예제 #1
0
    public static CorrelationResult correlation_spherical(FullertonLib.BesselData globaldata, FullertonLib.r8BESK1Data data, int n, double[] rho, double rho0)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    CORRELATION_SPHERICAL evaluates the spherical correlation function.
    //
    //  Discussion:
    //
    //    This correlation is based on the volume of overlap of two spheres
    //    of radius RHO0 and separation RHO.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    11 November 2012
    //
    //  Author:
    //
    //    John Burkardt
    //
    //  Reference:
    //
    //    Petter Abrahamsen,
    //    A Review of Gaussian Random Fields and Correlation Functions,
    //    Norwegian Computing Center, 1997.
    //
    //  Parameters:
    //
    //    Input, int N, the number of arguments.
    //
    //    Input, double RHO[N], the arguments.
    //
    //    Input, double RHO0, the correlation length.
    //
    //    Output, double C[N], the correlations.
    //
    {
        int i;

        double[] c = new double[n];

        for (i = 0; i < n; i++)
        {
            double rhohat = Math.Min(Math.Abs(rho[i]) / rho0, 1.0);
            c[i] = 1.0 - 1.5 * rhohat + 0.5 * Math.Pow(rhohat, 3);
        }

        return(new CorrelationResult {
            result = c, data = globaldata, k1data = data
        });
    }
예제 #2
0
    public static CorrelationResult correlation_exponential(FullertonLib.BesselData globaldata, FullertonLib.r8BESK1Data data, int n, double[] rho, double rho0)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    CORRELATION_EXPONENTIAL evaluates the exponential correlation function.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    11 November 2012
    //
    //  Author:
    //
    //    John Burkardt
    //
    //  Reference:
    //
    //    Petter Abrahamsen,
    //    A Review of Gaussian Random Fields and Correlation Functions,
    //    Norwegian Computing Center, 1997.
    //
    //  Parameters:
    //
    //    Input, int N, the number of arguments.
    //
    //    Input, double RHO[N], the arguments.
    //
    //    Input, double RHO0, the correlation length.
    //
    //    Output, double C[N], the correlations.
    //
    {
        int i;

        double[] c = new double[n];
        for (i = 0; i < n; i++)
        {
            c[i] = Math.Exp(-Math.Abs(rho[i]) / rho0);
        }
        return(new CorrelationResult {
            result = c, data = globaldata, k1data = data
        });
    }
예제 #3
0
    public static CorrelationResult correlation_besselk(FullertonLib.BesselData globaldata, FullertonLib.r8BESK1Data data, int n, double[] rho, double rho0)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    CORRELATION_BESSELK evaluates the Bessel K correlation function.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    11 November 2012
    //
    //  Author:
    //
    //    John Burkardt
    //
    //  Reference:
    //
    //    Petter Abrahamsen,
    //    A Review of Gaussian Random Fields and Correlation Functions,
    //    Norwegian Computing Center, 1997.
    //
    //  Parameters:
    //
    //    Input, int N, the number of arguments.
    //
    //    Input, double RHO[N], the arguments.
    //
    //    Input, double RHO0, the correlation length.
    //
    //    Output, double C[N], the correlations.
    //
    {
        int i;

        double[] c = new double[n];

        for (i = 0; i < n; i++)
        {
            switch (rho[i])
            {
            case 0.0:
                c[i] = 1.0;
                break;

            default:
                double rhohat = Math.Abs(rho[i]) / rho0;
                c[i] = rhohat * FullertonLib.r8_besk1(ref globaldata, ref data, rhohat);
                break;
            }
        }

        CorrelationResult res = new() { result = c, data = globaldata, k1data = data };

        return(res);
    }
}
예제 #4
0
    public static CorrelationResult correlation_power(FullertonLib.BesselData globaldata, FullertonLib.r8BESK1Data data, int n, double[] rho, double rho0)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    CORRELATION_POWER evaluates the power correlation function.
    //
    //  Discussion:
    //
    //    In order to be able to call this routine under a dummy name, I had
    //    to drop E from the argument list.
    //
    //    The power correlation is
    //
    //      C(rho) = ( 1 - |rho| )^e  if 0 <= |rho| <= 1
    //             = 0                otherwise
    //
    //      The constraint on the exponent is 2 <= e.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    11 November 2012
    //
    //  Author:
    //
    //    John Burkardt
    //
    //  Parameters:
    //
    //    Input, int N, the number of arguments.
    //
    //    Input, double RHO[N], the arguments.
    //    0.0 <= RHO.
    //
    //    Input, double RHO0, the correlation length.
    //    0.0 < RHO0.
    //
    //    Input, double E, the exponent.
    //    E has a default value of 2.0;
    //    2.0 <= E.
    //
    //    Output, double C[N], the correlations.
    //
    {
        int i;

        const double e = 2.0;

        double[] c = new double[n];

        for (i = 0; i < n; i++)
        {
            double rhohat = Math.Abs(rho[i]) / rho0;
            c[i] = rhohat switch
            {
예제 #5
0
    public static CorrelationResult correlation_hole(FullertonLib.BesselData globaldata, FullertonLib.r8BESK1Data data, int n, double[] rho, double rho0)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    CORRELATION_HOLE evaluates the hole correlation function.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    11 November 2012
    //
    //  Author:
    //
    //    John Burkardt
    //
    //  Parameters:
    //
    //    Input, int N, the number of arguments.
    //
    //    Input, double RHO[N], the arguments.
    //
    //    Input, double RHO0, the correlation length.
    //
    //    Output, double C[N], the correlations.
    //
    {
        int i;

        double[] c = new double[n];

        for (i = 0; i < n; i++)
        {
            c[i] = (1.0 - Math.Abs(rho[i]) / rho0)
                   * Math.Exp(-Math.Abs(rho[i]) / rho0);
        }
        return(new CorrelationResult {
            result = c, data = globaldata, k1data = data
        });
    }
예제 #6
0
    public static Correlation.CorrelationResult sample_paths_cholesky(FullertonLib.BesselData globaldata, FullertonLib.r8BESK1Data kdata, int n, int n2, double rhomax, double rho0,
                                                                      Func <FullertonLib.BesselData, FullertonLib.r8BESK1Data, int, double[], double, Correlation.CorrelationResult> correlation, ref typeMethods.r8vecNormalData data, ref int seed)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    SAMPLE_PATHS_CHOLESKY: sample paths for stationary correlation functions.
    //
    //  Discussion:
    //
    //    This method uses the Cholesky factorization of the correlation matrix.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    11 November 2012
    //
    //  Author:
    //
    //    John Burkardt
    //
    //  Parameters:
    //
    //    Input, int N, the number of points on each path.
    //
    //    Input, int N2, the number of paths.
    //
    //    Input, double RHOMAX, the maximum value of RHO.
    //
    //    Input, double RHO0, the correlation length.
    //
    //    Input, double *CORRELATION ( int n, double rho_vec[], double rho0),
    //    the name of the function which evaluates the correlation.
    //
    //    Input/output, int &SEED, a seed for the random number
    //    generator.
    //
    //    Output, double X[N*N2], the sample paths.
    //
    {
        int flag = 0;
        int j;
        //
        //  Choose N equally spaced sample points from 0 to RHOMAX.
        //
        const double rhomin = 0.0;

        double[] rho_vec = typeMethods.r8vec_linspace_new(n, rhomin, rhomax);
        //
        //  Evaluate the correlation function.
        //
        Correlation.CorrelationResult tr = correlation(globaldata, kdata, n, rho_vec, rho0);
        double[] cor_vec = tr.result;
        globaldata = tr.data;
        //
        //  Construct the correlation matrix;
        //
        //  From the vector
        //    [ C(0), C(1), C(2), ... C(N-1) ]
        //  construct the vector
        //    [ C(N-1), ..., C(2), C(1), C(0), C(1), C(2), ...  C(N-1) ]
        //  Every row of the correlation matrix can be constructed by a subvector
        //  of this vector.
        //
        double[] cor = new double[n * n];

        for (j = 0; j < n; j++)
        {
            int i;
            for (i = 0; i < n; i++)
            {
                int k = typeMethods.i4_wrap(j - i, 0, n - 1);
                cor[i + j * n] = cor_vec[k];
            }
        }

        //
        //  Get the Cholesky factorization of COR:
        //
        //    COR = L * L'.
        //
        double[] l = typeMethods.r8mat_cholesky_factor(n, cor, ref flag);
        switch (flag)
        {
        //
        //  The matrix might not be nonnegative definite.
        //
        case 2:
            Console.WriteLine("");
            Console.WriteLine("SAMPLE_PATHS_CHOLESKY - Fatal error!");
            Console.WriteLine("  The correlation matrix is not");
            Console.WriteLine("  symmetric nonnegative definite.");
            return(null);
        }

        //
        //  Compute a matrix of N by N2 normally distributed values.
        //
        double[] r = typeMethods.r8mat_normal_01_new(n, n2, ref data, ref seed);
        //
        //  Compute the sample path.
        //
        double[] x = typeMethods.r8mat_mm_new(n, n, n2, l, r);

        Correlation.CorrelationResult res = new() { result = x, data = globaldata };

        return(res);
    }