public void inverse_gauss() { var rand = new Random(Seed); var n = 1000; var samples = new float[n]; for (var i = 0; i < samples.Length; i++) { samples[i] = (float)GaussHelper.InvPhi(rand.NextDouble()); } Assert.True(Math.Abs(0 - samples.Mean()) < 0.1); Assert.True(Math.Abs(1.0 - samples.Variance()) < 0.5); }
public int[] Train(InstanceRepresentation set) { set.Standardize(); var instances = set.Instances.ToArray(); _weights = new float[_gridDimensions[0] * _gridDimensions[1], set.FeauturesCount]; FeaturesCount = set.FeauturesCount; // Intialize weights with gaussians var n = _gridDimensions[0] * _gridDimensions[1]; if (!_usePlusPlusInit || n >= instances.Length) { for (ushort i = 0; i < n; i++) { for (ushort j = 0; j < FeaturesCount; j++) { _weights[i, j] = (float)GaussHelper.InvPhi(_random.NextDouble()); } } } else { _weights = PlusPlusInitializer.InitializeCentroids(n, instances, _random); } for (var i = 0; i < _iterationsCount; i++) { var instance = instances[_random.Next(instances.Length)]; // Best Matching Unit var bmuIndex = Instances.MinEucDistanceIndex(instance, _weights); BMUCoordinates = ToCoordinates(bmuIndex); UpdateHexagonWeights((ushort)NeighbourhoodRadius(i), LearningRate(i), BMUCoordinates, instance.GetValues()); } var instancesClusters = new int[instances.Length]; for (var i = 0; i < instances.Length; i++) { instancesClusters[i] = Instances.MinEucDistanceIndex(instances[i], _weights); } return(instancesClusters); }