public NeuralNetworkDefaultData(NeuralNetworkDefault nrlNet) { Id = nrlNet.Id; ActivationFuncName = FuncDictionary.GetFuncName(nrlNet.ActivationFunc) ?? "Unknown function"; Layers = nrlNet.Layers; Weights = nrlNet.Weigths; }
/// <summary> /// Initializes a new instance of the <see cref="MediumSolverFactory"/> class. /// </summary> /// <param name="timeStep">The time step.</param> public MediumSolverFactory(double timeStep) { this.timeStep = timeStep; this.mediumFactors = new MemoDictionary <string, BaseMediumFactor>(); this.mediumSolvers = new FuncDictionary(); this.initSolvers(); this.initFactors(); }
public static void EqualTest(bool shouldBeEqual, int[] xs, string[] xv, int[] ys, string[] yv) { var expected = FuncDictionary.Make(xs.Zip(xv)); var actual = FuncDictionary.Make(ys.Zip(yv)); if (shouldBeEqual) { Assert.True(actual.Equals(expected)); } else { Assert.False(actual.Equals(expected)); } }
public NetworkDataModel GetNetworkData() { var data = new NetworkDataModel { ActivationFuncName = FuncDictionary.GetFuncName(ActivationFunc), Id = Id, Layers = Layers, LearningRate = LearningRate, Name = Name, Weights = Weigths, Generation = Generation, StorageId = StorageId }; return(data); }
public NetworkVM GetViewModel() { NetworkVM networkVM = new NetworkVM(this) { Id = Id.ToString(), Layers = new ObservableCollection <NetworkLayerVM>(Layers.ToLayerViewModels()), CurrentFunc = FuncDictionary.GetFuncName(ActivationFunc), LearningRate = LearningRate, Name = Name, IsPrototype = false, Generation = Generation, Storageid = StorageId.ToString() }; return(networkVM); }
public static void FuncDictionaryAdd(int[] xs, string[] ys, int key, string value) { var intComp = new FuncComparer <int>((x, y) => x.CompareTo(y), x => x.GetHashCode()); var fd = new FuncDictionary <int, string>(intComp, (xs ?? new int[0]).Zip(ys ?? new string[0])); var origLength = fd.Count; fd.Add(key, value); var dict = new FuncDictionary <int, string>(intComp, (xs ?? new int[0]).Zip(ys ?? new string[0])) { { key, value } }; Assert.Equal(dict.OrderBy(kv => kv.Key), fd.OrderBy(kv => kv.Key)); Assert.Equal(origLength + 1, fd.Count); }
public NeuralNetworkDefault(NeuralNetworkDefaultData nrlNetData) { Id = nrlNetData.Id ?? Guid.NewGuid(); Layers = nrlNetData.Layers; Weigths = nrlNetData.Weights ?? GetDefaultWeigths(); LearningRate = nrlNetData.LearningRate; AllOutputs = new Matrix2D[Layers.Length]; if (!string.IsNullOrEmpty(nrlNetData.ActivationFuncName) && FuncDictionary.TryGetFunc(nrlNetData.ActivationFuncName, out Func <float, float> activationFunc)) { ActivationFunc = activationFunc; } else { ActivationFunc = MathFuncs.Sigmoid; } }
/// <summary> /// Equivalent to <see cref="IFunctor{TSource}.Map{TResult}(Func{TSource, TResult})"/>, but restricted to <see cref="FuncDictionary{TKey, TValue}"/>. Offers LINQ query support with one <c>from</c>-clause. /// </summary> /// <typeparam name="TKey">The type of the source's key.</typeparam> /// <typeparam name="TSource">The type of the source's value.</typeparam> /// <typeparam name="TResult">The type of the result's value.</typeparam> /// <param name="source">The source.</param> /// <param name="f">The function to apply.</param> public static FuncDictionary <TKey, TResult> Select <TKey, TSource, TResult>(this FuncDictionary <TKey, TSource> source, Func <TSource, TResult> f) => (FuncDictionary <TKey, TResult>)source.Map(f);