/// <summary> /// Executes social learning process of current agent for specific decision option set layer /// </summary> /// <param name="agent"></param> /// <param name="lastIteration"></param> /// <param name="layer"></param> public void ExecuteLearning(IAgent agent, LinkedListNode <Dictionary <IAgent, AgentState <TSite> > > lastIteration, DecisionOptionLayer layer) { Dictionary <IAgent, AgentState <TSite> > priorIterationState = lastIteration.Previous.Value; agent.ConnectedAgents.Randomize().ForEach(neighbour => { AgentState <TSite> priorIteration; if (!priorIterationState.TryGetValue(neighbour, out priorIteration)) { return; } IEnumerable <DecisionOption> activatedDecisionOptions = priorIteration.DecisionOptionsHistories .SelectMany(rh => rh.Value.Activated).Where(r => r.Layer == layer); activatedDecisionOptions.ForEach(decisionOption => { if (agent.AssignedDecisionOptions.Contains(decisionOption) == false) { agent.AssignNewDecisionOption(decisionOption, neighbour.AnticipationInfluence[decisionOption]); } }); }); }
/// <summary> /// Executes agent innovation process for specific site /// </summary> /// <param name="agent">The agent.</param> /// <param name="lastIteration">The last iteration.</param> /// <param name="goal">The goal.</param> /// <param name="layer">The layer.</param> /// <param name="site">The site.</param> /// <param name="probabilities">The probabilities.</param> /// <exception cref="Exception">Not implemented for AnticipatedDirection == 'stay'</exception> public void Execute(IAgent agent, LinkedListNode <Dictionary <IAgent, AgentState <TSite> > > lastIteration, Goal goal, DecisionOptionLayer layer, TSite site, Probabilities probabilities) { Dictionary <IAgent, AgentState <TSite> > currentIteration = lastIteration.Value; Dictionary <IAgent, AgentState <TSite> > priorIteration = lastIteration.Previous.Value; //gets prior period activated decision options DecisionOptionsHistory history = priorIteration[agent].DecisionOptionsHistories[site]; DecisionOption protDecisionOption = history.Activated.FirstOrDefault(r => r.Layer == layer); LinkedListNode <Dictionary <IAgent, AgentState <TSite> > > tempNode = lastIteration.Previous; //if prior period decision option is do nothing then looking for any do something decision option while (protDecisionOption == null && tempNode.Previous != null) { tempNode = tempNode.Previous; history = tempNode.Value[agent].DecisionOptionsHistories[site]; protDecisionOption = history.Activated.Single(r => r.Layer == layer); } //if activated DO is missed, then select random DO if (!agent.AssignedDecisionOptions.Contains(protDecisionOption)) { protDecisionOption = agent.AssignedDecisionOptions.Where(a => a.Layer == protDecisionOption.Layer) .RandomizeOne(); } //if the layer or prior period decision option are modifiable then generate new decision option if (layer.LayerConfiguration.Modifiable || (!layer.LayerConfiguration.Modifiable && protDecisionOption.IsModifiable)) { DecisionOptionLayerConfiguration parameters = layer.LayerConfiguration; Goal selectedGoal = goal; GoalState selectedGoalState = lastIteration.Value[agent].GoalsState[selectedGoal]; #region Generating consequent int min = parameters.MinValue(agent); int max = parameters.MaxValue(agent); double consequentValue = string.IsNullOrEmpty(protDecisionOption.Consequent.VariableValue) ? protDecisionOption.Consequent.Value : agent[protDecisionOption.Consequent.VariableValue]; double newConsequent = consequentValue; ExtendedProbabilityTable <int> probabilityTable = probabilities.GetExtendedProbabilityTable <int>(SosielProbabilityTables.GeneralProbabilityTable); double minStep = Math.Pow(0.1d, parameters.ConsequentPrecisionDigitsAfterDecimalPoint); switch (selectedGoalState.AnticipatedDirection) { case AnticipatedDirection.Up: { if (DecisionOptionLayerConfiguration.ConvertSign(parameters.ConsequentRelationshipSign[goal.Name]) == ConsequentRelationship.Positive) { if (consequentValue == max) { return; } newConsequent = probabilityTable.GetRandomValue(consequentValue + minStep, max, false); } if (DecisionOptionLayerConfiguration.ConvertSign(parameters.ConsequentRelationshipSign[goal.Name]) == ConsequentRelationship.Negative) { if (consequentValue == min) { return; } newConsequent = probabilityTable.GetRandomValue(min, consequentValue - minStep, true); } break; } case AnticipatedDirection.Down: { if (DecisionOptionLayerConfiguration.ConvertSign(parameters.ConsequentRelationshipSign[goal.Name]) == ConsequentRelationship.Positive) { if (consequentValue == min) { return; } newConsequent = probabilityTable.GetRandomValue(min, consequentValue - minStep, true); } if (DecisionOptionLayerConfiguration.ConvertSign(parameters.ConsequentRelationshipSign[goal.Name]) == ConsequentRelationship.Negative) { if (consequentValue == max) { return; } newConsequent = probabilityTable.GetRandomValue(consequentValue + minStep, max, false); } break; } default: { throw new Exception("Not implemented for AnticipatedDirection == 'stay'"); } } newConsequent = Math.Round(newConsequent, parameters.ConsequentPrecisionDigitsAfterDecimalPoint); DecisionOptionConsequent consequent = DecisionOptionConsequent.Renew(protDecisionOption.Consequent, newConsequent); #endregion #region Generating antecedent List <DecisionOptionAntecedentPart> antecedentList = new List <DecisionOptionAntecedentPart>(protDecisionOption.Antecedent.Length); bool isTopLevelDO = protDecisionOption.Layer.PositionNumber == 1; foreach (DecisionOptionAntecedentPart antecedent in protDecisionOption.Antecedent) { dynamic newConst = isTopLevelDO ? antecedent.Value : agent[antecedent.Param]; DecisionOptionAntecedentPart newAntecedent = DecisionOptionAntecedentPart.Renew(antecedent, newConst); antecedentList.Add(newAntecedent); } #endregion AgentState <TSite> agentState = currentIteration[agent]; DecisionOption newDecisionOption = DecisionOption.Renew(protDecisionOption, antecedentList.ToArray(), consequent); //change base ai values for the new decision option double consequentChangeProportion; if (consequentValue == 0) { consequentChangeProportion = 0; } else { consequentChangeProportion = Math.Abs(newDecisionOption.Consequent.Value - consequentValue) / consequentValue; } Dictionary <Goal, double> baseAI = agent.AnticipationInfluence[protDecisionOption]; Dictionary <Goal, double> proportionalAI = new Dictionary <Goal, double>(); agent.AssignedGoals.ForEach(g => { double ai = baseAI[g]; // ConsequentRelationship relationship = DecisionOptionLayerConfiguration.ConvertSign(protDecisionOption.Layer.LayerConfiguration.ConsequentRelationshipSign[g.Name]); double difference = ai * consequentChangeProportion; switch (selectedGoalState.AnticipatedDirection) { case AnticipatedDirection.Up: { if (ai >= 0) { ai += difference; } else { ai -= difference; } break; } case AnticipatedDirection.Down: { if (ai >= 0) { ai -= difference; } else { ai += difference; } break; } } proportionalAI.Add(g, ai); }); //add the generated decision option to the prototype's mental model and assign one to the agent's mental model if (agent.Prototype.IsSimilarDecisionOptionExists(newDecisionOption) == false) { //add to the prototype and assign to current agent agent.AddDecisionOption(newDecisionOption, layer, proportionalAI); } else if (agent.AssignedDecisionOptions.Any(decisionOption => decisionOption == newDecisionOption) == false) { var kh = agent.Prototype.DecisionOptions.FirstOrDefault(h => h == newDecisionOption); //assign to current agent only agent.AssignNewDecisionOption(kh, proportionalAI); } if (layer.Set.Layers.Count > 1) { //set consequent to actor's variables for next layers newDecisionOption.Apply(agent); } } }