public void GradientTest3() { HiddenMarkovClassifier hmm = HiddenMarkovClassifierPotentialFunctionTest.CreateModel1(); var function = new MarkovDiscreteFunction(hmm); var model = new HiddenConditionalRandomField <int>(function); var target = new ForwardBackwardGradient <int>(model); target.Regularization = 2; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, target.Regularization); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-5); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest4() { var hmm = IndependentMarkovClassifierPotentialFunctionTest.CreateModel2(); var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField <double[]>(function); var target = new ForwardBackwardGradient <double[]>(model); target.Regularization = 0; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, IndependentMarkovClassifierPotentialFunctionTest.sequences, IndependentMarkovClassifierPotentialFunctionTest.labels); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, IndependentMarkovClassifierPotentialFunctionTest.sequences, IndependentMarkovClassifierPotentialFunctionTest.labels); for (int i = 0; i < actual.Length; i++) { if (double.IsNaN(expected[i])) { continue; } Assert.AreEqual(expected[i], actual[i], 1e-5); Assert.IsFalse(double.IsNaN(actual[i])); } }
public void GradientDeoptimizeTest2() { double[][][] sequences2; int[] labels2; var hmm = CreateModel3(out sequences2, out labels2); var function = new MarkovMultivariateFunction(hmm); #pragma warning disable 0618 function.Deoptimize(); #pragma warning restore 0618 var model = new HiddenConditionalRandomField <double[]>(function); var target = new ForwardBackwardGradient <double[]>(model); var inputs = sequences2; var outputs = labels2; double[] actual = target.Gradient(function.Weights, inputs, outputs); FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, inputs, outputs); double[] expected = diff.Compute(function.Weights); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-3); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest_MarkovNormal_Regularization() { var hmm = MarkovContinuousFunctionTest.CreateModel1(); var function = new MarkovContinuousFunction(hmm); var model = new HiddenConditionalRandomField <double>(function); var target = new ForwardBackwardGradient <double>(model); target.Regularization = 2; var inputs = NormalQuasiNewtonHiddenLearningTest.inputs; var outputs = NormalQuasiNewtonHiddenLearningTest.outputs; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, inputs, outputs, target.Regularization); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-2); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest3() { double[][][] sequences2; int[] labels2; var hmm = CreateModel3(out sequences2, out labels2); var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField <double[]>(function); var target = new ForwardBackwardGradient <double[]>(model); target.Regularization = 2; var inputs = sequences2; var outputs = labels2; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, inputs, outputs, target.Regularization); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { double e = expected[i]; double a = actual[i]; Assert.AreEqual(e, a, 1e-3); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest_MarkovIndependentNormal_NoPriors() { double[][][] observations; int[] labels; HiddenMarkovClassifier <Independent <NormalDistribution> > hmm = IndependentMarkovFunctionTest.CreateModel4(out observations, out labels, usePriors: false); var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField <double[]>(function); var target = new ForwardBackwardGradient <double[]>(model); target.Regularization = 0; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, observations, labels); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, observations, labels); for (int i = 0; i < actual.Length; i++) { if (double.IsNaN(expected[i])) { continue; } Assert.AreEqual(expected[i], actual[i], 1e-5); Assert.IsFalse(double.IsNaN(actual[i])); } }
public void GradientTest_DiscreteMarkov() { var function = new MarkovDiscreteFunction(2, 2, 2); var model = new HiddenConditionalRandomField <int>(function); var target = new ForwardBackwardGradient <int>(model); FiniteDifferences diff = new FiniteDifferences(function.Weights.Length) { StepSize = 1e-5 }; var inputs = QuasiNewtonHiddenLearningTest.inputs; var outputs = QuasiNewtonHiddenLearningTest.outputs; diff.Function = parameters => func(model, parameters, inputs, outputs); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-4); } }
public void GradientTest_MarkovMultivariate() { // Creates a sequence classifier containing 2 hidden Markov Models // with 2 states and an underlying Normal distribution as density. MultivariateNormalDistribution density = new MultivariateNormalDistribution(3); var hmm = new HiddenMarkovClassifier <MultivariateNormalDistribution>(2, new Ergodic(2), density); double[][][] inputs = { new [] { new double[] { 0, 1, 0 }, new double[] { 0, 1, 0 }, new double[] { 0, 1, 0 } }, new [] { new double[] { 1, 6, 2 }, new double[] { 2, 1, 6 }, new double[] { 1, 1, 0 } }, new [] { new double[] { 9, 1, 0 }, new double[] { 0, 1, 5 }, new double[] { 0, 0, 0 } }, }; int[] outputs = { 0, 0, 1 }; var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField <double[]>(function); var target = new ForwardBackwardGradient <double[]>(model); FiniteDifferences diff = new FiniteDifferences(function.Weights.Length) { StepSize = 1e-5 }; diff.Function = parameters => func(model, parameters, inputs, outputs); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 0.05); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest() { var function = new MarkovDiscreteFunction(2, 2, 2); var model = new HiddenConditionalRandomField <int>(function); var target = new ForwardBackwardGradient <int>(model); FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-4); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest3() { var hmm = MultivariateNormalHiddenMarkovClassifierPotentialFunctionTest.CreateModel1(); var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField<double[]>(function); var target = new ForwardBackwardGradient<double[]>(model); target.Regularization = 2; var inputs = inputs1; var outputs = outputs1; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, inputs, outputs, target.Regularization); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-3); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest() { // Creates a sequence classifier containing 2 hidden Markov Models // with 2 states and an underlying Normal distribution as density. MultivariateNormalDistribution density = new MultivariateNormalDistribution(3); var hmm = new HiddenMarkovClassifier<MultivariateNormalDistribution>(2, new Ergodic(2), density); double[][][] inputs = { new [] { new double[] { 0, 1, 0 }, new double[] { 0, 1, 0 }, new double[] { 0, 1, 0 } }, new [] { new double[] { 1, 6, 2 }, new double[] { 2, 1, 6 }, new double[] { 1, 1, 0 } }, new [] { new double[] { 9, 1, 0 }, new double[] { 0, 1, 5 }, new double[] { 0, 0, 0 } }, }; int[] outputs = { 0, 0, 1 }; var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField<double[]>(function); var target = new ForwardBackwardGradient<double[]>(model); FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, inputs, outputs); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 0.05); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest4() { var hmm = IndependentMarkovClassifierPotentialFunctionTest.CreateModel2(); var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField<double[]>(function); var target = new ForwardBackwardGradient<double[]>(model); target.Regularization = 0; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, IndependentMarkovClassifierPotentialFunctionTest.sequences, IndependentMarkovClassifierPotentialFunctionTest.labels); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, IndependentMarkovClassifierPotentialFunctionTest.sequences, IndependentMarkovClassifierPotentialFunctionTest.labels); for (int i = 0; i < actual.Length; i++) { if (double.IsNaN(expected[i])) continue; Assert.AreEqual(expected[i], actual[i], 1e-5); Assert.IsFalse(double.IsNaN(actual[i])); } }
public void GradientTest2() { HiddenMarkovClassifier hmm = HiddenMarkovClassifierPotentialFunctionTest.CreateModel1(); var function = new MarkovDiscreteFunction(hmm); var model = new HiddenConditionalRandomField<int>(function); var target = new ForwardBackwardGradient<int>(model); FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-5); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientTest2() { var hmm = CreateModel3(); var function = new MarkovMultivariateFunction(hmm); var model = new HiddenConditionalRandomField<double[]>(function); var target = new ForwardBackwardGradient<double[]>(model); var inputs = sequences2; var outputs = labels2; double[] actual = target.Gradient(function.Weights, inputs, outputs); FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, inputs, outputs); double[] expected = diff.Compute(function.Weights); for (int i = 0; i < actual.Length; i++) { Assert.AreEqual(expected[i], actual[i], 1e-3); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }
public void GradientDeoptimizeTest3() { double[][][] sequences2; int[] labels2; var hmm = CreateModel3(out sequences2, out labels2); var function = new MarkovMultivariateFunction(hmm); #pragma warning disable 0618 function.Deoptimize(); #pragma warning restore 0618 var model = new HiddenConditionalRandomField<double[]>(function); var target = new ForwardBackwardGradient<double[]>(model); target.Regularization = 2; var inputs = sequences2; var outputs = labels2; FiniteDifferences diff = new FiniteDifferences(function.Weights.Length); diff.Function = parameters => func(model, parameters, inputs, outputs, target.Regularization); double[] expected = diff.Compute(function.Weights); double[] actual = target.Gradient(function.Weights, inputs, outputs); for (int i = 0; i < actual.Length; i++) { double e = expected[i]; double a = actual[i]; Assert.AreEqual(e, a, 1e-3); Assert.IsFalse(double.IsNaN(actual[i])); Assert.IsFalse(double.IsNaN(expected[i])); } }