(S0, string.Empty, "S0");

            rov.Symbols.Add(PS0);
            PFunction rfunc = new PFunction(rov);

            rfunc         = res.Objects[0] as PFunction;
            rfunc.VarName = "r";
            rov.Symbols.Add(rfunc);

            PFunction qfunc = new PFunction(rov);

            qfunc         = res.Objects[1] as PFunction;
            qfunc.VarName = "q";
            rov.Symbols.Add(qfunc);

            PFunction2D.PFunction2D volfunc = new PFunction2D.PFunction2D(rov);
            volfunc         = res.Objects[2] as PFunction2D.PFunction2D;
            volfunc.VarName = "localvol";
            rov.Symbols.Add(volfunc);
            DupireProcess process = new DupireProcess();

            process.s0       = (ModelParameter)"S0";
            process.r        = (ModelParameter)"@r";
            process.q        = (ModelParameter)"@q";
            process.localVol = (ModelParameter)"@localvol";
            double rate = rfunc.Evaluate(maturity);
            double dy   = qfunc.Evaluate(maturity);

            StochasticProcessExtendible s = new StochasticProcessExtendible(rov, process);

            rov.Processes.AddProcess(s);

            // Set the discounting.
            RiskFreeInfo rfi = rov.GetDiscountingModel() as RiskFreeInfo;

            rfi.ActualizationType = EActualizationType.RiskFree;
            rfi.m_deterministicRF = rate;
            OptionTree op = new OptionTree(rov);

            op.PayoffInfo.PayoffExpression          = "payoff(v1)";
            op.PayoffInfo.Timing.EndingTime.m_Value = (RightValue)maturity;
            op.PayoffInfo.European = true;
            rov.Map.Root           = op;

            rov.NMethods.Technology      = ETechType.T_SIMULATION;
            rov.NMethods.PathsNumber     = n_sim;
            rov.NMethods.SimulationSteps = n_steps;
            ROVSolver solver = new ROVSolver();

            solver.BindToProject(rov);
            solver.DoValuation(-1);
            if (rov.HasErrors)
            {
                rov.DisplayErrors();
            }

            Assert.IsFalse(rov.HasErrors);
            ResultItem price       = rov.m_ResultList[0] as ResultItem;
            double     samplePrice = price.value;
            double     sampleDevSt = price.stdDev / Math.Sqrt((double)n_sim);

            Console.WriteLine("Surf = " + volfunc.Expr);

            // Calculation of the theoretical value of the call.
            double theoreticalPrice = BlackScholes.Call(rate, S0, strike, volatility, maturity, dy);

            Console.WriteLine("Theoretical Price  = " + theoreticalPrice.ToString());
            Console.WriteLine("Monte Carlo Price  = " + samplePrice);
            Console.WriteLine("Standard Deviation = " + sampleDevSt.ToString());
            double tol = 4.0 * sampleDevSt;

            doc.WriteToXMLFile("Dupire.fair");
            Assert.LessOrEqual(Math.Abs(theoreticalPrice - samplePrice), tol);
        }
        /// <summary>
        /// Attempts a calibration through <see cref="PelsserCappletOptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset   = data[0] as InterestRateMarketData;
            MatrixMarketData       normalVol = null;

            if (data.Count > 1)
            {
                normalVol = (MatrixMarketData)data[1];
            }
            EstimationResult result;

            if ((dataset.ZRMarket == null) || (dataset.CapVolatility == null))
            {
                result = new EstimationResult();
                result.ErrorMessage = "Not enough data to calibrate.\n" +
                                      "The estimator needs a ZRMarket and a CapVolatility " +
                                      "defined inside InterestRateMarketData";
                return(result);
            }

            // Backup the dates
            DateTime effectiveDate = DateTime.Now.Date;
            DateTime valuationDate = DateTime.Now.Date;

            if (Document.ActiveDocument != null)
            {
                effectiveDate = Document.ActiveDocument.ContractDate;
                valuationDate = Document.ActiveDocument.SimulationStartDate;
            }

            // Creates the Context.
            Document   doc = new Document();
            ProjectROV prj = new ProjectROV(doc);

            doc.Part.Add(prj);

            Function zr = new PFunction(null);

            zr.VarName = "zr";
            // Load the zr.
            double[,] zrvalue = (double[, ])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr           = zrvalue;

            prj.Symbols.Add(zr);


            var bm = BlackModelFactory(zr);

            if (bm is BachelierNormalModel)
            {
                (bm as BachelierNormalModel).Tenor = dataset.CapTenor;
            }

            double deltak = dataset.CapTenor;


            Matrix capVol = normalVol != null ? normalVol.Values:dataset.CapVolatility;
            Vector capMat = normalVol != null ? normalVol.RowValues: dataset.CapMaturity;
            Vector capK   = normalVol != null ? normalVol.ColumnValues: dataset.CapRate;

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Matrix calculated with black.
            var blackCaps = new Matrix(capMat.Length, capK.Length);

            for (int m = 0; m < capMat.Length; m++)
            {
                for (int s = 0; s < capK.Length; s++)
                {
                    bool skip = false;
                    if (preferences != null)
                    {
                        if (capK[s] < preferences.MinCapRate || capK[s] > preferences.MaxCapRate ||
                            capMat[m] < preferences.MinCapMaturity || capMat[m] > preferences.MaxCapMaturity)
                        {
                            skip = true;
                        }
                    }

                    if (capVol[m, s] == 0 || skip)
                    {
                        blackCaps[m, s] = 0;
                    }
                    else
                    {
                        blackCaps[m, s] = bm.Cap(capK[s], capVol[m, s], deltak, capMat[m]);
                    }
                }
            }

            if (blackCaps.IsNaN())
            {
                Console.WriteLine("Black caps matrix has non real values:");
                Console.WriteLine(blackCaps);
                throw new Exception("Cannot calculate Black caps");
            }

            // Maturity goes from 0 to the last item with step deltaK.
            Vector maturity = new Vector((int)(1.0 + capMat[capMat.Length - 1] / deltak));

            for (int l = 0; l < maturity.Length; l++)
            {
                maturity[l] = deltak * l;
            }

            Vector fwd = new Vector(maturity.Length - 1);

            for (int i = 0; i < fwd.Length; i++)
            {
                fwd[i] = bm.Fk(maturity[i + 1], deltak);
            }

            // Creates a default Pelsser model.
            Pelsser.SquaredGaussianModel model = new Pelsser.SquaredGaussianModel();
            model.a1     = (ModelParameter)0.014;
            model.sigma1 = (ModelParameter)0.001;
            model.zr     = (ModelParameter)"@zr";
            StochasticProcessExtendible iex = new StochasticProcessExtendible(prj, model);

            prj.Processes.AddProcess(iex);

            prj.Parse();

            DateTime t0 = DateTime.Now;
            Caplet   cp = new Caplet();

            PelsserCappletOptimizationProblem problem = new PelsserCappletOptimizationProblem(prj, cp, maturity, fwd, capK, deltak, capMat, blackCaps);

            IOptimizationAlgorithm solver  = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP         = 35;
            o.TargetCost = 0.0025;
            o.MaxIter    = 10;
            o.Verbosity  = Math.Max(1, Engine.Verbose);
            o.controller = controller;
            // Parallel evaluation is not supported for this calibration.
            o.Parallel = false;
            o.Debug    = true;
            SolutionInfo solution = null;

            Vector x0 = (Vector) new double[] { 0.1, 0.1 };

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            o.epsilon   = 10e-7;
            o.h         = 10e-7;
            o.MaxIter   = 1000;
            o.Debug     = true;
            o.Verbosity = Math.Max(1, Engine.Verbose);

            if (solution != null)
            {
                solution = solver2.Minimize(problem, o, solution.x);
            }
            else
            {
                solution = solver2.Minimize(problem, o, x0);
            }

            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            Console.WriteLine(solution);

            string[] names = new string[] { "alpha1", "sigma1" };
            result = new EstimationResult(names, solution.x);

            result.ZRX        = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY        = (double[])dataset.ZRMarket.ToArray();
            result.Objects    = new object[1];
            result.Objects[0] = solution.obj;
            //result.Fit = solution.obj;//Uncomment in 1.6
            // Restore the dates
            if (Document.ActiveDocument != null)
            {
                Document.ActiveDocument.ContractDate        = effectiveDate;
                Document.ActiveDocument.SimulationStartDate = valuationDate;
            }

            return(result);
        }
예제 #5
0
        /// <summary>
        /// Attempts a calibration through <see cref="SwaptionHW1OptimizationProblem"/>
        /// using swaption matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset   = data[0] as InterestRateMarketData;
            MatrixMarketData       normalVol = null;

            if (data.Count > 1)
            {
                normalVol = (MatrixMarketData)data[1];
            }

            PFunction zr = new PFunction(null);

            // Loads the zero rate.
            double[,] zrvalue = (double[, ])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr           = zrvalue;

            double deltak = dataset.SwaptionTenor;

            Console.WriteLine("Swaption Tenor\t" + dataset.SwaptionTenor);

            var swaptionsFiltering = settings as SwaptionsFiltering;

            if (swaptionsFiltering == null)
            {
                swaptionsFiltering = new SwaptionsFiltering();//creates a default
            }
            //F stands for Full matrix
            var optionMaturityF      = normalVol != null ? normalVol.RowValues: dataset.OptionMaturity;
            var swapDurationF        = normalVol != null ? normalVol.ColumnValues: dataset.SwapDuration;
            var swaptionsVolatilityF = normalVol != null ? normalVol.Values: dataset.SwaptionsVolatility;

            int maturitiesCount = optionMaturityF.Count(x => x >= swaptionsFiltering.MinSwaptionMaturity && x <= swaptionsFiltering.MaxSwaptionMaturity);
            int durationsCount  = swapDurationF.Count(x => x >= swaptionsFiltering.MinSwapDuration && x <= swaptionsFiltering.MaxSwapDuration);


            Console.WriteLine(string.Format("Calibrating on {0} swaptions prices [#maturiries x #durations]=[{1} x {2}]", maturitiesCount * durationsCount, maturitiesCount, durationsCount));

            if (maturitiesCount * durationsCount == 0)
            {
                return(new EstimationResult("No swaptions satisfying criteria found, please relax filters"));
            }

            //reduced version
            var swaptionsVolatility = new Matrix(maturitiesCount, durationsCount); // dataset.SwaptionsVolatility;
            var optionMaturity      = new Vector(maturitiesCount);                 // dataset.OptionMaturity;
            var swapDuration        = new Vector(durationsCount);                  // dataset.SwapDuration;


            //Build filtered matrix and vectors
            int fm = 0;

            for (int m = 0; m < optionMaturityF.Length; m++)
            {
                int fd = 0;
                if (optionMaturityF[m] >= swaptionsFiltering.MinSwaptionMaturity && optionMaturityF[m] <= swaptionsFiltering.MaxSwaptionMaturity)
                {
                    for (int d = 0; d < swapDurationF.Length; d++)
                    {
                        if (swapDurationF[d] >= swaptionsFiltering.MinSwapDuration && swapDurationF[d] <= swaptionsFiltering.MaxSwapDuration)
                        {
                            swaptionsVolatility[fm, fd] = swaptionsVolatilityF[m, d];
                            swapDuration[fd]            = swapDurationF[d];
                            fd++;
                        }
                    }

                    optionMaturity[fm] = optionMaturityF[m];
                    fm++;
                }
            }

            var swbm = new SwaptionsBlackModel(zr, BlackModelFactory(zr));

            Matrix fsr;
            var    blackSwaptionPrice = 1000.0 * swbm.SwaptionsSurfBM(optionMaturity, swapDuration, swaptionsVolatility, deltak, out fsr);


            Console.WriteLine("Maturities\t" + optionMaturity);
            Console.WriteLine("swapDuration\t" + swapDuration);
            Console.WriteLine("SwaptionHWEstimator: Black model prices");
            Console.WriteLine(blackSwaptionPrice);

            SwaptionHW1 swhw1 = new SwaptionHW1(zr);
            SwaptionHW1OptimizationProblem problem = new SwaptionHW1OptimizationProblem(swhw1, blackSwaptionPrice, optionMaturity, swapDuration, deltak);

            IOptimizationAlgorithm solver  = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP         = 20;
            o.MaxIter    = 5;
            o.Verbosity  = 1;
            o.controller = controller;
            SolutionInfo solution = null;

            Vector x0 = new Vector(new double[] { 0.1, 0.1 });

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            o.epsilon = 10e-8;
            o.h       = 10e-8;
            o.MaxIter = 1000;

            // We can permit this, given it is fast.
            o.accourate_numerical_derivatives = true;

            if (solution != null)
            {
                solution = solver2.Minimize(problem, o, solution.x);
            }
            else
            {
                solution = solver2.Minimize(problem, o, x0);
            }
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };

            Console.WriteLine("SwaptionHWEstimator: hw model prices and error");
            problem.Obj(solution.x, true);

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            double obj = problem.Obj(solution.x);

            return(result);
        }
예제 #6
0
        /// <summary>
        /// Attempts a calibration through <see cref="CapsHW1OptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            PFunction zr = new PFunction(null);

            zr.VarName = "zr";

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Loads ZR
            double[,] zrvalue = (double[, ])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr           = zrvalue;

            BlackModel bm = new BlackModel(zr);

            double deltak = dataset.CapTenor;

            if (dataset.CapVolatility == null)
            {
                return(new EstimationResult("Cap not available at requested date"));
            }


            Matrix capVolatility = dataset.CapVolatility;
            Vector capMaturity   = dataset.CapMaturity;
            Vector capRate       = dataset.CapRate;
            double a             = 0.1;
            double sigma         = 0.1;

            // Matrix calculated with Black.
            Matrix blackCaps = new Matrix(capMaturity.Length, capRate.Length);
            Matrix logic     = new Matrix(capMaturity.Length, capRate.Length);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    blackCaps[m, s] = bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                    if (double.IsNaN(blackCaps[m, s]))
                    {
                        bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                        throw new Exception("Malformed black caps");
                    }

                    if (blackCaps[m, s] == 0.0)
                    {
                        logic[m, s] = 0.0;
                    }
                    else
                    {
                        logic[m, s] = 1.0;
                    }

                    //filter
                    if (preferences != null)
                    {
                        if (capRate[s] < preferences.MinCapRate || capRate[s] > preferences.MaxCapRate ||
                            capMaturity[m] < preferences.MinCapMaturity || capMaturity[m] > preferences.MaxCapMaturity)
                        {
                            logic[m, s] = 0; blackCaps[m, s] = 0;
                        }
                    }
                }
            }

            DateTime t0      = DateTime.Now;
            CapHW1   hw1Caps = new CapHW1(zr);
            Matrix   caps    = hw1Caps.HWMatrixCaps(capMaturity, capRate, a, sigma, deltak);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    caps[m, s] = logic[m, s] * caps[m, s];
                }
            }

            CapsHW1OptimizationProblem problem = new CapsHW1OptimizationProblem(hw1Caps, blackCaps, capMaturity, capRate, deltak);
            Vector provaparam = new Vector(2);

            var solver = new QADE();

            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP        = 20;
            o.MaxIter   = 10;
            o.Verbosity = 1;
            o.Parallel  = false;
            SolutionInfo solution = null;
            Vector       x0       = new Vector(new double[] { 0.05, 0.01 });

            o.controller = controller;
            solution     = solver.Minimize(problem, o, x0);

            o.epsilon = 10e-8;
            o.h       = 10e-8;


            o.MaxIter = 100;
            solution  = solver2.Minimize(problem, o, solution.x);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };


            //solution.x[0] *= 3;

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            return(result);
        }
예제 #7
0
        public static void Main(string[] args)
        {
            int Caso = 1;

            if (Caso == 0)
            {
                InterestRateMarketData MData   = InterestRateMarketData.FromFile("../../../TestData/InterestRatesModels/05052009-EU.xml");
                CallPriceMarketData    test    = CallPriceMarketData.FromFile("../../../TestData/Heston/05052009-SX5E-HestonData.xml");
                EquityCalibrationData  CalData = new EquityCalibrationData(test, MData);

                Matrix CallMarketPrice = (Matrix)test.CallPrice;
                Vector Maturity        = (Vector)test.Maturity;
                Vector Strike          = (Vector)test.Strike;
                Vector DividendYield   = (Vector)test.DividendYield;
                Vector Drift           = CalData.Rate - CalData.DividendYield;
                Vector Rate            = CalData.Rate;

                double u, kappa, theta, sigma, rho, v0, s0, r, q, T, K, val;
                u     = 1.0;
                kappa = 19.4;
                theta = 0.235;
                sigma = 0.00500999;
                rho   = -0.96;
                v0    = 0.664;
                s0    = 3872.15;
                r     = -0.0867303549580581;
                q     = 0;
                T     = 0.50;
                K     = 6000;
                Vector MatBound    = new Vector(2);
                Vector StrikeBound = new Vector(2);
                MatBound[0]    = 0.0;
                MatBound[1]    = 2.0;
                StrikeBound[0] = 0.7;
                StrikeBound[1] = 1.3;
                Matrix Volatility = new Matrix(test.CallPrice.R, test.CallPrice.C);
                HestonCallOptimizationProblem HP = new HestonCallOptimizationProblem(CallMarketPrice, Maturity, Strike, Rate, DividendYield, test.S0, MatBound, StrikeBound, Volatility);
                Complex Cval, Cu;
                Cu = u - Complex.I;
                HestonCall hc = new HestonCall(HP);

                Cval = hc.phi(u, kappa, theta, sigma, rho, s0, v0, r, T);
                Console.WriteLine("phi1 = {0}", Cval);
                Cval = hc.phi(Cu, kappa, theta, sigma, rho, s0, v0, r, T);
                Console.WriteLine("phi2 = {0}", Cval);
                val = hc.IntegrandFunc(u, kappa, theta, sigma, rho, s0, v0, r, q, T, K);
                Console.WriteLine("IntFunc = {0}", val);

                Vector x = new Vector(5);
                x[0] = kappa;
                x[1] = theta;
                x[2] = sigma;
                x[3] = rho;
                x[4] = v0;

                DateTime T1, T2;
                TimeSpan ElapsedTime;
                double   Time, Time2, Time3;

                T1          = DateTime.Now;
                val         = hc.HestonCallPrice(x, s0, T, K, r, q);
                T2          = DateTime.Now;
                ElapsedTime = T2 - T1;
                Time        = (double)ElapsedTime.Milliseconds;
                Time2       = (double)ElapsedTime.Seconds;
                Console.WriteLine("Price = {0}", val);
                Console.WriteLine("Elapsed Time = {0}", Time2 + Time / 1000);

                int    NProve = 10;
                int    NPassi = 1000;
                double val2;
                Random CasNum = new Random();
                for (int i = 0; i < NProve; i++)
                {
                    for (int j = 0; j < 5; j++)
                    {
                        val2 = ((double)CasNum.Next(0, NPassi)) / ((double)NPassi);
                        x[j] = HP.Bounds.Lb[j] + (HP.Bounds.Ub[j] - HP.Bounds.Lb[j]) * val2;
                    }
                    Console.Write("Trial {0}  x = " + x.ToString(), i + 1);
                    T1          = DateTime.Now;
                    val         = HP.Obj(x);
                    T2          = DateTime.Now;
                    ElapsedTime = T2 - T1;
                    Time        = (double)ElapsedTime.Milliseconds;
                    Time2       = (double)ElapsedTime.Seconds;
                    Time3       = (double)ElapsedTime.Minutes;
                    Console.WriteLine("  Time = {0}' {1}'' Val = {2}", Time3, Time2 + Time / 1000, val);
                }
            }
            if (Caso == 1)
            {
                TestHestonCallEstimation NewTest = new TestHestonCallEstimation();
                bool Result = NewTest.Run();
            }
        }
예제 #8
0
        /// <summary>
        /// Attempts a calibration through <see cref="CapsCIROptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">A controller used for the optimization process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            // Creates the context.
            Document   doc = new Document();
            ProjectROV prj = new ProjectROV(doc);

            doc.Part.Add(prj);

            CapCIROptimizationProblem problem = new CapCIROptimizationProblem(dataset);
            IOptimizationAlgorithm    solver  = new QADE();
            IOptimizationAlgorithm    solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP         = 50;
            o.MaxIter    = 50;
            o.Verbosity  = 1;
            o.Parallel   = false;
            o.controller = controller;
            SolutionInfo solution = null;

            Vector x0 = new Vector(new double[] { 1, 0.01, 0.05 });

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            o.epsilon = 10e-10;
            o.h       = 10e-10;
            o.MaxIter = 1000;

            if (solution != null)
            {
                solution = solver2.Minimize(problem, o, solution.x);
            }
            else
            {
                solution = solver2.Minimize(problem, o, x0);
            }

            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names  = CIR.parameterNames;
            Vector   values = new Vector(4);

            values[Range.New(0, 2)] = solution.x;
            values[3] = problem.r0;

            EstimationResult result = new EstimationResult(names, values);

            return(result);
        }
        /// <summary>
        /// Constructor for the Cox-Ingersoll-Ross Calibration Problem based on caps matrices,
        /// using an <see cref="InterestRateMarketData"/> to derive the required data.
        /// </summary>
        /// <param name="irmd">
        /// An <see cref="InterestRateMarketData"/> containing the
        /// required information for the optimization problem.
        /// </param>
        public CapCIROptimizationProblem(InterestRateMarketData irmd)
        {
            this.capMaturity = irmd.CapMaturity;
            this.capRate = irmd.CapRate;
            this.tau = irmd.CapTenor;

            PFunction zr = new PFunction(null);
            zr.m_Function.iType = DVPLUtils.EInterpolationType.LINEAR;
            double[,] zrval = (double[,])ArrayHelper.Concat(irmd.ZRMarketDates.ToArray(),
                                                            irmd.ZRMarket.ToArray());
            zr.Expr = zrval;

            this.r0 = zr.Evaluate(0.0);

            BlackModel bm = new BlackModel(zr);
            this.blackCaps = new Matrix(this.capMaturity.Length, this.capRate.Length);
            for (int i = 0; i < this.capMaturity.Length; i++)
            {
                for (int j = 0; j < this.capRate.Length; j++)
                {
                    if (irmd.CapVolatility[i, j] == 0)
                        this.blackCaps[i, j] = 0;
                    else
                        this.blackCaps[i, j] = bm.Cap(this.capRate[j], irmd.CapVolatility[i, j],
                                                      this.tau, this.capMaturity[i]);

                    if (double.IsNaN(this.blackCaps[i, j]))
                        throw new Exception("Error on cap market price calculation");
                }
            }
        }