public void CreateReport(Guid reportId)
        {
            this.logger.LogInformation($"Starting to process {reportId}");

            var report = context.Reports.Single(x => x.Id == reportId);

            var result = shell.Run(_commandLineResolver.GetKlarCommand(imageName: report.Image));

            try
            {
                var asObject = JObject.Parse(result);

                report.Vulnerabilities = asObject["Vulnerabilities"]
                                         .SelectMany(x => x.Children()) // High, low, unknown ...
                                         .SelectMany(x => x.Children())
                                         .Select(x => x.ToObject <VulnerabilityModel>())
                                         .ToList();

                logger.LogInformation($"Processed {reportId}");

                report.Processed = true;

                context.SaveChanges();
            }
            catch (Exception ex)
            {
                logger.LogError($"{ex} occurred during parsing report '{reportId}', output of klar was {result}");
                throw;
            }
        }
        private static void SetupReturnValueFromDataFile(ICommandLine mock, string fileName, string image)
        {
            var pathToJson =
                Path.GetFullPath(Path.Combine(
                                     Path.GetDirectoryName(typeof(Startup).Assembly.Location), $"../../../Tests/Data/{fileName}"));

            mock.Run(Arg.Is <string>(x => x.Contains($"klar {image}"))).Returns(File.ReadAllText(pathToJson));
        }
예제 #3
0
        static void Main(string[] args)
        {
            if (!Optimizer.TryUseNativeMKL())
            {
                Console.Error.WriteLine("Could not use MKL native library");
            }

            var command    = Command.Help;
            var nnJsonPath = "";
            var isVerbose  = false;
            var outputPath = "";
            var imagePath  = "";
            var print      = false;
            var evaluate   = false;
            var dump       = false;
            var isEncoder  = false;

            var normalize = false;

            //mlp params
            int[]  layersSizes         = { 70, 100, 10 };
            var    learningRate        = 0.3;
            var    momentum            = 0.9;
            double errorThreshold      = 0;
            var    batchSize           = 10;
            var    activationFunction  = ActivationFunction.Sigmoid;
            var    initialWeightsRange = 0.25;
            var    lambda   = 0.0;
            var    takeBest = false;

            var imageWidth = 7;

            var maxEpochs = 200;

            string experimentValues = null;
            var    experiment       = Experiment.LearningRate;
            var    repetitions      = 3;

            ICommandLine commandLine = CommandLine
                                       .Help("h")
                                       .Help("help")
                                       .Command("test", () => command = Command.Test, true, "Test your MLP")
                                       .DefaultParameter("mlp", json => nnJsonPath = json, "MLP data in json format", "Json")
                                       .Parameter("image", path => imagePath       = path, "Path to image", "Path to image")
                                       .Option("v", () => isVerbose                             = true, "Explain what is happening")
                                       .Option("verbose", () => isVerbose                       = true, "Explain what is happening")
                                       .Option("e", () => evaluate                              = true, "Evaluate using MNIST dataset")
                                       .Option("evaluate", () => evaluate                       = true, "Evaluate using MNIST dataset")
                                       .Option("n", () => normalize                             = true, "Normalize input")
                                       .Option("normalize", () => normalize                     = true, "Normalize input")
                                       .Command("train", () => command                          = Command.Train, "Train new MLP")
                                       .DefaultParameter("output", path => outputPath           = path, "Output file to save trained mlp")
                                       .Parameter("sizes", sizes => layersSizes                 = JsonConvert.DeserializeObject <int[]>(sizes), "Number of layer and its sizes, default to [70,5,10]", "Sizes")
                                       .Parameter("learning-rate", val => learningRate          = double.Parse(val, CultureInfo.InvariantCulture), "Learning rate")
                                       .Parameter("momentum", val => momentum                   = double.Parse(val, CultureInfo.InvariantCulture), "Momenum parameter")
                                       .Parameter("error-threshold", val => errorThreshold      = double.Parse(val, CultureInfo.InvariantCulture), "Error threshold to set learning stop criteria")
                                       .Parameter("max-epochs", val => maxEpochs                = int.Parse(val), "Program will terminate learning if reaches this epoch")
                                       .Parameter("batch-size", val => batchSize                = int.Parse(val), "Batch size")
                                       .Parameter("activation", val => activationFunction       = ParseActivationFunction(val), "Activation function, (sigmoid, tanh)")
                                       .Parameter("initial-weights", val => initialWeightsRange = double.Parse(val, CultureInfo.InvariantCulture), "Initial weights range [number](-number;number)")
                                       .Parameter("lambda", val => lambda                       = double.Parse(val, CultureInfo.InvariantCulture), "Lambda param for L2 regularization. Defaults to 0 (no regularization)")
                                       .Option("v", () => isVerbose                             = true, "Explain what is happening")
                                       .Option("verbose", () => isVerbose                       = true, "Explain what is happening")
                                       .Option("d", () => dump                                  = true, "Dump training data")
                                       .Option("dump", () => dump                               = true, "Dump training data")
                                       .Option("n", () => normalize                             = true, "Normalize input")
                                       .Option("normalize", () => normalize                     = true, "Normalize input")
                                       .Option("e", () => isEncoder                             = true, "Use encoder mode")
                                       .Option("encoder", () => isEncoder                       = true, "Use encoder mode")
                                       .Option("take-best", () => takeBest                      = true, "Tries to pick best solution from all epochs")
                                       .Command("view", () => command                           = Command.View, "Show MNIST image")
                                       .DefaultParameter("path", path => imagePath              = path, "Path to image")
                                       .Option("p", () => print                                 = true, "Display grayscale interpretation")
                                       .Option("print", () => print                             = true, "Display grayscale interpretation")
                                       .Option("n", () => normalize                             = true, "Normalize input")
                                       .Option("normalize", () => normalize                     = true, "Normalize input")
                                       .Command("experiment", () => command                     = Command.Experiment, "Run experiment")
                                       .DefaultParameter("output", path => outputPath           = path, "Path to save data")
                                       .Parameter("values", val => experimentValues             = val, "Values to test in experiment", "Experiment values")
                                       .Parameter("experiment", val => experiment               = ParseExperimentType(val), "Momenum parameter")
                                       .Parameter("sizes", sizes => layersSizes                 = JsonConvert.DeserializeObject <int[]>(sizes), "Number of layer and its sizes, default to [70,5,10]", "Sizes")
                                       .Parameter("learning-rate", val => learningRate          = double.Parse(val, CultureInfo.InvariantCulture), "Learning rate")
                                       .Parameter("momentum", val => momentum                   = double.Parse(val, CultureInfo.InvariantCulture), "Momenum parameter")
                                       .Parameter("error-threshold", val => errorThreshold      = double.Parse(val, CultureInfo.InvariantCulture), "Error threshold to set learning stop criteria")
                                       .Parameter("max-epochs", val => maxEpochs                = int.Parse(val), "Program will terminate learning if reaches this epoch")
                                       .Parameter("batch-size", val => batchSize                = int.Parse(val), "Batch size")
                                       .Parameter("activation", val => activationFunction       = ParseActivationFunction(val), "Activation function, (sigmoid, tanh)")
                                       .Parameter("repetitions", val => repetitions             = int.Parse(val, CultureInfo.InvariantCulture), "Number of repetitions for each value in experiment")
                                       .Parameter("initial-weights", val => initialWeightsRange = double.Parse(val, CultureInfo.InvariantCulture), "Initial weights range [number](-number;number)")
                                       .Parameter("lambda", val => lambda                       = double.Parse(val, CultureInfo.InvariantCulture), "Lambda param for L2 regularization. Defaults to 0 (no regularization)")
                                       .Option("v", () => isVerbose                             = true, "Explain what is happening")
                                       .Option("verbose", () => isVerbose                       = true, "Explain what is happening")
                                       .Option("n", () => normalize                             = true, "Normalize input")
                                       .Option("normalize", () => normalize                     = true, "Normalize input")
                                       .Option("e", () => isEncoder                             = true, "Use encoder mode")
                                       .Option("encoder", () => isEncoder                       = true, "Use encoder mode")
                                       .Command("features", () => command                       = Command.Features, "Print features")
                                       .Parameter("mlp", json => nnJsonPath                     = json, "MLP data in json format", "Json")
                                       .Parameter("output", path => outputPath                  = path, "Path to save features")
                                       .Parameter("width", val => imageWidth                    = int.Parse(val), "Input width to display feature as image")
                                       .Command("encoder", () => command                        = Command.Encoder, "Use encoder mode")
                                       .Parameter("mlp", json => nnJsonPath                     = json, "Encoder data in json format", "Json")
                                       .Parameter("image", path => imagePath                    = path, "Path to image", "Path to image")
                                       .Option("n", () => normalize                             = true, "Normalize input")
                                       .Option("normalize", () => normalize                     = true, "Normalize input")
                                       .End();

            commandLine.Run(args);

            switch (command)
            {
            case Command.Train:
            {
                try
                {
                    File.Create(outputPath).Close();
                }
                catch (Exception)
                {
                    Console.WriteLine($"Path is invalid");
                    return;
                }
                //Debugger.Launch();

                var options = new NeuralNetworkOptions(
                    learningRate,
                    momentum,
                    errorThreshold,
                    layersSizes,
                    isEncoder ? ENCODER_DATA_PATH : TRAINING_DATA_PATH,
                    VALIDATION_PATH,
                    TEST_DATA_PATH,
                    maxEpochs,
                    isVerbose,
                    batchSize,
                    activationFunction,
                    initialWeightsRange,
                    dump,
                    normalize,
                    isEncoder,
                    lambda,
                    takeBest
                    );

                var trainingResult = MnistTrainer.TrainOnMnist(options);

                var mlp = trainingResult.NeuralNetwork;

                File.WriteAllText(outputPath, mlp.ToJson());

                if (dump)
                {
                    var fi        = new FileInfo(outputPath);
                    var directory = fi.Directory?.FullName ?? "";
                    var fileName  = Path.GetFileNameWithoutExtension(outputPath);
                    directory += $"/{fileName}_";
                    ExperimentVisualization.GenerateErrorPlot(trainingResult, $"{directory}error", $"{fileName} - error");

                    if (!isEncoder)
                    {
                        ExperimentVisualization.GenerateEvaluationPlot(trainingResult, $"{directory}evaluation", $"{fileName} - evaluation");
                    }
                }

                break;
            }

            case Command.Test:
            {
                NeuralNetwork mlp;
                try
                {
                    var json = File.ReadAllText(nnJsonPath);
                    mlp = JsonConvert.DeserializeObject <NeuralNetwork>(json);
                }
                catch (Exception e)
                {
                    Console.WriteLine(e);
                    Console.WriteLine($"Path is invalid");
                    return;
                }

                if (!string.IsNullOrEmpty(imagePath))
                {
                    if (!File.Exists(imagePath))
                    {
                        Console.WriteLine($"File {imagePath} does not exist!");
                        return;
                    }

                    var image = MnistParser.ReadImage(imagePath, normalize, isEncoder);

                    var decision = mlp.Compute(image.Values);

                    Console.WriteLine($"Result - {decision}");
                    Console.WriteLine($"Expected - {image.Label}");
                }

                if (evaluate)
                {
                    var testData = MnistParser.ReadAll(TEST_DATA_PATH, normalize, isEncoder);

                    var evaluation = mlp.Evaluate(testData);

                    Console.WriteLine($"Solutions - {evaluation.Correct} / {evaluation.All}");
                    Console.WriteLine($"Fitness - {evaluation.Percentage}");
                }

                break;
            }

            case Command.View:
            {
                if (string.IsNullOrEmpty(imagePath))
                {
                    Console.WriteLine($"Path to image not set");
                    return;
                }
                if (!File.Exists(imagePath))
                {
                    Console.WriteLine($"File {imagePath} does not exist!");
                    return;
                }

                var model = MnistParser.ReadImage(imagePath, normalize, isEncoder);

                var modelDump = MnistViewer.Dump(model);
                Console.WriteLine(modelDump);

                if (print)
                {
                    var modelMatrix = MnistViewer.ToMatrix(model.Values, model.Width);
                    Console.Write(modelMatrix);
                }
                break;
            }

            case Command.Help:
                commandLine.Run("help");
                break;

            case Command.Experiment:
            {
                var options = new NeuralNetworkOptions(
                    learningRate,
                    momentum,
                    errorThreshold,
                    layersSizes,
                    isEncoder ? ENCODER_DATA_PATH : TRAINING_DATA_PATH,
                    VALIDATION_PATH,
                    TEST_DATA_PATH,
                    maxEpochs,
                    isVerbose,
                    batchSize,
                    activationFunction,
                    initialWeightsRange,
                    true,
                    normalize,
                    isEncoder,
                    lambda,
                    takeBest
                    );

                switch (experiment)
                {
                case Experiment.LearningRate:
                {
                    var values = JsonConvert.DeserializeObject <double[]>(experimentValues);
                    ExperimentRunner.RunLearningRateExperiment(
                        values,
                        options,
                        repetitions,
                        outputPath
                        );
                    break;
                }

                case Experiment.ActivationFunction:
                {
                    var values = JsonConvert.DeserializeObject <ActivationFunction[]>(experimentValues);
                    ExperimentRunner.RunActivationFunctionExperiment(
                        values,
                        options,
                        repetitions,
                        outputPath
                        );
                    break;
                }

                case Experiment.Momentum:
                {
                    var values = JsonConvert.DeserializeObject <double[]>(experimentValues);
                    ExperimentRunner.RunMomentumExperiment(
                        values,
                        options,
                        repetitions,
                        outputPath
                        );
                    break;
                }

                case Experiment.InitialWeights:
                {
                    var values = JsonConvert.DeserializeObject <double[]>(experimentValues);
                    ExperimentRunner.RunInitialWeightsRangeExperiment(
                        values,
                        options,
                        repetitions,
                        outputPath
                        );
                    break;
                }

                case Experiment.Sizes:
                {
                    var values = JsonConvert.DeserializeObject <int[][]>(experimentValues);
                    ExperimentRunner.RunSizeExperiment(
                        values,
                        options,
                        repetitions,
                        outputPath
                        );
                    break;
                }

                default:
                    throw new ArgumentOutOfRangeException();
                }
                break;
            }

            case Command.Features:
            {
                NeuralNetwork mlp;
                try
                {
                    var json = File.ReadAllText(nnJsonPath);
                    mlp = JsonConvert.DeserializeObject <NeuralNetwork>(json);
                }
                catch (Exception e)
                {
                    Console.WriteLine(e);
                    Console.WriteLine($"Path is invalid");
                    return;
                }

                var layerFeatures = mlp.GetFeatures();

                if (Directory.Exists(outputPath))
                {
                    Directory.Delete(outputPath, true);
                }
                Directory.CreateDirectory(outputPath);
                for (int layerIndex = 0; layerIndex < layerFeatures.Length; layerIndex++)
                {
                    var features = layerFeatures[layerIndex];
                    var path     = $"{outputPath}/{layerIndex}";
                    Directory.CreateDirectory(path);

                    for (int i = 0; i < features.Length; i++)
                    {
                        var feature = features[i];
                        var image   = MnistViewer.ToImage(feature, imageWidth);

                        image.Save($"{path}/{i}.png", ImageFormat.Png);
                    }
                }

                break;
            }

            case Command.Encoder:
            {
                Encoder.Network.Encoder encoder;
                try
                {
                    var json = File.ReadAllText(nnJsonPath);
                    encoder = JsonConvert.DeserializeObject <Encoder.Network.Encoder>(json);
                }
                catch (Exception e)
                {
                    Console.WriteLine(e);
                    Console.WriteLine($"Path is invalid");
                    return;
                }

                if (!string.IsNullOrEmpty(imagePath))
                {
                    if (!File.Exists(imagePath))
                    {
                        Console.WriteLine($"File {imagePath} does not exist!");
                        return;
                    }

                    var image = MnistParser.ReadImage(imagePath, normalize, true);

                    var recreatedData = encoder.Compute(image.Values);

                    var recreatedImage = MnistViewer.ToImage(recreatedData, imageWidth);

                    File.Copy(imagePath, "original.png", true);
                    recreatedImage.Save($"decoded.png", ImageFormat.Png);
                }
                break;
            }

            default:
                throw new ArgumentOutOfRangeException();
            }
        }