예제 #1
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLAIC1 applies one step of incremental condition estimation in
        /// its simplest version:
        ///
        /// Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
        /// lower triangular matrix L, such that
        /// twonorm(L*x) = sest
        /// Then DLAIC1 computes sestpr, s, c such that
        /// the vector
        /// [ s*x ]
        /// xhat = [  c  ]
        /// is an approximate singular vector of
        /// [ L     0  ]
        /// Lhat = [ w' gamma ]
        /// in the sense that
        /// twonorm(Lhat*xhat) = sestpr.
        ///
        /// Depending on JOB, an estimate for the largest or smallest singular
        /// value is computed.
        ///
        /// Note that [s c]' and sestpr**2 is an eigenpair of the system
        ///
        /// diag(sest*sest, 0) + [alpha  gamma] * [ alpha ]
        /// [ gamma ]
        ///
        /// where  alpha =  x'*w.
        ///
        ///</summary>
        /// <param name="JOB">
        /// (input) INTEGER
        /// = 1: an estimate for the largest singular value is computed.
        /// = 2: an estimate for the smallest singular value is computed.
        ///</param>
        /// <param name="J">
        /// (input) INTEGER
        /// Length of X and W
        ///</param>
        /// <param name="X">
        /// (input) DOUBLE PRECISION array, dimension (J)
        /// The j-vector x.
        ///</param>
        /// <param name="SEST">
        /// (input) DOUBLE PRECISION
        /// Estimated singular value of j by j matrix L
        ///</param>
        /// <param name="W">
        /// (input) DOUBLE PRECISION array, dimension (J)
        /// The j-vector w.
        ///</param>
        /// <param name="GAMMA">
        /// (input) DOUBLE PRECISION
        /// The diagonal element gamma.
        ///</param>
        /// <param name="SESTPR">
        /// (output) DOUBLE PRECISION
        /// Estimated singular value of (j+1) by (j+1) matrix Lhat.
        ///</param>
        /// <param name="S">
        /// (output) DOUBLE PRECISION
        /// Sine needed in forming xhat.
        ///</param>
        /// <param name="C">
        /// (output) DOUBLE PRECISION
        /// Cosine needed in forming xhat.
        ///</param>
        public void Run(int JOB, int J, double[] X, int offset_x, double SEST, double[] W, int offset_w, double GAMMA
                        , ref double SESTPR, ref double S, ref double C)
        {
            #region Variables

            double ABSALP = 0; double ABSEST = 0; double ABSGAM = 0; double ALPHA = 0; double B = 0; double COSINE = 0;
            double EPS = 0; double NORMA = 0; double S1 = 0; double S2 = 0; double SINE = 0; double T = 0; double TEST = 0;
            double TMP = 0; double ZETA1 = 0; double ZETA2 = 0;

            #endregion


            #region Array Index Correction

            int o_x = -1 + offset_x;  int o_w = -1 + offset_w;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK auxiliary routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLAIC1 applies one step of incremental condition estimation in
            // *  its simplest version:
            // *
            // *  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
            // *  lower triangular matrix L, such that
            // *           twonorm(L*x) = sest
            // *  Then DLAIC1 computes sestpr, s, c such that
            // *  the vector
            // *                  [ s*x ]
            // *           xhat = [  c  ]
            // *  is an approximate singular vector of
            // *                  [ L     0  ]
            // *           Lhat = [ w' gamma ]
            // *  in the sense that
            // *           twonorm(Lhat*xhat) = sestpr.
            // *
            // *  Depending on JOB, an estimate for the largest or smallest singular
            // *  value is computed.
            // *
            // *  Note that [s c]' and sestpr**2 is an eigenpair of the system
            // *
            // *      diag(sest*sest, 0) + [alpha  gamma] * [ alpha ]
            // *                                            [ gamma ]
            // *
            // *  where  alpha =  x'*w.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  JOB     (input) INTEGER
            // *          = 1: an estimate for the largest singular value is computed.
            // *          = 2: an estimate for the smallest singular value is computed.
            // *
            // *  J       (input) INTEGER
            // *          Length of X and W
            // *
            // *  X       (input) DOUBLE PRECISION array, dimension (J)
            // *          The j-vector x.
            // *
            // *  SEST    (input) DOUBLE PRECISION
            // *          Estimated singular value of j by j matrix L
            // *
            // *  W       (input) DOUBLE PRECISION array, dimension (J)
            // *          The j-vector w.
            // *
            // *  GAMMA   (input) DOUBLE PRECISION
            // *          The diagonal element gamma.
            // *
            // *  SESTPR  (output) DOUBLE PRECISION
            // *          Estimated singular value of (j+1) by (j+1) matrix Lhat.
            // *
            // *  S       (output) DOUBLE PRECISION
            // *          Sine needed in forming xhat.
            // *
            // *  C       (output) DOUBLE PRECISION
            // *          Cosine needed in forming xhat.
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, MAX, SIGN, SQRT;
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. Executable Statements ..
            // *

            #endregion


            #region Body

            EPS   = this._dlamch.Run("Epsilon");
            ALPHA = this._ddot.Run(J, X, offset_x, 1, W, offset_w, 1);
            // *
            ABSALP = Math.Abs(ALPHA);
            ABSGAM = Math.Abs(GAMMA);
            ABSEST = Math.Abs(SEST);
            // *
            if (JOB == 1)
            {
                // *
                // *        Estimating largest singular value
                // *
                // *        special cases
                // *
                if (SEST == ZERO)
                {
                    S1 = Math.Max(ABSGAM, ABSALP);
                    if (S1 == ZERO)
                    {
                        S      = ZERO;
                        C      = ONE;
                        SESTPR = ZERO;
                    }
                    else
                    {
                        S      = ALPHA / S1;
                        C      = GAMMA / S1;
                        TMP    = Math.Sqrt(S * S + C * C);
                        S     /= TMP;
                        C     /= TMP;
                        SESTPR = S1 * TMP;
                    }
                    return;
                }
                else
                {
                    if (ABSGAM <= EPS * ABSEST)
                    {
                        S      = ONE;
                        C      = ZERO;
                        TMP    = Math.Max(ABSEST, ABSALP);
                        S1     = ABSEST / TMP;
                        S2     = ABSALP / TMP;
                        SESTPR = TMP * Math.Sqrt(S1 * S1 + S2 * S2);
                        return;
                    }
                    else
                    {
                        if (ABSALP <= EPS * ABSEST)
                        {
                            S1 = ABSGAM;
                            S2 = ABSEST;
                            if (S1 <= S2)
                            {
                                S      = ONE;
                                C      = ZERO;
                                SESTPR = S2;
                            }
                            else
                            {
                                S      = ZERO;
                                C      = ONE;
                                SESTPR = S1;
                            }
                            return;
                        }
                        else
                        {
                            if (ABSEST <= EPS * ABSALP || ABSEST <= EPS * ABSGAM)
                            {
                                S1 = ABSGAM;
                                S2 = ABSALP;
                                if (S1 <= S2)
                                {
                                    TMP    = S1 / S2;
                                    S      = Math.Sqrt(ONE + TMP * TMP);
                                    SESTPR = S2 * S;
                                    C      = (GAMMA / S2) / S;
                                    S      = FortranLib.Sign(ONE, ALPHA) / S;
                                }
                                else
                                {
                                    TMP    = S2 / S1;
                                    C      = Math.Sqrt(ONE + TMP * TMP);
                                    SESTPR = S1 * C;
                                    S      = (ALPHA / S1) / C;
                                    C      = FortranLib.Sign(ONE, GAMMA) / C;
                                }
                                return;
                            }
                            else
                            {
                                // *
                                // *           normal case
                                // *
                                ZETA1 = ALPHA / ABSEST;
                                ZETA2 = GAMMA / ABSEST;
                                // *
                                B = (ONE - ZETA1 * ZETA1 - ZETA2 * ZETA2) * HALF;
                                C = ZETA1 * ZETA1;
                                if (B > ZERO)
                                {
                                    T = C / (B + Math.Sqrt(B * B + C));
                                }
                                else
                                {
                                    T = Math.Sqrt(B * B + C) - B;
                                }
                                // *
                                SINE   = -ZETA1 / T;
                                COSINE = -ZETA2 / (ONE + T);
                                TMP    = Math.Sqrt(SINE * SINE + COSINE * COSINE);
                                S      = SINE / TMP;
                                C      = COSINE / TMP;
                                SESTPR = Math.Sqrt(T + ONE) * ABSEST;
                                return;
                            }
                        }
                    }
                }
                // *
            }
            else
            {
                if (JOB == 2)
                {
                    // *
                    // *        Estimating smallest singular value
                    // *
                    // *        special cases
                    // *
                    if (SEST == ZERO)
                    {
                        SESTPR = ZERO;
                        if (Math.Max(ABSGAM, ABSALP) == ZERO)
                        {
                            SINE   = ONE;
                            COSINE = ZERO;
                        }
                        else
                        {
                            SINE   = -GAMMA;
                            COSINE = ALPHA;
                        }
                        S1  = Math.Max(Math.Abs(SINE), Math.Abs(COSINE));
                        S   = SINE / S1;
                        C   = COSINE / S1;
                        TMP = Math.Sqrt(S * S + C * C);
                        S  /= TMP;
                        C  /= TMP;
                        return;
                    }
                    else
                    {
                        if (ABSGAM <= EPS * ABSEST)
                        {
                            S      = ZERO;
                            C      = ONE;
                            SESTPR = ABSGAM;
                            return;
                        }
                        else
                        {
                            if (ABSALP <= EPS * ABSEST)
                            {
                                S1 = ABSGAM;
                                S2 = ABSEST;
                                if (S1 <= S2)
                                {
                                    S      = ZERO;
                                    C      = ONE;
                                    SESTPR = S1;
                                }
                                else
                                {
                                    S      = ONE;
                                    C      = ZERO;
                                    SESTPR = S2;
                                }
                                return;
                            }
                            else
                            {
                                if (ABSEST <= EPS * ABSALP || ABSEST <= EPS * ABSGAM)
                                {
                                    S1 = ABSGAM;
                                    S2 = ABSALP;
                                    if (S1 <= S2)
                                    {
                                        TMP    = S1 / S2;
                                        C      = Math.Sqrt(ONE + TMP * TMP);
                                        SESTPR = ABSEST * (TMP / C);
                                        S      = -(GAMMA / S2) / C;
                                        C      = FortranLib.Sign(ONE, ALPHA) / C;
                                    }
                                    else
                                    {
                                        TMP    = S2 / S1;
                                        S      = Math.Sqrt(ONE + TMP * TMP);
                                        SESTPR = ABSEST / S;
                                        C      = (ALPHA / S1) / S;
                                        S      = -FortranLib.Sign(ONE, GAMMA) / S;
                                    }
                                    return;
                                }
                                else
                                {
                                    // *
                                    // *           normal case
                                    // *
                                    ZETA1 = ALPHA / ABSEST;
                                    ZETA2 = GAMMA / ABSEST;
                                    // *
                                    NORMA = Math.Max(ONE + ZETA1 * ZETA1 + Math.Abs(ZETA1 * ZETA2), Math.Abs(ZETA1 * ZETA2) + ZETA2 * ZETA2);
                                    // *
                                    // *           See if root is closer to zero or to ONE
                                    // *
                                    TEST = ONE + TWO * (ZETA1 - ZETA2) * (ZETA1 + ZETA2);
                                    if (TEST >= ZERO)
                                    {
                                        // *
                                        // *              root is close to zero, compute directly
                                        // *
                                        B      = (ZETA1 * ZETA1 + ZETA2 * ZETA2 + ONE) * HALF;
                                        C      = ZETA2 * ZETA2;
                                        T      = C / (B + Math.Sqrt(Math.Abs(B * B - C)));
                                        SINE   = ZETA1 / (ONE - T);
                                        COSINE = -ZETA2 / T;
                                        SESTPR = Math.Sqrt(T + FOUR * EPS * EPS * NORMA) * ABSEST;
                                    }
                                    else
                                    {
                                        // *
                                        // *              root is closer to ONE, shift by that amount
                                        // *
                                        B = (ZETA2 * ZETA2 + ZETA1 * ZETA1 - ONE) * HALF;
                                        C = ZETA1 * ZETA1;
                                        if (B >= ZERO)
                                        {
                                            T = -C / (B + Math.Sqrt(B * B + C));
                                        }
                                        else
                                        {
                                            T = B - Math.Sqrt(B * B + C);
                                        }
                                        SINE   = -ZETA1 / T;
                                        COSINE = -ZETA2 / (ONE + T);
                                        SESTPR = Math.Sqrt(ONE + T + FOUR * EPS * EPS * NORMA) * ABSEST;
                                    }
                                    TMP = Math.Sqrt(SINE * SINE + COSINE * COSINE);
                                    S   = SINE / TMP;
                                    C   = COSINE / TMP;
                                    return;
                                    // *
                                }
                            }
                        }
                    }
                }
            }
            return;

            // *
            // *     End of DLAIC1
            // *

            #endregion
        }
예제 #2
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DBDSQR computes the singular values and, optionally, the right and/or
        /// left singular vectors from the singular value decomposition (SVD) of
        /// a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
        /// zero-shift QR algorithm.  The SVD of B has the form
        ///
        /// B = Q * S * P**T
        ///
        /// where S is the diagonal matrix of singular values, Q is an orthogonal
        /// matrix of left singular vectors, and P is an orthogonal matrix of
        /// right singular vectors.  If left singular vectors are requested, this
        /// subroutine actually returns U*Q instead of Q, and, if right singular
        /// vectors are requested, this subroutine returns P**T*VT instead of
        /// P**T, for given real input matrices U and VT.  When U and VT are the
        /// orthogonal matrices that reduce a general matrix A to bidiagonal
        /// form:  A = U*B*VT, as computed by DGEBRD, then
        ///
        /// A = (U*Q) * S * (P**T*VT)
        ///
        /// is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
        /// for a given real input matrix C.
        ///
        /// See "Computing  Small Singular Values of Bidiagonal Matrices With
        /// Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
        /// LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
        /// no. 5, pp. 873-912, Sept 1990) and
        /// "Accurate singular values and differential qd algorithms," by
        /// B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
        /// Department, University of California at Berkeley, July 1992
        /// for a detailed description of the algorithm.
        ///
        ///</summary>
        /// <param name="UPLO">
        /// (input) CHARACTER*1
        /// = 'U':  B is upper bidiagonal;
        /// = 'L':  B is lower bidiagonal.
        ///</param>
        /// <param name="N">
        /// (input) INTEGER
        /// The order of the matrix B.  N .GE. 0.
        ///</param>
        /// <param name="NCVT">
        /// (input) INTEGER
        /// The number of columns of the matrix VT. NCVT .GE. 0.
        ///</param>
        /// <param name="NRU">
        /// (input) INTEGER
        /// The number of rows of the matrix U. NRU .GE. 0.
        ///</param>
        /// <param name="NCC">
        /// (input) INTEGER
        /// The number of columns of the matrix C. NCC .GE. 0.
        ///</param>
        /// <param name="D">
        /// (input/output) DOUBLE PRECISION array, dimension (N)
        /// On entry, the n diagonal elements of the bidiagonal matrix B.
        /// On exit, if INFO=0, the singular values of B in decreasing
        /// order.
        ///</param>
        /// <param name="E">
        /// (input/output) DOUBLE PRECISION array, dimension (N-1)
        /// On entry, the N-1 offdiagonal elements of the bidiagonal
        /// matrix B.
        /// On exit, if INFO = 0, E is destroyed; if INFO .GT. 0, D and E
        /// will contain the diagonal and superdiagonal elements of a
        /// bidiagonal matrix orthogonally equivalent to the one given
        /// as input.
        ///</param>
        /// <param name="VT">
        /// (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
        /// On entry, an N-by-NCVT matrix VT.
        /// On exit, VT is overwritten by P**T * VT.
        /// Not referenced if NCVT = 0.
        ///</param>
        /// <param name="LDVT">
        /// (input) INTEGER
        /// The leading dimension of the array VT.
        /// LDVT .GE. max(1,N) if NCVT .GT. 0; LDVT .GE. 1 if NCVT = 0.
        ///</param>
        /// <param name="U">
        /// (input/output) DOUBLE PRECISION array, dimension (LDU, N)
        /// On entry, an NRU-by-N matrix U.
        /// On exit, U is overwritten by U * Q.
        /// Not referenced if NRU = 0.
        ///</param>
        /// <param name="LDU">
        /// (input) INTEGER
        /// The leading dimension of the array U.  LDU .GE. max(1,NRU).
        ///</param>
        /// <param name="C">
        /// (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
        /// On entry, an N-by-NCC matrix C.
        /// On exit, C is overwritten by Q**T * C.
        /// Not referenced if NCC = 0.
        ///</param>
        /// <param name="LDC">
        /// (input) INTEGER
        /// The leading dimension of the array C.
        /// LDC .GE. max(1,N) if NCC .GT. 0; LDC .GE.1 if NCC = 0.
        ///</param>
        /// <param name="WORK">
        /// (workspace) DOUBLE PRECISION array, dimension (2*N)
        /// if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit
        /// .LT. 0:  If INFO = -i, the i-th argument had an illegal value
        /// .GT. 0:  the algorithm did not converge; D and E contain the
        /// elements of a bidiagonal matrix which is orthogonally
        /// similar to the input matrix B;  if INFO = i, i
        /// elements of E have not converged to zero.
        ///</param>
        public void Run(string UPLO, int N, int NCVT, int NRU, int NCC, ref double[] D, int offset_d
                        , ref double[] E, int offset_e, ref double[] VT, int offset_vt, int LDVT, ref double[] U, int offset_u, int LDU, ref double[] C, int offset_c
                        , int LDC, ref double[] WORK, int offset_work, ref int INFO)
        {
            #region Variables

            bool   LOWER = false; bool ROTATE = false; int I = 0; int IDIR = 0; int ISUB = 0; int ITER = 0; int J = 0; int LL = 0;
            int    LLL = 0; int M = 0; int MAXIT = 0; int NM1 = 0; int NM12 = 0; int NM13 = 0; int OLDLL = 0; int OLDM = 0;
            double ABSE = 0; double ABSS = 0; double COSL = 0; double COSR = 0; double CS = 0; double EPS = 0; double F = 0;
            double G = 0; double H = 0; double MU = 0; double OLDCS = 0; double OLDSN = 0; double R = 0; double SHIFT = 0;
            double SIGMN = 0; double SIGMX = 0; double SINL = 0; double SINR = 0; double SLL = 0; double SMAX = 0; double SMIN = 0;
            double SMINL = 0; double SMINOA = 0; double SN = 0; double THRESH = 0; double TOL = 0; double TOLMUL = 0;
            double UNFL = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_e = -1 + offset_e;  int o_vt = -1 - LDVT + offset_vt;  int o_u = -1 - LDU + offset_u;
            int o_c = -1 - LDC + offset_c; int o_work = -1 + offset_work;

            #endregion


            #region Strings

            UPLO = UPLO.Substring(0, 1);

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK routine (version 3.1.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     January 2007
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DBDSQR computes the singular values and, optionally, the right and/or
            // *  left singular vectors from the singular value decomposition (SVD) of
            // *  a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
            // *  zero-shift QR algorithm.  The SVD of B has the form
            // *
            // *     B = Q * S * P**T
            // *
            // *  where S is the diagonal matrix of singular values, Q is an orthogonal
            // *  matrix of left singular vectors, and P is an orthogonal matrix of
            // *  right singular vectors.  If left singular vectors are requested, this
            // *  subroutine actually returns U*Q instead of Q, and, if right singular
            // *  vectors are requested, this subroutine returns P**T*VT instead of
            // *  P**T, for given real input matrices U and VT.  When U and VT are the
            // *  orthogonal matrices that reduce a general matrix A to bidiagonal
            // *  form:  A = U*B*VT, as computed by DGEBRD, then
            // *
            // *     A = (U*Q) * S * (P**T*VT)
            // *
            // *  is the SVD of A.  Optionally, the subroutine may also compute Q**T*C
            // *  for a given real input matrix C.
            // *
            // *  See "Computing  Small Singular Values of Bidiagonal Matrices With
            // *  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
            // *  LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
            // *  no. 5, pp. 873-912, Sept 1990) and
            // *  "Accurate singular values and differential qd algorithms," by
            // *  B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
            // *  Department, University of California at Berkeley, July 1992
            // *  for a detailed description of the algorithm.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  UPLO    (input) CHARACTER*1
            // *          = 'U':  B is upper bidiagonal;
            // *          = 'L':  B is lower bidiagonal.
            // *
            // *  N       (input) INTEGER
            // *          The order of the matrix B.  N >= 0.
            // *
            // *  NCVT    (input) INTEGER
            // *          The number of columns of the matrix VT. NCVT >= 0.
            // *
            // *  NRU     (input) INTEGER
            // *          The number of rows of the matrix U. NRU >= 0.
            // *
            // *  NCC     (input) INTEGER
            // *          The number of columns of the matrix C. NCC >= 0.
            // *
            // *  D       (input/output) DOUBLE PRECISION array, dimension (N)
            // *          On entry, the n diagonal elements of the bidiagonal matrix B.
            // *          On exit, if INFO=0, the singular values of B in decreasing
            // *          order.
            // *
            // *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
            // *          On entry, the N-1 offdiagonal elements of the bidiagonal
            // *          matrix B.
            // *          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
            // *          will contain the diagonal and superdiagonal elements of a
            // *          bidiagonal matrix orthogonally equivalent to the one given
            // *          as input.
            // *
            // *  VT      (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT)
            // *          On entry, an N-by-NCVT matrix VT.
            // *          On exit, VT is overwritten by P**T * VT.
            // *          Not referenced if NCVT = 0.
            // *
            // *  LDVT    (input) INTEGER
            // *          The leading dimension of the array VT.
            // *          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
            // *
            // *  U       (input/output) DOUBLE PRECISION array, dimension (LDU, N)
            // *          On entry, an NRU-by-N matrix U.
            // *          On exit, U is overwritten by U * Q.
            // *          Not referenced if NRU = 0.
            // *
            // *  LDU     (input) INTEGER
            // *          The leading dimension of the array U.  LDU >= max(1,NRU).
            // *
            // *  C       (input/output) DOUBLE PRECISION array, dimension (LDC, NCC)
            // *          On entry, an N-by-NCC matrix C.
            // *          On exit, C is overwritten by Q**T * C.
            // *          Not referenced if NCC = 0.
            // *
            // *  LDC     (input) INTEGER
            // *          The leading dimension of the array C.
            // *          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
            // *
            // *  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N)
            // *          if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise
            // *
            // *  INFO    (output) INTEGER
            // *          = 0:  successful exit
            // *          < 0:  If INFO = -i, the i-th argument had an illegal value
            // *          > 0:  the algorithm did not converge; D and E contain the
            // *                elements of a bidiagonal matrix which is orthogonally
            // *                similar to the input matrix B;  if INFO = i, i
            // *                elements of E have not converged to zero.
            // *
            // *  Internal Parameters
            // *  ===================
            // *
            // *  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
            // *          TOLMUL controls the convergence criterion of the QR loop.
            // *          If it is positive, TOLMUL*EPS is the desired relative
            // *             precision in the computed singular values.
            // *          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
            // *             desired absolute accuracy in the computed singular
            // *             values (corresponds to relative accuracy
            // *             abs(TOLMUL*EPS) in the largest singular value.
            // *          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
            // *             between 10 (for fast convergence) and .1/EPS
            // *             (for there to be some accuracy in the results).
            // *          Default is to lose at either one eighth or 2 of the
            // *             available decimal digits in each computed singular value
            // *             (whichever is smaller).
            // *
            // *  MAXITR  INTEGER, default = 6
            // *          MAXITR controls the maximum number of passes of the
            // *          algorithm through its inner loop. The algorithms stops
            // *          (and so fails to converge) if the number of passes
            // *          through the inner loop exceeds MAXITR*N**2.
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO  = 0;
            LOWER = this._lsame.Run(UPLO, "L");
            if (!this._lsame.Run(UPLO, "U") && !LOWER)
            {
                INFO = -1;
            }
            else
            {
                if (N < 0)
                {
                    INFO = -2;
                }
                else
                {
                    if (NCVT < 0)
                    {
                        INFO = -3;
                    }
                    else
                    {
                        if (NRU < 0)
                        {
                            INFO = -4;
                        }
                        else
                        {
                            if (NCC < 0)
                            {
                                INFO = -5;
                            }
                            else
                            {
                                if ((NCVT == 0 && LDVT < 1) || (NCVT > 0 && LDVT < Math.Max(1, N)))
                                {
                                    INFO = -9;
                                }
                                else
                                {
                                    if (LDU < Math.Max(1, NRU))
                                    {
                                        INFO = -11;
                                    }
                                    else
                                    {
                                        if ((NCC == 0 && LDC < 1) || (NCC > 0 && LDC < Math.Max(1, N)))
                                        {
                                            INFO = -13;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DBDSQR", -INFO);
                return;
            }
            if (N == 0)
            {
                return;
            }
            if (N == 1)
            {
                goto LABEL160;
            }
            // *
            // *     ROTATE is true if any singular vectors desired, false otherwise
            // *
            ROTATE = (NCVT > 0) || (NRU > 0) || (NCC > 0);
            // *
            // *     If no singular vectors desired, use qd algorithm
            // *
            if (!ROTATE)
            {
                this._dlasq1.Run(N, ref D, offset_d, E, offset_e, ref WORK, offset_work, ref INFO);
                return;
            }
            // *
            NM1  = N - 1;
            NM12 = NM1 + NM1;
            NM13 = NM12 + NM1;
            IDIR = 0;
            // *
            // *     Get machine constants
            // *
            EPS  = this._dlamch.Run("Epsilon");
            UNFL = this._dlamch.Run("Safe minimum");
            // *
            // *     If matrix lower bidiagonal, rotate to be upper bidiagonal
            // *     by applying Givens rotations on the left
            // *
            if (LOWER)
            {
                for (I = 1; I <= N - 1; I++)
                {
                    this._dlartg.Run(D[I + o_d], E[I + o_e], ref CS, ref SN, ref R);
                    D[I + o_d]             = R;
                    E[I + o_e]             = SN * D[I + 1 + o_d];
                    D[I + 1 + o_d]        *= CS;
                    WORK[I + o_work]       = CS;
                    WORK[NM1 + I + o_work] = SN;
                }
                // *
                // *        Update singular vectors if desired
                // *
                if (NRU > 0)
                {
                    this._dlasr.Run("R", "V", "F", NRU, N, WORK, 1 + o_work
                                    , WORK, N + o_work, ref U, offset_u, LDU);
                }
                if (NCC > 0)
                {
                    this._dlasr.Run("L", "V", "F", N, NCC, WORK, 1 + o_work
                                    , WORK, N + o_work, ref C, offset_c, LDC);
                }
            }
            // *
            // *     Compute singular values to relative accuracy TOL
            // *     (By setting TOL to be negative, algorithm will compute
            // *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
            // *
            TOLMUL = Math.Max(TEN, Math.Min(HNDRD, Math.Pow(EPS, MEIGTH)));
            TOL    = TOLMUL * EPS;
            // *
            // *     Compute approximate maximum, minimum singular values
            // *
            SMAX = ZERO;
            for (I = 1; I <= N; I++)
            {
                SMAX = Math.Max(SMAX, Math.Abs(D[I + o_d]));
            }
            for (I = 1; I <= N - 1; I++)
            {
                SMAX = Math.Max(SMAX, Math.Abs(E[I + o_e]));
            }
            SMINL = ZERO;
            if (TOL >= ZERO)
            {
                // *
                // *        Relative accuracy desired
                // *
                SMINOA = Math.Abs(D[1 + o_d]);
                if (SMINOA == ZERO)
                {
                    goto LABEL50;
                }
                MU = SMINOA;
                for (I = 2; I <= N; I++)
                {
                    MU     = Math.Abs(D[I + o_d]) * (MU / (MU + Math.Abs(E[I - 1 + o_e])));
                    SMINOA = Math.Min(SMINOA, MU);
                    if (SMINOA == ZERO)
                    {
                        goto LABEL50;
                    }
                }
                LABEL50 :;
                SMINOA /= Math.Sqrt(Convert.ToDouble(N));
                THRESH  = Math.Max(TOL * SMINOA, MAXITR * N * N * UNFL);
            }
            else
            {
                // *
                // *        Absolute accuracy desired
                // *
                THRESH = Math.Max(Math.Abs(TOL) * SMAX, MAXITR * N * N * UNFL);
            }
            // *
            // *     Prepare for main iteration loop for the singular values
            // *     (MAXIT is the maximum number of passes through the inner
            // *     loop permitted before nonconvergence signalled.)
            // *
            MAXIT = MAXITR * N * N;
            ITER  = 0;
            OLDLL = -1;
            OLDM  = -1;
            // *
            // *     M points to last element of unconverged part of matrix
            // *
            M = N;
            // *
            // *     Begin main iteration loop
            // *
            LABEL60 :;
            // *
            // *     Check for convergence or exceeding iteration count
            // *
            if (M <= 1)
            {
                goto LABEL160;
            }
            if (ITER > MAXIT)
            {
                goto LABEL200;
            }
            // *
            // *     Find diagonal block of matrix to work on
            // *
            if (TOL < ZERO && Math.Abs(D[M + o_d]) <= THRESH)
            {
                D[M + o_d] = ZERO;
            }
            SMAX = Math.Abs(D[M + o_d]);
            SMIN = SMAX;
            for (LLL = 1; LLL <= M - 1; LLL++)
            {
                LL   = M - LLL;
                ABSS = Math.Abs(D[LL + o_d]);
                ABSE = Math.Abs(E[LL + o_e]);
                if (TOL < ZERO && ABSS <= THRESH)
                {
                    D[LL + o_d] = ZERO;
                }
                if (ABSE <= THRESH)
                {
                    goto LABEL80;
                }
                SMIN = Math.Min(SMIN, ABSS);
                SMAX = Math.Max(SMAX, Math.Max(ABSS, ABSE));
            }
            LL = 0;
            goto LABEL90;
            LABEL80 :;
            E[LL + o_e] = ZERO;
            // *
            // *     Matrix splits since E(LL) = 0
            // *
            if (LL == M - 1)
            {
                // *
                // *        Convergence of bottom singular value, return to top of loop
                // *
                M -= 1;
                goto LABEL60;
            }
            LABEL90 :;
            LL += 1;
            // *
            // *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
            // *
            if (LL == M - 1)
            {
                // *
                // *        2 by 2 block, handle separately
                // *
                this._dlasv2.Run(D[M - 1 + o_d], E[M - 1 + o_e], D[M + o_d], ref SIGMN, ref SIGMX, ref SINR
                                 , ref COSR, ref SINL, ref COSL);
                D[M - 1 + o_d] = SIGMX;
                E[M - 1 + o_e] = ZERO;
                D[M + o_d]     = SIGMN;
                // *
                // *        Compute singular vectors, if desired
                // *
                if (NCVT > 0)
                {
                    this._drot.Run(NCVT, ref VT, M - 1 + 1 * LDVT + o_vt, LDVT, ref VT, M + 1 * LDVT + o_vt, LDVT, COSR
                                   , SINR);
                }
                if (NRU > 0)
                {
                    this._drot.Run(NRU, ref U, 1 + (M - 1) * LDU + o_u, 1, ref U, 1 + M * LDU + o_u, 1, COSL
                                   , SINL);
                }
                if (NCC > 0)
                {
                    this._drot.Run(NCC, ref C, M - 1 + 1 * LDC + o_c, LDC, ref C, M + 1 * LDC + o_c, LDC, COSL
                                   , SINL);
                }
                M -= 2;
                goto LABEL60;
            }
            // *
            // *     If working on new submatrix, choose shift direction
            // *     (from larger end diagonal element towards smaller)
            // *
            if (LL > OLDM || M < OLDLL)
            {
                if (Math.Abs(D[LL + o_d]) >= Math.Abs(D[M + o_d]))
                {
                    // *
                    // *           Chase bulge from top (big end) to bottom (small end)
                    // *
                    IDIR = 1;
                }
                else
                {
                    // *
                    // *           Chase bulge from bottom (big end) to top (small end)
                    // *
                    IDIR = 2;
                }
            }
            // *
            // *     Apply convergence tests
            // *
            if (IDIR == 1)
            {
                // *
                // *        Run convergence test in forward direction
                // *        First apply standard test to bottom of matrix
                // *
                if (Math.Abs(E[M - 1 + o_e]) <= Math.Abs(TOL) * Math.Abs(D[M + o_d]) || (TOL < ZERO && Math.Abs(E[M - 1 + o_e]) <= THRESH))
                {
                    E[M - 1 + o_e] = ZERO;
                    goto LABEL60;
                }
                // *
                if (TOL >= ZERO)
                {
                    // *
                    // *           If relative accuracy desired,
                    // *           apply convergence criterion forward
                    // *
                    MU    = Math.Abs(D[LL + o_d]);
                    SMINL = MU;
                    for (LLL = LL; LLL <= M - 1; LLL++)
                    {
                        if (Math.Abs(E[LLL + o_e]) <= TOL * MU)
                        {
                            E[LLL + o_e] = ZERO;
                            goto LABEL60;
                        }
                        MU    = Math.Abs(D[LLL + 1 + o_d]) * (MU / (MU + Math.Abs(E[LLL + o_e])));
                        SMINL = Math.Min(SMINL, MU);
                    }
                }
                // *
            }
            else
            {
                // *
                // *        Run convergence test in backward direction
                // *        First apply standard test to top of matrix
                // *
                if (Math.Abs(E[LL + o_e]) <= Math.Abs(TOL) * Math.Abs(D[LL + o_d]) || (TOL < ZERO && Math.Abs(E[LL + o_e]) <= THRESH))
                {
                    E[LL + o_e] = ZERO;
                    goto LABEL60;
                }
                // *
                if (TOL >= ZERO)
                {
                    // *
                    // *           If relative accuracy desired,
                    // *           apply convergence criterion backward
                    // *
                    MU    = Math.Abs(D[M + o_d]);
                    SMINL = MU;
                    for (LLL = M - 1; LLL >= LL; LLL += -1)
                    {
                        if (Math.Abs(E[LLL + o_e]) <= TOL * MU)
                        {
                            E[LLL + o_e] = ZERO;
                            goto LABEL60;
                        }
                        MU    = Math.Abs(D[LLL + o_d]) * (MU / (MU + Math.Abs(E[LLL + o_e])));
                        SMINL = Math.Min(SMINL, MU);
                    }
                }
            }
            OLDLL = LL;
            OLDM  = M;
            // *
            // *     Compute shift.  First, test if shifting would ruin relative
            // *     accuracy, and if so set the shift to zero.
            // *
            if (TOL >= ZERO && N * TOL * (SMINL / SMAX) <= Math.Max(EPS, HNDRTH * TOL))
            {
                // *
                // *        Use a zero shift to avoid loss of relative accuracy
                // *
                SHIFT = ZERO;
            }
            else
            {
                // *
                // *        Compute the shift from 2-by-2 block at end of matrix
                // *
                if (IDIR == 1)
                {
                    SLL = Math.Abs(D[LL + o_d]);
                    this._dlas2.Run(D[M - 1 + o_d], E[M - 1 + o_e], D[M + o_d], ref SHIFT, ref R);
                }
                else
                {
                    SLL = Math.Abs(D[M + o_d]);
                    this._dlas2.Run(D[LL + o_d], E[LL + o_e], D[LL + 1 + o_d], ref SHIFT, ref R);
                }
                // *
                // *        Test if shift negligible, and if so set to zero
                // *
                if (SLL > ZERO)
                {
                    if (Math.Pow(SHIFT / SLL, 2) < EPS)
                    {
                        SHIFT = ZERO;
                    }
                }
            }
            // *
            // *     Increment iteration count
            // *
            ITER += M - LL;
            // *
            // *     If SHIFT = 0, do simplified QR iteration
            // *
            if (SHIFT == ZERO)
            {
                if (IDIR == 1)
                {
                    // *
                    // *           Chase bulge from top to bottom
                    // *           Save cosines and sines for later singular vector updates
                    // *
                    CS    = ONE;
                    OLDCS = ONE;
                    for (I = LL; I <= M - 1; I++)
                    {
                        this._dlartg.Run(D[I + o_d] * CS, E[I + o_e], ref CS, ref SN, ref R);
                        if (I > LL)
                        {
                            E[I - 1 + o_e] = OLDSN * R;
                        }
                        this._dlartg.Run(OLDCS * R, D[I + 1 + o_d] * SN, ref OLDCS, ref OLDSN, ref D[I + o_d]);
                        WORK[I - LL + 1 + o_work]        = CS;
                        WORK[I - LL + 1 + NM1 + o_work]  = SN;
                        WORK[I - LL + 1 + NM12 + o_work] = OLDCS;
                        WORK[I - LL + 1 + NM13 + o_work] = OLDSN;
                    }
                    H              = D[M + o_d] * CS;
                    D[M + o_d]     = H * OLDCS;
                    E[M - 1 + o_e] = H * OLDSN;
                    // *
                    // *           Update singular vectors
                    // *
                    if (NCVT > 0)
                    {
                        this._dlasr.Run("L", "V", "F", M - LL + 1, NCVT, WORK, 1 + o_work
                                        , WORK, N + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT);
                    }
                    if (NRU > 0)
                    {
                        this._dlasr.Run("R", "V", "F", NRU, M - LL + 1, WORK, NM12 + 1 + o_work
                                        , WORK, NM13 + 1 + o_work, ref U, 1 + LL * LDU + o_u, LDU);
                    }
                    if (NCC > 0)
                    {
                        this._dlasr.Run("L", "V", "F", M - LL + 1, NCC, WORK, NM12 + 1 + o_work
                                        , WORK, NM13 + 1 + o_work, ref C, LL + 1 * LDC + o_c, LDC);
                    }
                    // *
                    // *           Test convergence
                    // *
                    if (Math.Abs(E[M - 1 + o_e]) <= THRESH)
                    {
                        E[M - 1 + o_e] = ZERO;
                    }
                    // *
                }
                else
                {
                    // *
                    // *           Chase bulge from bottom to top
                    // *           Save cosines and sines for later singular vector updates
                    // *
                    CS    = ONE;
                    OLDCS = ONE;
                    for (I = M; I >= LL + 1; I += -1)
                    {
                        this._dlartg.Run(D[I + o_d] * CS, E[I - 1 + o_e], ref CS, ref SN, ref R);
                        if (I < M)
                        {
                            E[I + o_e] = OLDSN * R;
                        }
                        this._dlartg.Run(OLDCS * R, D[I - 1 + o_d] * SN, ref OLDCS, ref OLDSN, ref D[I + o_d]);
                        WORK[I - LL + o_work]        = CS;
                        WORK[I - LL + NM1 + o_work]  = -SN;
                        WORK[I - LL + NM12 + o_work] = OLDCS;
                        WORK[I - LL + NM13 + o_work] = -OLDSN;
                    }
                    H           = D[LL + o_d] * CS;
                    D[LL + o_d] = H * OLDCS;
                    E[LL + o_e] = H * OLDSN;
                    // *
                    // *           Update singular vectors
                    // *
                    if (NCVT > 0)
                    {
                        this._dlasr.Run("L", "V", "B", M - LL + 1, NCVT, WORK, NM12 + 1 + o_work
                                        , WORK, NM13 + 1 + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT);
                    }
                    if (NRU > 0)
                    {
                        this._dlasr.Run("R", "V", "B", NRU, M - LL + 1, WORK, 1 + o_work
                                        , WORK, N + o_work, ref U, 1 + LL * LDU + o_u, LDU);
                    }
                    if (NCC > 0)
                    {
                        this._dlasr.Run("L", "V", "B", M - LL + 1, NCC, WORK, 1 + o_work
                                        , WORK, N + o_work, ref C, LL + 1 * LDC + o_c, LDC);
                    }
                    // *
                    // *           Test convergence
                    // *
                    if (Math.Abs(E[LL + o_e]) <= THRESH)
                    {
                        E[LL + o_e] = ZERO;
                    }
                }
            }
            else
            {
                // *
                // *        Use nonzero shift
                // *
                if (IDIR == 1)
                {
                    // *
                    // *           Chase bulge from top to bottom
                    // *           Save cosines and sines for later singular vector updates
                    // *
                    F = (Math.Abs(D[LL + o_d]) - SHIFT) * (FortranLib.Sign(ONE, D[LL + o_d]) + SHIFT / D[LL + o_d]);
                    G = E[LL + o_e];
                    for (I = LL; I <= M - 1; I++)
                    {
                        this._dlartg.Run(F, G, ref COSR, ref SINR, ref R);
                        if (I > LL)
                        {
                            E[I - 1 + o_e] = R;
                        }
                        F               = COSR * D[I + o_d] + SINR * E[I + o_e];
                        E[I + o_e]      = COSR * E[I + o_e] - SINR * D[I + o_d];
                        G               = SINR * D[I + 1 + o_d];
                        D[I + 1 + o_d] *= COSR;
                        this._dlartg.Run(F, G, ref COSL, ref SINL, ref R);
                        D[I + o_d]     = R;
                        F              = COSL * E[I + o_e] + SINL * D[I + 1 + o_d];
                        D[I + 1 + o_d] = COSL * D[I + 1 + o_d] - SINL * E[I + o_e];
                        if (I < M - 1)
                        {
                            G = SINL * E[I + 1 + o_e];
                            E[I + 1 + o_e] *= COSL;
                        }
                        WORK[I - LL + 1 + o_work]        = COSR;
                        WORK[I - LL + 1 + NM1 + o_work]  = SINR;
                        WORK[I - LL + 1 + NM12 + o_work] = COSL;
                        WORK[I - LL + 1 + NM13 + o_work] = SINL;
                    }
                    E[M - 1 + o_e] = F;
                    // *
                    // *           Update singular vectors
                    // *
                    if (NCVT > 0)
                    {
                        this._dlasr.Run("L", "V", "F", M - LL + 1, NCVT, WORK, 1 + o_work
                                        , WORK, N + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT);
                    }
                    if (NRU > 0)
                    {
                        this._dlasr.Run("R", "V", "F", NRU, M - LL + 1, WORK, NM12 + 1 + o_work
                                        , WORK, NM13 + 1 + o_work, ref U, 1 + LL * LDU + o_u, LDU);
                    }
                    if (NCC > 0)
                    {
                        this._dlasr.Run("L", "V", "F", M - LL + 1, NCC, WORK, NM12 + 1 + o_work
                                        , WORK, NM13 + 1 + o_work, ref C, LL + 1 * LDC + o_c, LDC);
                    }
                    // *
                    // *           Test convergence
                    // *
                    if (Math.Abs(E[M - 1 + o_e]) <= THRESH)
                    {
                        E[M - 1 + o_e] = ZERO;
                    }
                    // *
                }
                else
                {
                    // *
                    // *           Chase bulge from bottom to top
                    // *           Save cosines and sines for later singular vector updates
                    // *
                    F = (Math.Abs(D[M + o_d]) - SHIFT) * (FortranLib.Sign(ONE, D[M + o_d]) + SHIFT / D[M + o_d]);
                    G = E[M - 1 + o_e];
                    for (I = M; I >= LL + 1; I += -1)
                    {
                        this._dlartg.Run(F, G, ref COSR, ref SINR, ref R);
                        if (I < M)
                        {
                            E[I + o_e] = R;
                        }
                        F = COSR * D[I + o_d] + SINR * E[I - 1 + o_e];
                        E[I - 1 + o_e] = COSR * E[I - 1 + o_e] - SINR * D[I + o_d];
                        G = SINR * D[I - 1 + o_d];
                        D[I - 1 + o_d] *= COSR;
                        this._dlartg.Run(F, G, ref COSL, ref SINL, ref R);
                        D[I + o_d]     = R;
                        F              = COSL * E[I - 1 + o_e] + SINL * D[I - 1 + o_d];
                        D[I - 1 + o_d] = COSL * D[I - 1 + o_d] - SINL * E[I - 1 + o_e];
                        if (I > LL + 1)
                        {
                            G = SINL * E[I - 2 + o_e];
                            E[I - 2 + o_e] *= COSL;
                        }
                        WORK[I - LL + o_work]        = COSR;
                        WORK[I - LL + NM1 + o_work]  = -SINR;
                        WORK[I - LL + NM12 + o_work] = COSL;
                        WORK[I - LL + NM13 + o_work] = -SINL;
                    }
                    E[LL + o_e] = F;
                    // *
                    // *           Test convergence
                    // *
                    if (Math.Abs(E[LL + o_e]) <= THRESH)
                    {
                        E[LL + o_e] = ZERO;
                    }
                    // *
                    // *           Update singular vectors if desired
                    // *
                    if (NCVT > 0)
                    {
                        this._dlasr.Run("L", "V", "B", M - LL + 1, NCVT, WORK, NM12 + 1 + o_work
                                        , WORK, NM13 + 1 + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT);
                    }
                    if (NRU > 0)
                    {
                        this._dlasr.Run("R", "V", "B", NRU, M - LL + 1, WORK, 1 + o_work
                                        , WORK, N + o_work, ref U, 1 + LL * LDU + o_u, LDU);
                    }
                    if (NCC > 0)
                    {
                        this._dlasr.Run("L", "V", "B", M - LL + 1, NCC, WORK, 1 + o_work
                                        , WORK, N + o_work, ref C, LL + 1 * LDC + o_c, LDC);
                    }
                }
            }
            // *
            // *     QR iteration finished, go back and check convergence
            // *
            goto LABEL60;
            // *
            // *     All singular values converged, so make them positive
            // *
            LABEL160 :;
            for (I = 1; I <= N; I++)
            {
                if (D[I + o_d] < ZERO)
                {
                    D[I + o_d] = -D[I + o_d];
                    // *
                    // *           Change sign of singular vectors, if desired
                    // *
                    if (NCVT > 0)
                    {
                        this._dscal.Run(NCVT, NEGONE, ref VT, I + 1 * LDVT + o_vt, LDVT);
                    }
                }
            }
            // *
            // *     Sort the singular values into decreasing order (insertion sort on
            // *     singular values, but only one transposition per singular vector)
            // *
            for (I = 1; I <= N - 1; I++)
            {
                // *
                // *        Scan for smallest D(I)
                // *
                ISUB = 1;
                SMIN = D[1 + o_d];
                for (J = 2; J <= N + 1 - I; J++)
                {
                    if (D[J + o_d] <= SMIN)
                    {
                        ISUB = J;
                        SMIN = D[J + o_d];
                    }
                }
                if (ISUB != N + 1 - I)
                {
                    // *
                    // *           Swap singular values and vectors
                    // *
                    D[ISUB + o_d]      = D[N + 1 - I + o_d];
                    D[N + 1 - I + o_d] = SMIN;
                    if (NCVT > 0)
                    {
                        this._dswap.Run(NCVT, ref VT, ISUB + 1 * LDVT + o_vt, LDVT, ref VT, N + 1 - I + 1 * LDVT + o_vt, LDVT);
                    }
                    if (NRU > 0)
                    {
                        this._dswap.Run(NRU, ref U, 1 + ISUB * LDU + o_u, 1, ref U, 1 + (N + 1 - I) * LDU + o_u, 1);
                    }
                    if (NCC > 0)
                    {
                        this._dswap.Run(NCC, ref C, ISUB + 1 * LDC + o_c, LDC, ref C, N + 1 - I + 1 * LDC + o_c, LDC);
                    }
                }
            }
            goto LABEL220;
            // *
            // *     Maximum number of iterations exceeded, failure to converge
            // *
            LABEL200 :;
            INFO = 0;
            for (I = 1; I <= N - 1; I++)
            {
                if (E[I + o_e] != ZERO)
                {
                    INFO += 1;
                }
            }
            LABEL220 :;
            return;

            // *
            // *     End of DBDSQR
            // *

            #endregion
        }
예제 #3
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLASV2 computes the singular value decomposition of a 2-by-2
        /// triangular matrix
        /// [  F   G  ]
        /// [  0   H  ].
        /// On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
        /// smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
        /// right singular vectors for abs(SSMAX), giving the decomposition
        ///
        /// [ CSL  SNL ] [  F   G  ] [ CSR -SNR ]  =  [ SSMAX   0   ]
        /// [-SNL  CSL ] [  0   H  ] [ SNR  CSR ]     [  0    SSMIN ].
        ///
        ///</summary>
        /// <param name="F">
        /// (input) DOUBLE PRECISION
        /// The (1,1) element of the 2-by-2 matrix.
        ///</param>
        /// <param name="G">
        /// (input) DOUBLE PRECISION
        /// The (1,2) element of the 2-by-2 matrix.
        ///</param>
        /// <param name="H">
        /// (input) DOUBLE PRECISION
        /// The (2,2) element of the 2-by-2 matrix.
        ///</param>
        /// <param name="SSMIN">
        /// (output) DOUBLE PRECISION
        /// abs(SSMIN) is the smaller singular value.
        ///</param>
        /// <param name="SSMAX">
        /// (output) DOUBLE PRECISION
        /// abs(SSMAX) is the larger singular value.
        ///</param>
        /// <param name="SNR">
        /// (output) DOUBLE PRECISION
        ///</param>
        /// <param name="CSR">
        /// (output) DOUBLE PRECISION
        /// The vector (CSR, SNR) is a unit right singular vector for the
        /// singular value abs(SSMAX).
        ///</param>
        /// <param name="SNL">
        /// (output) DOUBLE PRECISION
        ///</param>
        /// <param name="CSL">
        /// (output) DOUBLE PRECISION
        /// The vector (CSL, SNL) is a unit left singular vector for the
        /// singular value abs(SSMAX).
        ///</param>
        public void Run(double F, double G, double H, ref double SSMIN, ref double SSMAX, ref double SNR
                        , ref double CSR, ref double SNL, ref double CSL)
        {
            #region Variables

            bool   GASMAL = false; bool SWAP = false; int PMAX = 0; double A = 0; double CLT = 0; double CRT = 0; double D = 0;
            double FA = 0; double FT = 0; double GA = 0; double GT = 0; double HA = 0; double HT = 0; double L = 0; double M = 0;
            double MM = 0; double R = 0; double S = 0; double SLT = 0; double SRT = 0; double T = 0; double TEMP = 0;
            double TSIGN = 0; double TT = 0;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK auxiliary routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLASV2 computes the singular value decomposition of a 2-by-2
            // *  triangular matrix
            // *     [  F   G  ]
            // *     [  0   H  ].
            // *  On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
            // *  smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
            // *  right singular vectors for abs(SSMAX), giving the decomposition
            // *
            // *     [ CSL  SNL ] [  F   G  ] [ CSR -SNR ]  =  [ SSMAX   0   ]
            // *     [-SNL  CSL ] [  0   H  ] [ SNR  CSR ]     [  0    SSMIN ].
            // *
            // *  Arguments
            // *  =========
            // *
            // *  F       (input) DOUBLE PRECISION
            // *          The (1,1) element of the 2-by-2 matrix.
            // *
            // *  G       (input) DOUBLE PRECISION
            // *          The (1,2) element of the 2-by-2 matrix.
            // *
            // *  H       (input) DOUBLE PRECISION
            // *          The (2,2) element of the 2-by-2 matrix.
            // *
            // *  SSMIN   (output) DOUBLE PRECISION
            // *          abs(SSMIN) is the smaller singular value.
            // *
            // *  SSMAX   (output) DOUBLE PRECISION
            // *          abs(SSMAX) is the larger singular value.
            // *
            // *  SNL     (output) DOUBLE PRECISION
            // *  CSL     (output) DOUBLE PRECISION
            // *          The vector (CSL, SNL) is a unit left singular vector for the
            // *          singular value abs(SSMAX).
            // *
            // *  SNR     (output) DOUBLE PRECISION
            // *  CSR     (output) DOUBLE PRECISION
            // *          The vector (CSR, SNR) is a unit right singular vector for the
            // *          singular value abs(SSMAX).
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Any input parameter may be aliased with any output parameter.
            // *
            // *  Barring over/underflow and assuming a guard digit in subtraction, all
            // *  output quantities are correct to within a few units in the last
            // *  place (ulps).
            // *
            // *  In IEEE arithmetic, the code works correctly if one matrix element is
            // *  infinite.
            // *
            // *  Overflow will not occur unless the largest singular value itself
            // *  overflows or is within a few ulps of overflow. (On machines with
            // *  partial overflow, like the Cray, overflow may occur if the largest
            // *  singular value is within a factor of 2 of overflow.)
            // *
            // *  Underflow is harmless if underflow is gradual. Otherwise, results
            // *  may correspond to a matrix modified by perturbations of size near
            // *  the underflow threshold.
            // *
            // * =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, SIGN, SQRT;
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. Executable Statements ..
            // *

            #endregion


            #region Body

            FT = F;
            FA = Math.Abs(FT);
            HT = H;
            HA = Math.Abs(H);
            // *
            // *     PMAX points to the maximum absolute element of matrix
            // *       PMAX = 1 if F largest in absolute values
            // *       PMAX = 2 if G largest in absolute values
            // *       PMAX = 3 if H largest in absolute values
            // *
            PMAX = 1;
            SWAP = (HA > FA);
            if (SWAP)
            {
                PMAX = 3;
                TEMP = FT;
                FT   = HT;
                HT   = TEMP;
                TEMP = FA;
                FA   = HA;
                HA   = TEMP;
                // *
                // *        Now FA .ge. HA
                // *
            }
            GT = G;
            GA = Math.Abs(GT);
            if (GA == ZERO)
            {
                // *
                // *        Diagonal matrix
                // *
                SSMIN = HA;
                SSMAX = FA;
                CLT   = ONE;
                CRT   = ONE;
                SLT   = ZERO;
                SRT   = ZERO;
            }
            else
            {
                GASMAL = true;
                if (GA > FA)
                {
                    PMAX = 2;
                    if ((FA / GA) < this._dlamch.Run("EPS"))
                    {
                        // *
                        // *              Case of very large GA
                        // *
                        GASMAL = false;
                        SSMAX  = GA;
                        if (HA > ONE)
                        {
                            SSMIN = FA / (GA / HA);
                        }
                        else
                        {
                            SSMIN = (FA / GA) * HA;
                        }
                        CLT = ONE;
                        SLT = HT / GT;
                        SRT = ONE;
                        CRT = FT / GT;
                    }
                }
                if (GASMAL)
                {
                    // *
                    // *           Normal case
                    // *
                    D = FA - HA;
                    if (D == FA)
                    {
                        // *
                        // *              Copes with infinite F or H
                        // *
                        L = ONE;
                    }
                    else
                    {
                        L = D / FA;
                    }
                    // *
                    // *           Note that 0 .le. L .le. 1
                    // *
                    M = GT / FT;
                    // *
                    // *           Note that abs(M) .le. 1/macheps
                    // *
                    T = TWO - L;
                    // *
                    // *           Note that T .ge. 1
                    // *
                    MM = M * M;
                    TT = T * T;
                    S  = Math.Sqrt(TT + MM);
                    // *
                    // *           Note that 1 .le. S .le. 1 + 1/macheps
                    // *
                    if (L == ZERO)
                    {
                        R = Math.Abs(M);
                    }
                    else
                    {
                        R = Math.Sqrt(L * L + MM);
                    }
                    // *
                    // *           Note that 0 .le. R .le. 1 + 1/macheps
                    // *
                    A = HALF * (S + R);
                    // *
                    // *           Note that 1 .le. A .le. 1 + abs(M)
                    // *
                    SSMIN = HA / A;
                    SSMAX = FA * A;
                    if (MM == ZERO)
                    {
                        // *
                        // *              Note that M is very tiny
                        // *
                        if (L == ZERO)
                        {
                            T = FortranLib.Sign(TWO, FT) * FortranLib.Sign(ONE, GT);
                        }
                        else
                        {
                            T = GT / FortranLib.Sign(D, FT) + M / T;
                        }
                    }
                    else
                    {
                        T = (M / (S + T) + M / (R + L)) * (ONE + A);
                    }
                    L   = Math.Sqrt(T * T + FOUR);
                    CRT = TWO / L;
                    SRT = T / L;
                    CLT = (CRT + SRT * M) / A;
                    SLT = (HT / FT) * SRT / A;
                }
            }
            if (SWAP)
            {
                CSL = SRT;
                SNL = CRT;
                CSR = SLT;
                SNR = CLT;
            }
            else
            {
                CSL = CLT;
                SNL = SLT;
                CSR = CRT;
                SNR = SRT;
            }
            // *
            // *     Correct signs of SSMAX and SSMIN
            // *
            if (PMAX == 1)
            {
                TSIGN = FortranLib.Sign(ONE, CSR) * FortranLib.Sign(ONE, CSL) * FortranLib.Sign(ONE, F);
            }
            if (PMAX == 2)
            {
                TSIGN = FortranLib.Sign(ONE, SNR) * FortranLib.Sign(ONE, CSL) * FortranLib.Sign(ONE, G);
            }
            if (PMAX == 3)
            {
                TSIGN = FortranLib.Sign(ONE, SNR) * FortranLib.Sign(ONE, SNL) * FortranLib.Sign(ONE, H);
            }
            SSMAX = FortranLib.Sign(SSMAX, TSIGN);
            SSMIN = FortranLib.Sign(SSMIN, TSIGN * FortranLib.Sign(ONE, F) * FortranLib.Sign(ONE, H));
            return;

            // *
            // *     End of DLASV2
            // *

            #endregion
        }
예제 #4
0
        public double Run(int N, IFAREN FCN, double X, double[] Y, int offset_y, double XEND, double POSNEG
                          , double[] F0, int offset_f0, ref double[] F1, int offset_f1, ref double[] Y1, int offset_y1, int IORD, double HMAX, double[] ATOL, int offset_atol
                          , double[] RTOL, int offset_rtol, int ITOL, double[] RPAR, int offset_rpar, int[] IPAR, int offset_ipar)
        {
            double hinit = 0;

            #region Implicit Variables

            double DNF = 0; double DNY = 0; double ATOLI = 0; double RTOLI = 0; double SK = 0; int I = 0; double H = 0;
            double DER2 = 0; double DER12 = 0; double H1 = 0;
            #endregion
            #region Array Index Correction

            int o_y = -1 + offset_y;  int o_f0 = -1 + offset_f0;  int o_f1 = -1 + offset_f1;  int o_y1 = -1 + offset_y1;
            int o_atol = -1 + offset_atol; int o_rtol = -1 + offset_rtol;  int o_rpar = -1 + offset_rpar;
            int o_ipar = -1 + offset_ipar;
            #endregion
            // C ----------------------------------------------------------
            // C ----  COMPUTATION OF AN INITIAL STEP SIZE GUESS
            // C ----------------------------------------------------------
            // C ---- COMPUTE A FIRST GUESS FOR EXPLICIT EULER AS
            // C ----   H = 0.01 * NORM (Y0) / NORM (F0)
            // C ---- THE INCREMENT FOR EXPLICIT EULER IS SMALL
            // C ---- COMPARED TO THE SOLUTION
            #region Body

            DNF   = 0.0E0;
            DNY   = 0.0E0;
            ATOLI = ATOL[1 + o_atol];
            RTOLI = RTOL[1 + o_rtol];
            if (ITOL == 0)
            {
                for (I = 1; I <= N; I++)
                {
                    SK   = ATOLI + RTOLI * Math.Abs(Y[I + o_y]);
                    DNF += Math.Pow(F0[I + o_f0] / SK, 2);
                    DNY += Math.Pow(Y[I + o_y] / SK, 2);
                }
            }
            else
            {
                for (I = 1; I <= N; I++)
                {
                    SK   = ATOL[I + o_atol] + RTOL[I + o_rtol] * Math.Abs(Y[I + o_y]);
                    DNF += Math.Pow(F0[I + o_f0] / SK, 2);
                    DNY += Math.Pow(Y[I + o_y] / SK, 2);
                }
            }
            if (DNF <= 1.0E-10 || DNY <= 1.0E-10)
            {
                H = 1.0E-6;
            }
            else
            {
                H = Math.Sqrt(DNY / DNF) * 0.01E0;
            }
            H = Math.Min(H, HMAX);
            H = FortranLib.Sign(H, POSNEG);
            // C ---- PERFORM AN EXPLICIT EULER STEP
            for (I = 1; I <= N; I++)
            {
                Y1[I + o_y1] = Y[I + o_y] + H * F0[I + o_f0];
            }
            FCN.Run(N, X + H, Y1, offset_y1, ref F1, offset_f1, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            // C ---- ESTIMATE THE SECOND DERIVATIVE OF THE SOLUTION
            DER2 = 0.0E0;
            if (ITOL == 0)
            {
                for (I = 1; I <= N; I++)
                {
                    SK    = ATOLI + RTOLI * Math.Abs(Y[I + o_y]);
                    DER2 += Math.Pow((F1[I + o_f1] - F0[I + o_f0]) / SK, 2);
                }
            }
            else
            {
                for (I = 1; I <= N; I++)
                {
                    SK    = ATOL[I + o_atol] + RTOL[I + o_rtol] * Math.Abs(Y[I + o_y]);
                    DER2 += Math.Pow((F1[I + o_f1] - F0[I + o_f0]) / SK, 2);
                }
            }
            DER2 = Math.Sqrt(DER2) / H;
            // C ---- STEP SIZE IS COMPUTED SUCH THAT
            // C ----  H**IORD * MAX ( NORM (F0), NORM (DER2)) = 0.01
            DER12 = Math.Max(Math.Abs(DER2), Math.Sqrt(DNF));
            if (DER12 <= 1.0E-15)
            {
                H1 = Math.Max(1.0E-6, Math.Abs(H) * 1.0E-3);
            }
            else
            {
                H1 = Math.Pow(0.01E0 / DER12, 1.0E0 / IORD);
            }
            H     = Math.Min(100 * Math.Abs(H), Math.Min(H1, HMAX));
            hinit = FortranLib.Sign(H, POSNEG);
            return(hinit);

            #endregion
        }
예제 #5
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLALSD uses the singular value decomposition of A to solve the least
        /// squares problem of finding X to minimize the Euclidean norm of each
        /// column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
        /// are N-by-NRHS. The solution X overwrites B.
        ///
        /// The singular values of A smaller than RCOND times the largest
        /// singular value are treated as zero in solving the least squares
        /// problem; in this case a minimum norm solution is returned.
        /// The actual singular values are returned in D in ascending order.
        ///
        /// This code makes very mild assumptions about floating point
        /// arithmetic. It will work on machines with a guard digit in
        /// add/subtract, or on those binary machines without guard digits
        /// which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
        /// It could conceivably fail on hexadecimal or decimal machines
        /// without guard digits, but we know of none.
        ///
        ///</summary>
        /// <param name="UPLO">
        /// (input) CHARACTER*1
        /// = 'U': D and E define an upper bidiagonal matrix.
        /// = 'L': D and E define a  lower bidiagonal matrix.
        ///</param>
        /// <param name="SMLSIZ">
        /// (input) INTEGER
        /// The maximum size of the subproblems at the bottom of the
        /// computation tree.
        ///</param>
        /// <param name="N">
        /// (input) INTEGER
        /// The dimension of the  bidiagonal matrix.  N .GE. 0.
        ///</param>
        /// <param name="NRHS">
        /// (input) INTEGER
        /// The number of columns of B. NRHS must be at least 1.
        ///</param>
        /// <param name="D">
        /// (input/output) DOUBLE PRECISION array, dimension (N)
        /// On entry D contains the main diagonal of the bidiagonal
        /// matrix. On exit, if INFO = 0, D contains its singular values.
        ///</param>
        /// <param name="E">
        /// (input/output) DOUBLE PRECISION array, dimension (N-1)
        /// Contains the super-diagonal entries of the bidiagonal matrix.
        /// On exit, E has been destroyed.
        ///</param>
        /// <param name="B">
        /// (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
        /// On input, B contains the right hand sides of the least
        /// squares problem. On output, B contains the solution X.
        ///</param>
        /// <param name="LDB">
        /// (input) INTEGER
        /// The leading dimension of B in the calling subprogram.
        /// LDB must be at least max(1,N).
        ///</param>
        /// <param name="RCOND">
        /// (input) DOUBLE PRECISION
        /// The singular values of A less than or equal to RCOND times
        /// the largest singular value are treated as zero in solving
        /// the least squares problem. If RCOND is negative,
        /// machine precision is used instead.
        /// For example, if diag(S)*X=B were the least squares problem,
        /// where diag(S) is a diagonal matrix of singular values, the
        /// solution would be X(i) = B(i) / S(i) if S(i) is greater than
        /// RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
        /// RCOND*max(S).
        ///</param>
        /// <param name="RANK">
        /// (output) INTEGER
        /// The number of singular values of A greater than RCOND times
        /// the largest singular value.
        ///</param>
        /// <param name="WORK">
        /// (workspace) DOUBLE PRECISION array, dimension at least
        /// (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
        /// where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
        ///</param>
        /// <param name="IWORK">
        /// (workspace) INTEGER array, dimension at least
        /// (3*N*NLVL + 11*N)
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit.
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value.
        /// .GT. 0:  The algorithm failed to compute an singular value while
        /// working on the submatrix lying in rows and columns
        /// INFO/(N+1) through MOD(INFO,N+1).
        ///</param>
        public void Run(string UPLO, int SMLSIZ, int N, int NRHS, ref double[] D, int offset_d, ref double[] E, int offset_e
                        , ref double[] B, int offset_b, int LDB, double RCOND, ref int RANK, ref double[] WORK, int offset_work, ref int[] IWORK, int offset_iwork
                        , ref int INFO)
        {
            #region Variables

            int    BX = 0; int BXST = 0; int C = 0; int DIFL = 0; int DIFR = 0; int GIVCOL = 0; int GIVNUM = 0; int GIVPTR = 0;
            int    I = 0; int ICMPQ1 = 0; int ICMPQ2 = 0; int IWK = 0; int J = 0; int K = 0; int NLVL = 0; int NM1 = 0; int NSIZE = 0;
            int    NSUB = 0; int NWORK = 0; int PERM = 0; int POLES = 0; int S = 0; int SIZEI = 0; int SMLSZP = 0; int SQRE = 0;
            int    ST = 0; int ST1 = 0; int U = 0; int VT = 0; int Z = 0; double CS = 0; double EPS = 0; double ORGNRM = 0;
            double R = 0; double RCND = 0; double SN = 0; double TOL = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_e = -1 + offset_e;  int o_b = -1 - LDB + offset_b;  int o_work = -1 + offset_work;
            int o_iwork = -1 + offset_iwork;

            #endregion


            #region Strings

            UPLO = UPLO.Substring(0, 1);

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLALSD uses the singular value decomposition of A to solve the least
            // *  squares problem of finding X to minimize the Euclidean norm of each
            // *  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
            // *  are N-by-NRHS. The solution X overwrites B.
            // *
            // *  The singular values of A smaller than RCOND times the largest
            // *  singular value are treated as zero in solving the least squares
            // *  problem; in this case a minimum norm solution is returned.
            // *  The actual singular values are returned in D in ascending order.
            // *
            // *  This code makes very mild assumptions about floating point
            // *  arithmetic. It will work on machines with a guard digit in
            // *  add/subtract, or on those binary machines without guard digits
            // *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
            // *  It could conceivably fail on hexadecimal or decimal machines
            // *  without guard digits, but we know of none.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  UPLO   (input) CHARACTER*1
            // *         = 'U': D and E define an upper bidiagonal matrix.
            // *         = 'L': D and E define a  lower bidiagonal matrix.
            // *
            // *  SMLSIZ (input) INTEGER
            // *         The maximum size of the subproblems at the bottom of the
            // *         computation tree.
            // *
            // *  N      (input) INTEGER
            // *         The dimension of the  bidiagonal matrix.  N >= 0.
            // *
            // *  NRHS   (input) INTEGER
            // *         The number of columns of B. NRHS must be at least 1.
            // *
            // *  D      (input/output) DOUBLE PRECISION array, dimension (N)
            // *         On entry D contains the main diagonal of the bidiagonal
            // *         matrix. On exit, if INFO = 0, D contains its singular values.
            // *
            // *  E      (input/output) DOUBLE PRECISION array, dimension (N-1)
            // *         Contains the super-diagonal entries of the bidiagonal matrix.
            // *         On exit, E has been destroyed.
            // *
            // *  B      (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
            // *         On input, B contains the right hand sides of the least
            // *         squares problem. On output, B contains the solution X.
            // *
            // *  LDB    (input) INTEGER
            // *         The leading dimension of B in the calling subprogram.
            // *         LDB must be at least max(1,N).
            // *
            // *  RCOND  (input) DOUBLE PRECISION
            // *         The singular values of A less than or equal to RCOND times
            // *         the largest singular value are treated as zero in solving
            // *         the least squares problem. If RCOND is negative,
            // *         machine precision is used instead.
            // *         For example, if diag(S)*X=B were the least squares problem,
            // *         where diag(S) is a diagonal matrix of singular values, the
            // *         solution would be X(i) = B(i) / S(i) if S(i) is greater than
            // *         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
            // *         RCOND*max(S).
            // *
            // *  RANK   (output) INTEGER
            // *         The number of singular values of A greater than RCOND times
            // *         the largest singular value.
            // *
            // *  WORK   (workspace) DOUBLE PRECISION array, dimension at least
            // *         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
            // *         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
            // *
            // *  IWORK  (workspace) INTEGER array, dimension at least
            // *         (3*N*NLVL + 11*N)
            // *
            // *  INFO   (output) INTEGER
            // *         = 0:  successful exit.
            // *         < 0:  if INFO = -i, the i-th argument had an illegal value.
            // *         > 0:  The algorithm failed to compute an singular value while
            // *               working on the submatrix lying in rows and columns
            // *               INFO/(N+1) through MOD(INFO,N+1).
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Based on contributions by
            // *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
            // *       California at Berkeley, USA
            // *     Osni Marques, LBNL/NERSC, USA
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, DBLE, INT, LOG, SIGN;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            if (N < 0)
            {
                INFO = -3;
            }
            else
            {
                if (NRHS < 1)
                {
                    INFO = -4;
                }
                else
                {
                    if ((LDB < 1) || (LDB < N))
                    {
                        INFO = -8;
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DLALSD", -INFO);
                return;
            }
            // *
            EPS = this._dlamch.Run("Epsilon");
            // *
            // *     Set up the tolerance.
            // *
            if ((RCOND <= ZERO) || (RCOND >= ONE))
            {
                RCND = EPS;
            }
            else
            {
                RCND = RCOND;
            }
            // *
            RANK = 0;
            // *
            // *     Quick return if possible.
            // *
            if (N == 0)
            {
                return;
            }
            else
            {
                if (N == 1)
                {
                    if (D[1 + o_d] == ZERO)
                    {
                        this._dlaset.Run("A", 1, NRHS, ZERO, ZERO, ref B, offset_b
                                         , LDB);
                    }
                    else
                    {
                        RANK = 1;
                        this._dlascl.Run("G", 0, 0, D[1 + o_d], ONE, 1
                                         , NRHS, ref B, offset_b, LDB, ref INFO);
                        D[1 + o_d] = Math.Abs(D[1 + o_d]);
                    }
                    return;
                }
            }
            // *
            // *     Rotate the matrix if it is lower bidiagonal.
            // *
            if (UPLO == "L")
            {
                for (I = 1; I <= N - 1; I++)
                {
                    this._dlartg.Run(D[I + o_d], E[I + o_e], ref CS, ref SN, ref R);
                    D[I + o_d]      = R;
                    E[I + o_e]      = SN * D[I + 1 + o_d];
                    D[I + 1 + o_d] *= CS;
                    if (NRHS == 1)
                    {
                        this._drot.Run(1, ref B, I + 1 * LDB + o_b, 1, ref B, I + 1 + 1 * LDB + o_b, 1, CS
                                       , SN);
                    }
                    else
                    {
                        WORK[I * 2 - 1 + o_work] = CS;
                        WORK[I * 2 + o_work]     = SN;
                    }
                }
                if (NRHS > 1)
                {
                    for (I = 1; I <= NRHS; I++)
                    {
                        for (J = 1; J <= N - 1; J++)
                        {
                            CS = WORK[J * 2 - 1 + o_work];
                            SN = WORK[J * 2 + o_work];
                            this._drot.Run(1, ref B, J + I * LDB + o_b, 1, ref B, J + 1 + I * LDB + o_b, 1, CS
                                           , SN);
                        }
                    }
                }
            }
            // *
            // *     Scale.
            // *
            NM1    = N - 1;
            ORGNRM = this._dlanst.Run("M", N, D, offset_d, E, offset_e);
            if (ORGNRM == ZERO)
            {
                this._dlaset.Run("A", N, NRHS, ZERO, ZERO, ref B, offset_b
                                 , LDB);
                return;
            }
            // *
            this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N
                             , 1, ref D, offset_d, N, ref INFO);
            this._dlascl.Run("G", 0, 0, ORGNRM, ONE, NM1
                             , 1, ref E, offset_e, NM1, ref INFO);
            // *
            // *     If N is smaller than the minimum divide size SMLSIZ, then solve
            // *     the problem with another solver.
            // *
            if (N <= SMLSIZ)
            {
                NWORK = 1 + N * N;
                this._dlaset.Run("A", N, N, ZERO, ONE, ref WORK, offset_work
                                 , N);
                this._dlasdq.Run("U", 0, N, N, 0, NRHS
                                 , ref D, offset_d, ref E, offset_e, ref WORK, offset_work, N, ref WORK, offset_work, N
                                 , ref B, offset_b, LDB, ref WORK, NWORK + o_work, ref INFO);
                if (INFO != 0)
                {
                    return;
                }
                TOL = RCND * Math.Abs(D[this._idamax.Run(N, D, offset_d, 1) + o_d]);
                for (I = 1; I <= N; I++)
                {
                    if (D[I + o_d] <= TOL)
                    {
                        this._dlaset.Run("A", 1, NRHS, ZERO, ZERO, ref B, I + 1 * LDB + o_b
                                         , LDB);
                    }
                    else
                    {
                        this._dlascl.Run("G", 0, 0, D[I + o_d], ONE, 1
                                         , NRHS, ref B, I + 1 * LDB + o_b, LDB, ref INFO);
                        RANK += 1;
                    }
                }
                this._dgemm.Run("T", "N", N, NRHS, N, ONE
                                , WORK, offset_work, N, B, offset_b, LDB, ZERO, ref WORK, NWORK + o_work
                                , N);
                this._dlacpy.Run("A", N, NRHS, WORK, NWORK + o_work, N, ref B, offset_b
                                 , LDB);
                // *
                // *        Unscale.
                // *
                this._dlascl.Run("G", 0, 0, ONE, ORGNRM, N
                                 , 1, ref D, offset_d, N, ref INFO);
                this._dlasrt.Run("D", N, ref D, offset_d, ref INFO);
                this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N
                                 , NRHS, ref B, offset_b, LDB, ref INFO);
                // *
                return;
            }
            // *
            // *     Book-keeping and setting up some constants.
            // *
            NLVL = Convert.ToInt32(Math.Truncate(Math.Log(Convert.ToDouble(N) / Convert.ToDouble(SMLSIZ + 1)) / Math.Log(TWO))) + 1;
            // *
            SMLSZP = SMLSIZ + 1;
            // *
            U      = 1;
            VT     = 1 + SMLSIZ * N;
            DIFL   = VT + SMLSZP * N;
            DIFR   = DIFL + NLVL * N;
            Z      = DIFR + NLVL * N * 2;
            C      = Z + NLVL * N;
            S      = C + N;
            POLES  = S + N;
            GIVNUM = POLES + 2 * NLVL * N;
            BX     = GIVNUM + 2 * NLVL * N;
            NWORK  = BX + N * NRHS;
            // *
            SIZEI  = 1 + N;
            K      = SIZEI + N;
            GIVPTR = K + N;
            PERM   = GIVPTR + N;
            GIVCOL = PERM + NLVL * N;
            IWK    = GIVCOL + NLVL * N * 2;
            // *
            ST     = 1;
            SQRE   = 0;
            ICMPQ1 = 1;
            ICMPQ2 = 0;
            NSUB   = 0;
            // *
            for (I = 1; I <= N; I++)
            {
                if (Math.Abs(D[I + o_d]) < EPS)
                {
                    D[I + o_d] = FortranLib.Sign(EPS, D[I + o_d]);
                }
            }
            // *
            for (I = 1; I <= NM1; I++)
            {
                if ((Math.Abs(E[I + o_e]) < EPS) || (I == NM1))
                {
                    NSUB += 1;
                    IWORK[NSUB + o_iwork] = ST;
                    // *
                    // *           Subproblem found. First determine its size and then
                    // *           apply divide and conquer on it.
                    // *
                    if (I < NM1)
                    {
                        // *
                        // *              A subproblem with E(I) small for I < NM1.
                        // *
                        NSIZE = I - ST + 1;
                        IWORK[SIZEI + NSUB - 1 + o_iwork] = NSIZE;
                    }
                    else
                    {
                        if (Math.Abs(E[I + o_e]) >= EPS)
                        {
                            // *
                            // *              A subproblem with E(NM1) not too small but I = NM1.
                            // *
                            NSIZE = N - ST + 1;
                            IWORK[SIZEI + NSUB - 1 + o_iwork] = NSIZE;
                        }
                        else
                        {
                            // *
                            // *              A subproblem with E(NM1) small. This implies an
                            // *              1-by-1 subproblem at D(N), which is not solved
                            // *              explicitly.
                            // *
                            NSIZE = I - ST + 1;
                            IWORK[SIZEI + NSUB - 1 + o_iwork] = NSIZE;
                            NSUB += 1;
                            IWORK[NSUB + o_iwork]             = N;
                            IWORK[SIZEI + NSUB - 1 + o_iwork] = 1;
                            this._dcopy.Run(NRHS, B, N + 1 * LDB + o_b, LDB, ref WORK, BX + NM1 + o_work, N);
                        }
                    }
                    ST1 = ST - 1;
                    if (NSIZE == 1)
                    {
                        // *
                        // *              This is a 1-by-1 subproblem and is not solved
                        // *              explicitly.
                        // *
                        this._dcopy.Run(NRHS, B, ST + 1 * LDB + o_b, LDB, ref WORK, BX + ST1 + o_work, N);
                    }
                    else
                    {
                        if (NSIZE <= SMLSIZ)
                        {
                            // *
                            // *              This is a small subproblem and is solved by DLASDQ.
                            // *
                            this._dlaset.Run("A", NSIZE, NSIZE, ZERO, ONE, ref WORK, VT + ST1 + o_work
                                             , N);
                            this._dlasdq.Run("U", 0, NSIZE, NSIZE, 0, NRHS
                                             , ref D, ST + o_d, ref E, ST + o_e, ref WORK, VT + ST1 + o_work, N, ref WORK, NWORK + o_work, N
                                             , ref B, ST + 1 * LDB + o_b, LDB, ref WORK, NWORK + o_work, ref INFO);
                            if (INFO != 0)
                            {
                                return;
                            }
                            this._dlacpy.Run("A", NSIZE, NRHS, B, ST + 1 * LDB + o_b, LDB, ref WORK, BX + ST1 + o_work
                                             , N);
                        }
                        else
                        {
                            // *
                            // *              A large problem. Solve it using divide and conquer.
                            // *
                            this._dlasda.Run(ICMPQ1, SMLSIZ, NSIZE, SQRE, ref D, ST + o_d, ref E, ST + o_e
                                             , ref WORK, U + ST1 + o_work, N, ref WORK, VT + ST1 + o_work, ref IWORK, K + ST1 + o_iwork, ref WORK, DIFL + ST1 + o_work, ref WORK, DIFR + ST1 + o_work
                                             , ref WORK, Z + ST1 + o_work, ref WORK, POLES + ST1 + o_work, ref IWORK, GIVPTR + ST1 + o_iwork, ref IWORK, GIVCOL + ST1 + o_iwork, N, ref IWORK, PERM + ST1 + o_iwork
                                             , ref WORK, GIVNUM + ST1 + o_work, ref WORK, C + ST1 + o_work, ref WORK, S + ST1 + o_work, ref WORK, NWORK + o_work, ref IWORK, IWK + o_iwork, ref INFO);
                            if (INFO != 0)
                            {
                                return;
                            }
                            BXST = BX + ST1;
                            this._dlalsa.Run(ICMPQ2, SMLSIZ, NSIZE, NRHS, ref B, ST + 1 * LDB + o_b, LDB
                                             , ref WORK, BXST + o_work, N, WORK, U + ST1 + o_work, N, WORK, VT + ST1 + o_work, IWORK, K + ST1 + o_iwork
                                             , WORK, DIFL + ST1 + o_work, WORK, DIFR + ST1 + o_work, WORK, Z + ST1 + o_work, WORK, POLES + ST1 + o_work, IWORK, GIVPTR + ST1 + o_iwork, IWORK, GIVCOL + ST1 + o_iwork
                                             , N, IWORK, PERM + ST1 + o_iwork, WORK, GIVNUM + ST1 + o_work, WORK, C + ST1 + o_work, WORK, S + ST1 + o_work, ref WORK, NWORK + o_work
                                             , ref IWORK, IWK + o_iwork, ref INFO);
                            if (INFO != 0)
                            {
                                return;
                            }
                        }
                    }
                    ST = I + 1;
                }
            }
            // *
            // *     Apply the singular values and treat the tiny ones as zero.
            // *
            TOL = RCND * Math.Abs(D[this._idamax.Run(N, D, offset_d, 1) + o_d]);
            // *
            for (I = 1; I <= N; I++)
            {
                // *
                // *        Some of the elements in D can be negative because 1-by-1
                // *        subproblems were not solved explicitly.
                // *
                if (Math.Abs(D[I + o_d]) <= TOL)
                {
                    this._dlaset.Run("A", 1, NRHS, ZERO, ZERO, ref WORK, BX + I - 1 + o_work
                                     , N);
                }
                else
                {
                    RANK += 1;
                    this._dlascl.Run("G", 0, 0, D[I + o_d], ONE, 1
                                     , NRHS, ref WORK, BX + I - 1 + o_work, N, ref INFO);
                }
                D[I + o_d] = Math.Abs(D[I + o_d]);
            }
            // *
            // *     Now apply back the right singular vectors.
            // *
            ICMPQ2 = 1;
            for (I = 1; I <= NSUB; I++)
            {
                ST    = IWORK[I + o_iwork];
                ST1   = ST - 1;
                NSIZE = IWORK[SIZEI + I - 1 + o_iwork];
                BXST  = BX + ST1;
                if (NSIZE == 1)
                {
                    this._dcopy.Run(NRHS, WORK, BXST + o_work, N, ref B, ST + 1 * LDB + o_b, LDB);
                }
                else
                {
                    if (NSIZE <= SMLSIZ)
                    {
                        this._dgemm.Run("T", "N", NSIZE, NRHS, NSIZE, ONE
                                        , WORK, VT + ST1 + o_work, N, WORK, BXST + o_work, N, ZERO, ref B, ST + 1 * LDB + o_b
                                        , LDB);
                    }
                    else
                    {
                        this._dlalsa.Run(ICMPQ2, SMLSIZ, NSIZE, NRHS, ref WORK, BXST + o_work, N
                                         , ref B, ST + 1 * LDB + o_b, LDB, WORK, U + ST1 + o_work, N, WORK, VT + ST1 + o_work, IWORK, K + ST1 + o_iwork
                                         , WORK, DIFL + ST1 + o_work, WORK, DIFR + ST1 + o_work, WORK, Z + ST1 + o_work, WORK, POLES + ST1 + o_work, IWORK, GIVPTR + ST1 + o_iwork, IWORK, GIVCOL + ST1 + o_iwork
                                         , N, IWORK, PERM + ST1 + o_iwork, WORK, GIVNUM + ST1 + o_work, WORK, C + ST1 + o_work, WORK, S + ST1 + o_work, ref WORK, NWORK + o_work
                                         , ref IWORK, IWK + o_iwork, ref INFO);
                        if (INFO != 0)
                        {
                            return;
                        }
                    }
                }
            }
            // *
            // *     Unscale and sort the singular values.
            // *
            this._dlascl.Run("G", 0, 0, ONE, ORGNRM, N
                             , 1, ref D, offset_d, N, ref INFO);
            this._dlasrt.Run("D", N, ref D, offset_d, ref INFO);
            this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N
                             , NRHS, ref B, offset_b, LDB, ref INFO);
            // *
            return;

            // *
            // *     End of DLALSD
            // *

            #endregion
        }
예제 #6
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLACON estimates the 1-norm of a square, real matrix A.
        /// Reverse communication is used for evaluating matrix-vector products.
        ///
        ///</summary>
        /// <param name="N">
        /// (input) INTEGER
        /// The order of the matrix.  N .GE. 1.
        ///</param>
        /// <param name="V">
        /// (workspace) DOUBLE PRECISION array, dimension (N)
        /// On the final return, V = A*W,  where  EST = norm(V)/norm(W)
        /// (W is not returned).
        ///</param>
        /// <param name="X">
        /// (input/output) DOUBLE PRECISION array, dimension (N)
        /// On an intermediate return, X should be overwritten by
        /// A * X,   if KASE=1,
        /// A' * X,  if KASE=2,
        /// and DLACON must be re-called with all the other parameters
        /// unchanged.
        ///</param>
        /// <param name="ISGN">
        /// (workspace) INTEGER array, dimension (N)
        ///</param>
        /// <param name="EST">
        /// (output) DOUBLE PRECISION
        /// An estimate (a lower bound) for norm(A).
        ///</param>
        /// <param name="KASE">
        /// (input/output) INTEGER
        /// On the initial call to DLACON, KASE should be 0.
        /// On an intermediate return, KASE will be 1 or 2, indicating
        /// whether X should be overwritten by A * X  or A' * X.
        /// On the final return from DLACON, KASE will again be 0.
        ///</param>
        public void Run(int N, ref double[] V, int offset_v, ref double[] X, int offset_x, ref int[] ISGN, int offset_isgn, ref double EST, ref int KASE)
        {
            #region Array Index Correction

            int o_v = -1 + offset_v;  int o_x = -1 + offset_x;  int o_isgn = -1 + offset_isgn;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK auxiliary routine (version 3.0) --
            // *     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
            // *     Courant Institute, Argonne National Lab, and Rice University
            // *     February 29, 1992
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLACON estimates the 1-norm of a square, real matrix A.
            // *  Reverse communication is used for evaluating matrix-vector products.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  N      (input) INTEGER
            // *         The order of the matrix.  N >= 1.
            // *
            // *  V      (workspace) DOUBLE PRECISION array, dimension (N)
            // *         On the final return, V = A*W,  where  EST = norm(V)/norm(W)
            // *         (W is not returned).
            // *
            // *  X      (input/output) DOUBLE PRECISION array, dimension (N)
            // *         On an intermediate return, X should be overwritten by
            // *               A * X,   if KASE=1,
            // *               A' * X,  if KASE=2,
            // *         and DLACON must be re-called with all the other parameters
            // *         unchanged.
            // *
            // *  ISGN   (workspace) INTEGER array, dimension (N)
            // *
            // *  EST    (output) DOUBLE PRECISION
            // *         An estimate (a lower bound) for norm(A).
            // *
            // *  KASE   (input/output) INTEGER
            // *         On the initial call to DLACON, KASE should be 0.
            // *         On an intermediate return, KASE will be 1 or 2, indicating
            // *         whether X should be overwritten by A * X  or A' * X.
            // *         On the final return from DLACON, KASE will again be 0.
            // *
            // *  Further Details
            // *  ======= =======
            // *
            // *  Contributed by Nick Higham, University of Manchester.
            // *  Originally named SONEST, dated March 16, 1988.
            // *
            // *  Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of
            // *  a real or complex matrix, with applications to condition estimation",
            // *  ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, DBLE, NINT, SIGN;
            // *     ..
            // *     .. Save statement ..
            // *     ..
            // *     .. Executable Statements ..
            // *

            #endregion


            #region Body

            if (KASE == 0)
            {
                for (I = 1; I <= N; I++)
                {
                    X[I + o_x] = ONE / Convert.ToDouble(N);
                }
                KASE = 1;
                JUMP = 1;
                return;
            }
            // *
            switch (JUMP)
            {
            case 1: goto LABEL20;

            case 2: goto LABEL40;

            case 3: goto LABEL70;

            case 4: goto LABEL110;

            case 5: goto LABEL140;
            }
            // *
            // *     ................ ENTRY   (JUMP = 1)
            // *     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X.
            // *
            LABEL20 :;
            if (N == 1)
            {
                V[1 + o_v] = X[1 + o_x];
                EST        = Math.Abs(V[1 + o_v]);
                // *        ... QUIT
                goto LABEL150;
            }
            EST = this._dasum.Run(N, X, offset_x, 1);
            // *
            for (I = 1; I <= N; I++)
            {
                X[I + o_x]       = FortranLib.Sign(ONE, X[I + o_x]);
                ISGN[I + o_isgn] = (int)Math.Round(X[I + o_x]);
            }
            KASE = 2;
            JUMP = 2;
            return;

            // *
            // *     ................ ENTRY   (JUMP = 2)
            // *     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X.
            // *
            LABEL40 :;
            J    = this._idamax.Run(N, X, offset_x, 1);
            ITER = 2;
            // *
            // *     MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
            // *
            LABEL50 :;
            for (I = 1; I <= N; I++)
            {
                X[I + o_x] = ZERO;
            }
            X[J + o_x] = ONE;
            KASE       = 1;
            JUMP       = 3;
            return;

            // *
            // *     ................ ENTRY   (JUMP = 3)
            // *     X HAS BEEN OVERWRITTEN BY A*X.
            // *
            LABEL70 :;
            this._dcopy.Run(N, X, offset_x, 1, ref V, offset_v, 1);
            ESTOLD = EST;
            EST    = this._dasum.Run(N, V, offset_v, 1);
            for (I = 1; I <= N; I++)
            {
                if (Math.Round(FortranLib.Sign(ONE, X[I + o_x])) != ISGN[I + o_isgn])
                {
                    goto LABEL90;
                }
            }
            // *     REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED.
            goto LABEL120;
            // *
            LABEL90 :;
            // *     TEST FOR CYCLING.
            if (EST <= ESTOLD)
            {
                goto LABEL120;
            }
            // *
            for (I = 1; I <= N; I++)
            {
                X[I + o_x]       = FortranLib.Sign(ONE, X[I + o_x]);
                ISGN[I + o_isgn] = (int)Math.Round(X[I + o_x]);
            }
            KASE = 2;
            JUMP = 4;
            return;

            // *
            // *     ................ ENTRY   (JUMP = 4)
            // *     X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X.
            // *
            LABEL110 :;
            JLAST = J;
            J     = this._idamax.Run(N, X, offset_x, 1);
            if ((X[JLAST + o_x] != Math.Abs(X[J + o_x])) && (ITER < ITMAX))
            {
                ITER += 1;
                goto LABEL50;
            }
            // *
            // *     ITERATION COMPLETE.  FINAL STAGE.
            // *
            LABEL120 :;
            ALTSGN = ONE;
            for (I = 1; I <= N; I++)
            {
                X[I + o_x] = ALTSGN * (ONE + Convert.ToDouble(I - 1) / Convert.ToDouble(N - 1));
                ALTSGN     = -ALTSGN;
            }
            KASE = 1;
            JUMP = 5;
            return;

            // *
            // *     ................ ENTRY   (JUMP = 5)
            // *     X HAS BEEN OVERWRITTEN BY A*X.
            // *
            LABEL140 :;
            TEMP = TWO * (this._dasum.Run(N, X, offset_x, 1) / Convert.ToDouble(3 * N));
            if (TEMP > EST)
            {
                this._dcopy.Run(N, X, offset_x, 1, ref V, offset_v, 1);
                EST = TEMP;
            }
            // *
            LABEL150 :;
            KASE = 0;
            return;

            // *
            // *     End of DLACON
            // *

            #endregion
        }
예제 #7
0
        public void Run(int N, IFAREN FCN, ref double X, ref double[] Y, int offset_y, double XEND, ref double HMAX
                        , ref double H, double[] RTOL, int offset_rtol, double[] ATOL, int offset_atol, int ITOL, int IPRINT, ISOLOUT SOLOUT
                        , int IOUT, ref int IDID, int NMAX, double UROUND, int METH, int NSTIFF
                        , double SAFE, double BETA, double FAC1, double FAC2, ref double[] Y1, int offset_y1, ref double[] K1, int offset_k1
                        , ref double[] K2, int offset_k2, ref double[] K3, int offset_k3, ref double[] K4, int offset_k4, ref double[] K5, int offset_k5, ref double[] K6, int offset_k6, ref double[] YSTI, int offset_ysti
                        , ref double[] CONT, int offset_cont, int[] ICOMP, int offset_icomp, int NRD, double[] RPAR, int offset_rpar, int[] IPAR, int offset_ipar, ref int NFCN
                        , ref int NSTEP, ref int NACCPT, ref int NREJCT)
        {
            #region Variables

            bool REJECT = false; bool LAST = false;
            #endregion
            #region Implicit Variables

            double FACOLD = 0; double EXPO1 = 0; double FACC1 = 0; double FACC2 = 0; double POSNEG = 0; double ATOLI = 0;
            double RTOLI = 0; double HLAMB = 0; int IASTI = 0; int IORD = 0; int IRTRN = 0; int I = 0; double A21 = 0;
            double A31 = 0; double A32 = 0; double A41 = 0; double A42 = 0; double A43 = 0; double A51 = 0; double A52 = 0;
            double A53 = 0; double A54 = 0; double A61 = 0; double A62 = 0; double A63 = 0; double A64 = 0; double A65 = 0;
            double XPH = 0; double A71 = 0; double A73 = 0; double A74 = 0; double A75 = 0; double A76 = 0; int J = 0;
            double D1 = 0; double D3 = 0; double D4 = 0; double D5 = 0; double D6 = 0; double D7 = 0; double E1 = 0; double E3 = 0;
            double E4 = 0; double E5 = 0; double E6 = 0; double E7 = 0; double ERR = 0; double SK = 0; double FAC11 = 0;
            double FAC = 0; double HNEW = 0; double STNUM = 0; double STDEN = 0; int NONSTI = 0; double YD0 = 0; double YDIFF = 0;
            double BSPL = 0; double C2 = 0; double C3 = 0; double C4 = 0; double C5 = 0;
            #endregion
            #region Array Index Correction

            int o_y = -1 + offset_y;  int o_rtol = -1 + offset_rtol;  int o_atol = -1 + offset_atol;  int o_y1 = -1 + offset_y1;
            int o_k1 = -1 + offset_k1; int o_k2 = -1 + offset_k2;  int o_k3 = -1 + offset_k3;  int o_k4 = -1 + offset_k4;
            int o_k5 = -1 + offset_k5; int o_k6 = -1 + offset_k6;  int o_ysti = -1 + offset_ysti;  int o_cont = -1 + offset_cont;
            int o_icomp = -1 + offset_icomp; int o_rpar = -1 + offset_rpar;  int o_ipar = -1 + offset_ipar;
            #endregion
            // C ----------------------------------------------------------
            // C     CORE INTEGRATOR FOR DOPRI5
            // C     PARAMETERS SAME AS IN DOPRI5 WITH WORKSPACE ADDED
            // C ----------------------------------------------------------
            // C         DECLARATIONS
            // C ----------------------------------------------------------
            // C *** *** *** *** *** *** ***
            // C  INITIALISATIONS
            // C *** *** *** *** *** *** ***
            #region Body

            if (METH == 1)
            {
                this._cdopri.Run(ref C2, ref C3, ref C4, ref C5, ref E1, ref E3
                                 , ref E4, ref E5, ref E6, ref E7, ref A21, ref A31
                                 , ref A32, ref A41, ref A42, ref A43, ref A51, ref A52
                                 , ref A53, ref A54, ref A61, ref A62, ref A63, ref A64
                                 , ref A65, ref A71, ref A73, ref A74, ref A75, ref A76
                                 , ref D1, ref D3, ref D4, ref D5, ref D6, ref D7);
            }
            FACOLD = 1.0E-4;
            EXPO1  = 0.2E0 - BETA * 0.75E0;
            FACC1  = 1.0E0 / FAC1;
            FACC2  = 1.0E0 / FAC2;
            POSNEG = FortranLib.Sign(1.0E0, XEND - X);
            // C --- INITIAL PREPARATIONS
            ATOLI = ATOL[1 + o_atol];
            RTOLI = RTOL[1 + o_rtol];
            LAST  = false;
            HLAMB = 0.0E0;
            IASTI = 0;
            FCN.Run(N, X, Y, offset_y, ref K1, offset_k1, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            HMAX = Math.Abs(HMAX);
            IORD = 5;
            if (H == 0.0E0)
            {
                H = this._hinit.Run(N, FCN, X, Y, offset_y, XEND, POSNEG, K1, offset_k1, ref K2, offset_k2, ref K3, offset_k3, IORD, HMAX, ATOL, offset_atol, RTOL, offset_rtol, ITOL, RPAR, offset_rpar, IPAR, offset_ipar);
            }
            NFCN  += 2;
            REJECT = false;
            XOLD.v = X;
            if (IOUT != 0)
            {
                IRTRN  = 1;
                HOUT.v = H;
                SOLOUT.Run(NACCPT + 1, XOLD.v, X, Y, offset_y, N, CONT, offset_cont
                           , ICOMP, offset_icomp, NRD, RPAR, offset_rpar, IPAR[1 + o_ipar], IRTRN);
                if (IRTRN < 0)
                {
                    goto LABEL79;
                }
            }
            else
            {
                IRTRN = 0;
            }
            // C --- BASIC INTEGRATION STEP
            LABEL1 :;
            if (NSTEP > NMAX)
            {
                goto LABEL78;
            }
            if (0.1E0 * Math.Abs(H) <= Math.Abs(X) * UROUND)
            {
                goto LABEL77;
            }
            if ((X + 1.01E0 * H - XEND) * POSNEG > 0.0E0)
            {
                H    = XEND - X;
                LAST = true;
            }
            NSTEP += 1;
            // C --- THE FIRST 6 STAGES
            if (IRTRN >= 2)
            {
                FCN.Run(N, X, Y, offset_y, ref K1, offset_k1, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            }
            for (I = 1; I <= N; I++)
            {
                Y1[I + o_y1] = Y[I + o_y] + H * A21 * K1[I + o_k1];
            }
            FCN.Run(N, X + C2 * H, Y1, offset_y1, ref K2, offset_k2, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            for (I = 1; I <= N; I++)
            {
                Y1[I + o_y1] = Y[I + o_y] + H * (A31 * K1[I + o_k1] + A32 * K2[I + o_k2]);
            }
            FCN.Run(N, X + C3 * H, Y1, offset_y1, ref K3, offset_k3, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            for (I = 1; I <= N; I++)
            {
                Y1[I + o_y1] = Y[I + o_y] + H * (A41 * K1[I + o_k1] + A42 * K2[I + o_k2] + A43 * K3[I + o_k3]);
            }
            FCN.Run(N, X + C4 * H, Y1, offset_y1, ref K4, offset_k4, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            for (I = 1; I <= N; I++)
            {
                Y1[I + o_y1] = Y[I + o_y] + H * (A51 * K1[I + o_k1] + A52 * K2[I + o_k2] + A53 * K3[I + o_k3] + A54 * K4[I + o_k4]);
            }
            FCN.Run(N, X + C5 * H, Y1, offset_y1, ref K5, offset_k5, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            for (I = 1; I <= N; I++)
            {
                YSTI[I + o_ysti] = Y[I + o_y] + H * (A61 * K1[I + o_k1] + A62 * K2[I + o_k2] + A63 * K3[I + o_k3] + A64 * K4[I + o_k4] + A65 * K5[I + o_k5]);
            }
            XPH = X + H;
            FCN.Run(N, XPH, YSTI, offset_ysti, ref K6, offset_k6, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            for (I = 1; I <= N; I++)
            {
                Y1[I + o_y1] = Y[I + o_y] + H * (A71 * K1[I + o_k1] + A73 * K3[I + o_k3] + A74 * K4[I + o_k4] + A75 * K5[I + o_k5] + A76 * K6[I + o_k6]);
            }
            FCN.Run(N, XPH, Y1, offset_y1, ref K2, offset_k2, RPAR, offset_rpar, IPAR[1 + o_ipar]);
            if (IOUT >= 2)
            {
                for (J = 1; J <= NRD; J++)
                {
                    I = ICOMP[J + o_icomp];
                    CONT[4 * NRD + J + o_cont] = H * (D1 * K1[I + o_k1] + D3 * K3[I + o_k3] + D4 * K4[I + o_k4] + D5 * K5[I + o_k5] + D6 * K6[I + o_k6] + D7 * K2[I + o_k2]);
                }
            }
            for (I = 1; I <= N; I++)
            {
                K4[I + o_k4] = (E1 * K1[I + o_k1] + E3 * K3[I + o_k3] + E4 * K4[I + o_k4] + E5 * K5[I + o_k5] + E6 * K6[I + o_k6] + E7 * K2[I + o_k2]) * H;
            }
            NFCN += 6;
            // C --- ERROR ESTIMATION
            ERR = 0.0E0;
            if (ITOL == 0)
            {
                for (I = 1; I <= N; I++)
                {
                    SK   = ATOLI + RTOLI * Math.Max(Math.Abs(Y[I + o_y]), Math.Abs(Y1[I + o_y1]));
                    ERR += Math.Pow(K4[I + o_k4] / SK, 2);
                }
            }
            else
            {
                for (I = 1; I <= N; I++)
                {
                    SK   = ATOL[I + o_atol] + RTOL[I + o_rtol] * Math.Max(Math.Abs(Y[I + o_y]), Math.Abs(Y1[I + o_y1]));
                    ERR += Math.Pow(K4[I + o_k4] / SK, 2);
                }
            }
            ERR = Math.Sqrt(ERR / N);
            // C --- COMPUTATION OF HNEW
            FAC11 = Math.Pow(ERR, EXPO1);
            // C --- LUND-STABILIZATION
            FAC = FAC11 / Math.Pow(FACOLD, BETA);
            // C --- WE REQUIRE  FAC1 <= HNEW/H <= FAC2
            FAC  = Math.Max(FACC2, Math.Min(FACC1, FAC / SAFE));
            HNEW = H / FAC;
            if (ERR <= 1.0E0)
            {
                // C --- STEP IS ACCEPTED
                FACOLD  = Math.Max(ERR, 1.0E-4);
                NACCPT += 1;
                // C ------- STIFFNESS DETECTION
                if (FortranLib.Mod(NACCPT, NSTIFF) == 0 || IASTI > 0)
                {
                    STNUM = 0.0E0;
                    STDEN = 0.0E0;
                    for (I = 1; I <= N; I++)
                    {
                        STNUM += Math.Pow(K2[I + o_k2] - K6[I + o_k6], 2);
                        STDEN += Math.Pow(Y1[I + o_y1] - YSTI[I + o_ysti], 2);
                    }
                    if (STDEN > 0.0E0)
                    {
                        HLAMB = H * Math.Sqrt(STNUM / STDEN);
                    }
                    if (HLAMB > 3.25E0)
                    {
                        NONSTI = 0;
                        IASTI += 1;
                        if (IASTI == 15)
                        {
                            if (IPRINT > 0)
                            {
                                ;            //ERROR-ERRORWRITE(IPRINT,*)' THE PROBLEM SEEMS TO BECOME STIFF AT X = ',X
                            }
                            if (IPRINT <= 0)
                            {
                                goto LABEL76;
                            }
                        }
                    }
                    else
                    {
                        NONSTI += 1;
                        if (NONSTI == 6)
                        {
                            IASTI = 0;
                        }
                    }
                }
                if (IOUT >= 2)
                {
                    for (J = 1; J <= NRD; J++)
                    {
                        I                          = ICOMP[J + o_icomp];
                        YD0                        = Y[I + o_y];
                        YDIFF                      = Y1[I + o_y1] - YD0;
                        BSPL                       = H * K1[I + o_k1] - YDIFF;
                        CONT[J + o_cont]           = Y[I + o_y];
                        CONT[NRD + J + o_cont]     = YDIFF;
                        CONT[2 * NRD + J + o_cont] = BSPL;
                        CONT[3 * NRD + J + o_cont] = -H * K2[I + o_k2] + YDIFF - BSPL;
                    }
                }
                for (I = 1; I <= N; I++)
                {
                    K1[I + o_k1] = K2[I + o_k2];
                    Y[I + o_y]   = Y1[I + o_y1];
                }
                XOLD.v = X;
                X      = XPH;
                if (IOUT != 0)
                {
                    HOUT.v = H;
                    SOLOUT.Run(NACCPT + 1, XOLD.v, X, Y, offset_y, N, CONT, offset_cont
                               , ICOMP, offset_icomp, NRD, RPAR, offset_rpar, IPAR[1 + o_ipar], IRTRN);
                    if (IRTRN < 0)
                    {
                        goto LABEL79;
                    }
                }
                // C ------- NORMAL EXIT
                if (LAST)
                {
                    H    = HNEW;
                    IDID = 1;
                    return;
                }
                if (Math.Abs(HNEW) > HMAX)
                {
                    HNEW = POSNEG * HMAX;
                }
                if (REJECT)
                {
                    HNEW = POSNEG * Math.Min(Math.Abs(HNEW), Math.Abs(H));
                }
                REJECT = false;
            }
            else
            {
                // C --- STEP IS REJECTED
                HNEW   = H / Math.Min(FACC1, FAC11 / SAFE);
                REJECT = true;
                if (NACCPT >= 1)
                {
                    NREJCT += 1;
                }
                LAST = false;
            }
            H = HNEW;
            goto LABEL1;
            // C --- FAIL EXIT
            LABEL76 :;
            IDID = -4;
            return;

            LABEL77 :;
            if (IPRINT > 0)
            {
                ;            //ERROR-ERRORWRITE(IPRINT,979)X
            }
            if (IPRINT > 0)
            {
                ;            //ERROR-ERRORWRITE(IPRINT,*)' STEP SIZE T0O SMALL, H=',H
            }
            IDID = -3;
            return;

            LABEL78 :;
            if (IPRINT > 0)
            {
                ;            //ERROR-ERRORWRITE(IPRINT,979)X
            }
            if (IPRINT > 0)
            {
                ;            //ERROR-ERRORWRITE(IPRINT,*)' MORE THAN NMAX =',NMAX,'STEPS ARE NEEDED'
            }
            IDID = -2;
            return;

            LABEL79 :;
            if (IPRINT > 0)
            {
                ;            //ERROR-ERRORWRITE(IPRINT,979)X
            }
            IDID = 2;
            return;

            #endregion
        }
예제 #8
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLAED3 finds the roots of the secular equation, as defined by the
        /// values in D, W, and RHO, between 1 and K.  It makes the
        /// appropriate calls to DLAED4 and then updates the eigenvectors by
        /// multiplying the matrix of eigenvectors of the pair of eigensystems
        /// being combined by the matrix of eigenvectors of the K-by-K system
        /// which is solved here.
        ///
        /// This code makes very mild assumptions about floating point
        /// arithmetic. It will work on machines with a guard digit in
        /// add/subtract, or on those binary machines without guard digits
        /// which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
        /// It could conceivably fail on hexadecimal or decimal machines
        /// without guard digits, but we know of none.
        ///
        ///</summary>
        /// <param name="K">
        /// (input) INTEGER
        /// The number of terms in the rational function to be solved by
        /// DLAED4.  K .GE. 0.
        ///</param>
        /// <param name="N">
        /// (input) INTEGER
        /// The number of rows and columns in the Q matrix.
        /// N .GE. K (deflation may result in N.GT.K).
        ///</param>
        /// <param name="N1">
        /// (input) INTEGER
        /// The location of the last eigenvalue in the leading submatrix.
        /// min(1,N) .LE. N1 .LE. N/2.
        ///</param>
        /// <param name="D">
        /// (output) DOUBLE PRECISION array, dimension (N)
        /// D(I) contains the updated eigenvalues for
        /// 1 .LE. I .LE. K.
        ///</param>
        /// <param name="Q">
        /// (output) DOUBLE PRECISION array, dimension (LDQ,N)
        /// Initially the first K columns are used as workspace.
        /// On output the columns 1 to K contain
        /// the updated eigenvectors.
        ///</param>
        /// <param name="LDQ">
        /// (input) INTEGER
        /// The leading dimension of the array Q.  LDQ .GE. max(1,N).
        ///</param>
        /// <param name="RHO">
        /// (input) DOUBLE PRECISION
        /// The value of the parameter in the rank one update equation.
        /// RHO .GE. 0 required.
        ///</param>
        /// <param name="DLAMDA">
        /// (input/output) DOUBLE PRECISION array, dimension (K)
        /// The first K elements of this array contain the old roots
        /// of the deflated updating problem.  These are the poles
        /// of the secular equation. May be changed on output by
        /// having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
        /// Cray-2, or Cray C-90, as described above.
        ///</param>
        /// <param name="Q2">
        /// (input) DOUBLE PRECISION array, dimension (LDQ2, N)
        /// The first K columns of this matrix contain the non-deflated
        /// eigenvectors for the split problem.
        ///</param>
        /// <param name="INDX">
        /// (input) INTEGER array, dimension (N)
        /// The permutation used to arrange the columns of the deflated
        /// Q matrix into three groups (see DLAED2).
        /// The rows of the eigenvectors found by DLAED4 must be likewise
        /// permuted before the matrix multiply can take place.
        ///</param>
        /// <param name="CTOT">
        /// (input) INTEGER array, dimension (4)
        /// A count of the total number of the various types of columns
        /// in Q, as described in INDX.  The fourth column type is any
        /// column which has been deflated.
        ///</param>
        /// <param name="W">
        /// (input/output) DOUBLE PRECISION array, dimension (K)
        /// The first K elements of this array contain the components
        /// of the deflation-adjusted updating vector. Destroyed on
        /// output.
        ///</param>
        /// <param name="S">
        /// (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
        /// Will contain the eigenvectors of the repaired matrix which
        /// will be multiplied by the previously accumulated eigenvectors
        /// to update the system.
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit.
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value.
        /// .GT. 0:  if INFO = 1, an eigenvalue did not converge
        ///</param>
        public void Run(int K, int N, int N1, ref double[] D, int offset_d, ref double[] Q, int offset_q, int LDQ
                        , double RHO, ref double[] DLAMDA, int offset_dlamda, double[] Q2, int offset_q2, int[] INDX, int offset_indx, int[] CTOT, int offset_ctot, ref double[] W, int offset_w
                        , ref double[] S, int offset_s, ref int INFO)
        {
            #region Variables

            int I = 0; int II = 0; int IQ2 = 0; int J = 0; int N12 = 0; int N2 = 0; int N23 = 0; double TEMP = 0;

            #endregion


            #region Implicit Variables

            int Q_J = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_q = -1 - LDQ + offset_q;  int o_dlamda = -1 + offset_dlamda;
            int o_q2 = -1 + offset_q2; int o_indx = -1 + offset_indx;  int o_ctot = -1 + offset_ctot;  int o_w = -1 + offset_w;
            int o_s = -1 + offset_s;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLAED3 finds the roots of the secular equation, as defined by the
            // *  values in D, W, and RHO, between 1 and K.  It makes the
            // *  appropriate calls to DLAED4 and then updates the eigenvectors by
            // *  multiplying the matrix of eigenvectors of the pair of eigensystems
            // *  being combined by the matrix of eigenvectors of the K-by-K system
            // *  which is solved here.
            // *
            // *  This code makes very mild assumptions about floating point
            // *  arithmetic. It will work on machines with a guard digit in
            // *  add/subtract, or on those binary machines without guard digits
            // *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
            // *  It could conceivably fail on hexadecimal or decimal machines
            // *  without guard digits, but we know of none.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  K       (input) INTEGER
            // *          The number of terms in the rational function to be solved by
            // *          DLAED4.  K >= 0.
            // *
            // *  N       (input) INTEGER
            // *          The number of rows and columns in the Q matrix.
            // *          N >= K (deflation may result in N>K).
            // *
            // *  N1      (input) INTEGER
            // *          The location of the last eigenvalue in the leading submatrix.
            // *          min(1,N) <= N1 <= N/2.
            // *
            // *  D       (output) DOUBLE PRECISION array, dimension (N)
            // *          D(I) contains the updated eigenvalues for
            // *          1 <= I <= K.
            // *
            // *  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
            // *          Initially the first K columns are used as workspace.
            // *          On output the columns 1 to K contain
            // *          the updated eigenvectors.
            // *
            // *  LDQ     (input) INTEGER
            // *          The leading dimension of the array Q.  LDQ >= max(1,N).
            // *
            // *  RHO     (input) DOUBLE PRECISION
            // *          The value of the parameter in the rank one update equation.
            // *          RHO >= 0 required.
            // *
            // *  DLAMDA  (input/output) DOUBLE PRECISION array, dimension (K)
            // *          The first K elements of this array contain the old roots
            // *          of the deflated updating problem.  These are the poles
            // *          of the secular equation. May be changed on output by
            // *          having lowest order bit set to zero on Cray X-MP, Cray Y-MP,
            // *          Cray-2, or Cray C-90, as described above.
            // *
            // *  Q2      (input) DOUBLE PRECISION array, dimension (LDQ2, N)
            // *          The first K columns of this matrix contain the non-deflated
            // *          eigenvectors for the split problem.
            // *
            // *  INDX    (input) INTEGER array, dimension (N)
            // *          The permutation used to arrange the columns of the deflated
            // *          Q matrix into three groups (see DLAED2).
            // *          The rows of the eigenvectors found by DLAED4 must be likewise
            // *          permuted before the matrix multiply can take place.
            // *
            // *  CTOT    (input) INTEGER array, dimension (4)
            // *          A count of the total number of the various types of columns
            // *          in Q, as described in INDX.  The fourth column type is any
            // *          column which has been deflated.
            // *
            // *  W       (input/output) DOUBLE PRECISION array, dimension (K)
            // *          The first K elements of this array contain the components
            // *          of the deflation-adjusted updating vector. Destroyed on
            // *          output.
            // *
            // *  S       (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K
            // *          Will contain the eigenvectors of the repaired matrix which
            // *          will be multiplied by the previously accumulated eigenvectors
            // *          to update the system.
            // *
            // *  LDS     (input) INTEGER
            // *          The leading dimension of S.  LDS >= max(1,K).
            // *
            // *  INFO    (output) INTEGER
            // *          = 0:  successful exit.
            // *          < 0:  if INFO = -i, the i-th argument had an illegal value.
            // *          > 0:  if INFO = 1, an eigenvalue did not converge
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Based on contributions by
            // *     Jeff Rutter, Computer Science Division, University of California
            // *     at Berkeley, USA
            // *  Modified by Francoise Tisseur, University of Tennessee.
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          MAX, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            if (K < 0)
            {
                INFO = -1;
            }
            else
            {
                if (N < K)
                {
                    INFO = -2;
                }
                else
                {
                    if (LDQ < Math.Max(1, N))
                    {
                        INFO = -6;
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DLAED3", -INFO);
                return;
            }
            // *
            // *     Quick return if possible
            // *
            if (K == 0)
            {
                return;
            }
            // *
            // *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
            // *     be computed with high relative accuracy (barring over/underflow).
            // *     This is a problem on machines without a guard digit in
            // *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
            // *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
            // *     which on any of these machines zeros out the bottommost
            // *     bit of DLAMDA(I) if it is 1; this makes the subsequent
            // *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
            // *     occurs. On binary machines with a guard digit (almost all
            // *     machines) it does not change DLAMDA(I) at all. On hexadecimal
            // *     and decimal machines with a guard digit, it slightly
            // *     changes the bottommost bits of DLAMDA(I). It does not account
            // *     for hexadecimal or decimal machines without guard digits
            // *     (we know of none). We use a subroutine call to compute
            // *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
            // *     this code.
            // *
            for (I = 1; I <= K; I++)
            {
                DLAMDA[I + o_dlamda] = this._dlamc3.Run(DLAMDA[I + o_dlamda], DLAMDA[I + o_dlamda]) - DLAMDA[I + o_dlamda];
            }
            // *
            for (J = 1; J <= K; J++)
            {
                this._dlaed4.Run(K, J, DLAMDA, offset_dlamda, W, offset_w, ref Q, 1 + J * LDQ + o_q, RHO
                                 , ref D[J + o_d], ref INFO);
                // *
                // *        If the zero finder fails, the computation is terminated.
                // *
                if (INFO != 0)
                {
                    goto LABEL120;
                }
            }
            // *
            if (K == 1)
            {
                goto LABEL110;
            }
            if (K == 2)
            {
                for (J = 1; J <= K; J++)
                {
                    W[1 + o_w]           = Q[1 + J * LDQ + o_q];
                    W[2 + o_w]           = Q[2 + J * LDQ + o_q];
                    II                   = INDX[1 + o_indx];
                    Q[1 + J * LDQ + o_q] = W[II + o_w];
                    II                   = INDX[2 + o_indx];
                    Q[2 + J * LDQ + o_q] = W[II + o_w];
                }
                goto LABEL110;
            }
            // *
            // *     Compute updated W.
            // *
            this._dcopy.Run(K, W, offset_w, 1, ref S, offset_s, 1);
            // *
            // *     Initialize W(I) = Q(I,I)
            // *
            this._dcopy.Run(K, Q, offset_q, LDQ + 1, ref W, offset_w, 1);
            for (J = 1; J <= K; J++)
            {
                Q_J = J * LDQ + o_q;
                for (I = 1; I <= J - 1; I++)
                {
                    W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda]));
                }
                Q_J = J * LDQ + o_q;
                for (I = J + 1; I <= K; I++)
                {
                    W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda]));
                }
            }
            for (I = 1; I <= K; I++)
            {
                W[I + o_w] = FortranLib.Sign(Math.Sqrt(-W[I + o_w]), S[I + o_s]);
            }
            // *
            // *     Compute eigenvectors of the modified rank-1 modification.
            // *
            for (J = 1; J <= K; J++)
            {
                Q_J = J * LDQ + o_q;
                for (I = 1; I <= K; I++)
                {
                    S[I + o_s] = W[I + o_w] / Q[I + Q_J];
                }
                TEMP = this._dnrm2.Run(K, S, offset_s, 1);
                Q_J  = J * LDQ + o_q;
                for (I = 1; I <= K; I++)
                {
                    II         = INDX[I + o_indx];
                    Q[I + Q_J] = S[II + o_s] / TEMP;
                }
            }
            // *
            // *     Compute the updated eigenvectors.
            // *
            LABEL110 :;
            // *
            N2  = N - N1;
            N12 = CTOT[1 + o_ctot] + CTOT[2 + o_ctot];
            N23 = CTOT[2 + o_ctot] + CTOT[3 + o_ctot];
            // *
            this._dlacpy.Run("A", N23, K, Q, CTOT[1 + o_ctot] + 1 + 1 * LDQ + o_q, LDQ, ref S, offset_s
                             , N23);
            IQ2 = N1 * N12 + 1;
            if (N23 != 0)
            {
                this._dgemm.Run("N", "N", N2, K, N23, ONE
                                , Q2, IQ2 + o_q2, N2, S, offset_s, N23, ZERO, ref Q, N1 + 1 + 1 * LDQ + o_q
                                , LDQ);
            }
            else
            {
                this._dlaset.Run("A", N2, K, ZERO, ZERO, ref Q, N1 + 1 + 1 * LDQ + o_q
                                 , LDQ);
            }
            // *
            this._dlacpy.Run("A", N12, K, Q, offset_q, LDQ, ref S, offset_s
                             , N12);
            if (N12 != 0)
            {
                this._dgemm.Run("N", "N", N1, K, N12, ONE
                                , Q2, offset_q2, N1, S, offset_s, N12, ZERO, ref Q, offset_q
                                , LDQ);
            }
            else
            {
                this._dlaset.Run("A", N1, K, ZERO, ZERO, ref Q, 1 + 1 * LDQ + o_q
                                 , LDQ);
            }
            // *
            // *
            LABEL120 :;
            return;

            // *
            // *     End of DLAED3
            // *

            #endregion
        }
예제 #9
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLASD3 finds all the square roots of the roots of the secular
        /// equation, as defined by the values in D and Z.  It makes the
        /// appropriate calls to DLASD4 and then updates the singular
        /// vectors by matrix multiplication.
        ///
        /// This code makes very mild assumptions about floating point
        /// arithmetic. It will work on machines with a guard digit in
        /// add/subtract, or on those binary machines without guard digits
        /// which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
        /// It could conceivably fail on hexadecimal or decimal machines
        /// without guard digits, but we know of none.
        ///
        /// DLASD3 is called from DLASD1.
        ///
        ///</summary>
        /// <param name="NL">
        /// (input) INTEGER
        /// The row dimension of the upper block.  NL .GE. 1.
        ///</param>
        /// <param name="NR">
        /// (input) INTEGER
        /// The row dimension of the lower block.  NR .GE. 1.
        ///</param>
        /// <param name="SQRE">
        /// (input) INTEGER
        /// = 0: the lower block is an NR-by-NR square matrix.
        /// = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
        ///
        /// The bidiagonal matrix has N = NL + NR + 1 rows and
        /// M = N + SQRE .GE. N columns.
        ///</param>
        /// <param name="K">
        /// (input) INTEGER
        /// The size of the secular equation, 1 =.LT. K = .LT. N.
        ///</param>
        /// <param name="D">
        /// (output) DOUBLE PRECISION array, dimension(K)
        /// On exit the square roots of the roots of the secular equation,
        /// in ascending order.
        ///</param>
        /// <param name="Q">
        /// (workspace) DOUBLE PRECISION array,
        /// dimension at least (LDQ,K).
        ///</param>
        /// <param name="LDQ">
        /// (input) INTEGER
        /// The leading dimension of the array Q.  LDQ .GE. K.
        ///</param>
        /// <param name="DSIGMA">
        /// (input) DOUBLE PRECISION array, dimension(K)
        /// The first K elements of this array contain the old roots
        /// of the deflated updating problem.  These are the poles
        /// of the secular equation.
        ///</param>
        /// <param name="U">
        /// (output) DOUBLE PRECISION array, dimension (LDU, N)
        /// The last N - K columns of this matrix contain the deflated
        /// left singular vectors.
        ///</param>
        /// <param name="LDU">
        /// (input) INTEGER
        /// The leading dimension of the array U.  LDU .GE. N.
        ///</param>
        /// <param name="U2">
        /// (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
        /// The first K columns of this matrix contain the non-deflated
        /// left singular vectors for the split problem.
        ///</param>
        /// <param name="LDU2">
        /// (input) INTEGER
        /// The leading dimension of the array U2.  LDU2 .GE. N.
        ///</param>
        /// <param name="VT">
        /// (output) DOUBLE PRECISION array, dimension (LDVT, M)
        /// The last M - K columns of VT' contain the deflated
        /// right singular vectors.
        ///</param>
        /// <param name="LDVT">
        /// (input) INTEGER
        /// The leading dimension of the array VT.  LDVT .GE. N.
        ///</param>
        /// <param name="VT2">
        /// (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
        /// The first K columns of VT2' contain the non-deflated
        /// right singular vectors for the split problem.
        ///</param>
        /// <param name="LDVT2">
        /// (input) INTEGER
        /// The leading dimension of the array VT2.  LDVT2 .GE. N.
        ///</param>
        /// <param name="IDXC">
        /// (input) INTEGER array, dimension ( N )
        /// The permutation used to arrange the columns of U (and rows of
        /// VT) into three groups:  the first group contains non-zero
        /// entries only at and above (or before) NL +1; the second
        /// contains non-zero entries only at and below (or after) NL+2;
        /// and the third is dense. The first column of U and the row of
        /// VT are treated separately, however.
        ///
        /// The rows of the singular vectors found by DLASD4
        /// must be likewise permuted before the matrix multiplies can
        /// take place.
        ///</param>
        /// <param name="CTOT">
        /// (input) INTEGER array, dimension ( 4 )
        /// A count of the total number of the various types of columns
        /// in U (or rows in VT), as described in IDXC. The fourth column
        /// type is any column which has been deflated.
        ///</param>
        /// <param name="Z">
        /// (input) DOUBLE PRECISION array, dimension (K)
        /// The first K elements of this array contain the components
        /// of the deflation-adjusted updating row vector.
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit.
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value.
        /// .GT. 0:  if INFO = 1, an singular value did not converge
        ///</param>
        public void Run(int NL, int NR, int SQRE, int K, ref double[] D, int offset_d, ref double[] Q, int offset_q
                        , int LDQ, ref double[] DSIGMA, int offset_dsigma, ref double[] U, int offset_u, int LDU, double[] U2, int offset_u2, int LDU2
                        , ref double[] VT, int offset_vt, int LDVT, ref double[] VT2, int offset_vt2, int LDVT2, int[] IDXC, int offset_idxc, int[] CTOT, int offset_ctot
                        , ref double[] Z, int offset_z, ref int INFO)
        {
            #region Variables

            int CTEMP = 0; int I = 0; int J = 0; int JC = 0; int KTEMP = 0; int M = 0; int N = 0; int NLP1 = 0; int NLP2 = 0;
            int NRP1 = 0; double RHO = 0; double TEMP = 0;

            #endregion


            #region Implicit Variables

            int U_1 = 0; int U2_1 = 0; int U_K = 0; int VT_K = 0; int VT_I = 0; int U_I = 0; int Q_I = 0; int Q_1 = 0;
            int Q_KTEMP = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_q = -1 - LDQ + offset_q;  int o_dsigma = -1 + offset_dsigma;
            int o_u = -1 - LDU + offset_u; int o_u2 = -1 - LDU2 + offset_u2;  int o_vt = -1 - LDVT + offset_vt;
            int o_vt2 = -1 - LDVT2 + offset_vt2; int o_idxc = -1 + offset_idxc;  int o_ctot = -1 + offset_ctot;
            int o_z = -1 + offset_z;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK auxiliary routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLASD3 finds all the square roots of the roots of the secular
            // *  equation, as defined by the values in D and Z.  It makes the
            // *  appropriate calls to DLASD4 and then updates the singular
            // *  vectors by matrix multiplication.
            // *
            // *  This code makes very mild assumptions about floating point
            // *  arithmetic. It will work on machines with a guard digit in
            // *  add/subtract, or on those binary machines without guard digits
            // *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
            // *  It could conceivably fail on hexadecimal or decimal machines
            // *  without guard digits, but we know of none.
            // *
            // *  DLASD3 is called from DLASD1.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  NL     (input) INTEGER
            // *         The row dimension of the upper block.  NL >= 1.
            // *
            // *  NR     (input) INTEGER
            // *         The row dimension of the lower block.  NR >= 1.
            // *
            // *  SQRE   (input) INTEGER
            // *         = 0: the lower block is an NR-by-NR square matrix.
            // *         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
            // *
            // *         The bidiagonal matrix has N = NL + NR + 1 rows and
            // *         M = N + SQRE >= N columns.
            // *
            // *  K      (input) INTEGER
            // *         The size of the secular equation, 1 =< K = < N.
            // *
            // *  D      (output) DOUBLE PRECISION array, dimension(K)
            // *         On exit the square roots of the roots of the secular equation,
            // *         in ascending order.
            // *
            // *  Q      (workspace) DOUBLE PRECISION array,
            // *                     dimension at least (LDQ,K).
            // *
            // *  LDQ    (input) INTEGER
            // *         The leading dimension of the array Q.  LDQ >= K.
            // *
            // *  DSIGMA (input) DOUBLE PRECISION array, dimension(K)
            // *         The first K elements of this array contain the old roots
            // *         of the deflated updating problem.  These are the poles
            // *         of the secular equation.
            // *
            // *  U      (output) DOUBLE PRECISION array, dimension (LDU, N)
            // *         The last N - K columns of this matrix contain the deflated
            // *         left singular vectors.
            // *
            // *  LDU    (input) INTEGER
            // *         The leading dimension of the array U.  LDU >= N.
            // *
            // *  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N)
            // *         The first K columns of this matrix contain the non-deflated
            // *         left singular vectors for the split problem.
            // *
            // *  LDU2   (input) INTEGER
            // *         The leading dimension of the array U2.  LDU2 >= N.
            // *
            // *  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M)
            // *         The last M - K columns of VT' contain the deflated
            // *         right singular vectors.
            // *
            // *  LDVT   (input) INTEGER
            // *         The leading dimension of the array VT.  LDVT >= N.
            // *
            // *  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N)
            // *         The first K columns of VT2' contain the non-deflated
            // *         right singular vectors for the split problem.
            // *
            // *  LDVT2  (input) INTEGER
            // *         The leading dimension of the array VT2.  LDVT2 >= N.
            // *
            // *  IDXC   (input) INTEGER array, dimension ( N )
            // *         The permutation used to arrange the columns of U (and rows of
            // *         VT) into three groups:  the first group contains non-zero
            // *         entries only at and above (or before) NL +1; the second
            // *         contains non-zero entries only at and below (or after) NL+2;
            // *         and the third is dense. The first column of U and the row of
            // *         VT are treated separately, however.
            // *
            // *         The rows of the singular vectors found by DLASD4
            // *         must be likewise permuted before the matrix multiplies can
            // *         take place.
            // *
            // *  CTOT   (input) INTEGER array, dimension ( 4 )
            // *         A count of the total number of the various types of columns
            // *         in U (or rows in VT), as described in IDXC. The fourth column
            // *         type is any column which has been deflated.
            // *
            // *  Z      (input) DOUBLE PRECISION array, dimension (K)
            // *         The first K elements of this array contain the components
            // *         of the deflation-adjusted updating row vector.
            // *
            // *  INFO   (output) INTEGER
            // *         = 0:  successful exit.
            // *         < 0:  if INFO = -i, the i-th argument had an illegal value.
            // *         > 0:  if INFO = 1, an singular value did not converge
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Based on contributions by
            // *     Ming Gu and Huan Ren, Computer Science Division, University of
            // *     California at Berkeley, USA
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            if (NL < 1)
            {
                INFO = -1;
            }
            else
            {
                if (NR < 1)
                {
                    INFO = -2;
                }
                else
                {
                    if ((SQRE != 1) && (SQRE != 0))
                    {
                        INFO = -3;
                    }
                }
            }
            // *
            N    = NL + NR + 1;
            M    = N + SQRE;
            NLP1 = NL + 1;
            NLP2 = NL + 2;
            // *
            if ((K < 1) || (K > N))
            {
                INFO = -4;
            }
            else
            {
                if (LDQ < K)
                {
                    INFO = -7;
                }
                else
                {
                    if (LDU < N)
                    {
                        INFO = -10;
                    }
                    else
                    {
                        if (LDU2 < N)
                        {
                            INFO = -12;
                        }
                        else
                        {
                            if (LDVT < M)
                            {
                                INFO = -14;
                            }
                            else
                            {
                                if (LDVT2 < M)
                                {
                                    INFO = -16;
                                }
                            }
                        }
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DLASD3", -INFO);
                return;
            }
            // *
            // *     Quick return if possible
            // *
            if (K == 1)
            {
                D[1 + o_d] = Math.Abs(Z[1 + o_z]);
                this._dcopy.Run(M, VT2, 1 + 1 * LDVT2 + o_vt2, LDVT2, ref VT, 1 + 1 * LDVT + o_vt, LDVT);
                if (Z[1 + o_z] > ZERO)
                {
                    this._dcopy.Run(N, U2, 1 + 1 * LDU2 + o_u2, 1, ref U, 1 + 1 * LDU + o_u, 1);
                }
                else
                {
                    U_1  = 1 * LDU + o_u;
                    U2_1 = 1 * LDU2 + o_u2;
                    for (I = 1; I <= N; I++)
                    {
                        U[I + U_1] = -U2[I + U2_1];
                    }
                }
                return;
            }
            // *
            // *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
            // *     be computed with high relative accuracy (barring over/underflow).
            // *     This is a problem on machines without a guard digit in
            // *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
            // *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
            // *     which on any of these machines zeros out the bottommost
            // *     bit of DSIGMA(I) if it is 1; this makes the subsequent
            // *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
            // *     occurs. On binary machines with a guard digit (almost all
            // *     machines) it does not change DSIGMA(I) at all. On hexadecimal
            // *     and decimal machines with a guard digit, it slightly
            // *     changes the bottommost bits of DSIGMA(I). It does not account
            // *     for hexadecimal or decimal machines without guard digits
            // *     (we know of none). We use a subroutine call to compute
            // *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
            // *     this code.
            // *
            for (I = 1; I <= K; I++)
            {
                DSIGMA[I + o_dsigma] = this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGMA[I + o_dsigma]) - DSIGMA[I + o_dsigma];
            }
            // *
            // *     Keep a copy of Z.
            // *
            this._dcopy.Run(K, Z, offset_z, 1, ref Q, offset_q, 1);
            // *
            // *     Normalize Z.
            // *
            RHO = this._dnrm2.Run(K, Z, offset_z, 1);
            this._dlascl.Run("G", 0, 0, RHO, ONE, K
                             , 1, ref Z, offset_z, K, ref INFO);
            RHO *= RHO;
            // *
            // *     Find the new singular values.
            // *
            for (J = 1; J <= K; J++)
            {
                this._dlasd4.Run(K, J, DSIGMA, offset_dsigma, Z, offset_z, ref U, 1 + J * LDU + o_u, RHO
                                 , ref D[J + o_d], ref VT, 1 + J * LDVT + o_vt, ref INFO);
                // *
                // *        If the zero finder fails, the computation is terminated.
                // *
                if (INFO != 0)
                {
                    return;
                }
            }
            // *
            // *     Compute updated Z.
            // *
            U_K  = K * LDU + o_u;
            VT_K = K * LDVT + o_vt;
            for (I = 1; I <= K; I++)
            {
                Z[I + o_z] = U[I + U_K] * VT[I + VT_K];
                for (J = 1; J <= I - 1; J++)
                {
                    Z[I + o_z] = Z[I + o_z] * (U[I + J * LDU + o_u] * VT[I + J * LDVT + o_vt] / (DSIGMA[I + o_dsigma] - DSIGMA[J + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + o_dsigma]));
                }
                for (J = I; J <= K - 1; J++)
                {
                    Z[I + o_z] = Z[I + o_z] * (U[I + J * LDU + o_u] * VT[I + J * LDVT + o_vt] / (DSIGMA[I + o_dsigma] - DSIGMA[J + 1 + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + 1 + o_dsigma]));
                }
                Z[I + o_z] = FortranLib.Sign(Math.Sqrt(Math.Abs(Z[I + o_z])), Q[I + 1 * LDQ + o_q]);
            }
            // *
            // *     Compute left singular vectors of the modified diagonal matrix,
            // *     and store related information for the right singular vectors.
            // *
            for (I = 1; I <= K; I++)
            {
                VT[1 + I * LDVT + o_vt] = Z[1 + o_z] / U[1 + I * LDU + o_u] / VT[1 + I * LDVT + o_vt];
                U[1 + I * LDU + o_u]    = NEGONE;
                VT_I = I * LDVT + o_vt;
                U_I  = I * LDU + o_u;
                for (J = 2; J <= K; J++)
                {
                    VT[J + VT_I] = Z[J + o_z] / U[J + U_I] / VT[J + VT_I];
                    U[J + U_I]   = DSIGMA[J + o_dsigma] * VT[J + VT_I];
                }
                TEMP = this._dnrm2.Run(K, U, 1 + I * LDU + o_u, 1);
                Q[1 + I * LDQ + o_q] = U[1 + I * LDU + o_u] / TEMP;
                Q_I = I * LDQ + o_q;
                for (J = 2; J <= K; J++)
                {
                    JC         = IDXC[J + o_idxc];
                    Q[J + Q_I] = U[JC + I * LDU + o_u] / TEMP;
                }
            }
            // *
            // *     Update the left singular vector matrix.
            // *
            if (K == 2)
            {
                this._dgemm.Run("N", "N", N, K, K, ONE
                                , U2, offset_u2, LDU2, Q, offset_q, LDQ, ZERO, ref U, offset_u
                                , LDU);
                goto LABEL100;
            }
            if (CTOT[1 + o_ctot] > 0)
            {
                this._dgemm.Run("N", "N", NL, K, CTOT[1 + o_ctot], ONE
                                , U2, 1 + 2 * LDU2 + o_u2, LDU2, Q, 2 + 1 * LDQ + o_q, LDQ, ZERO, ref U, 1 + 1 * LDU + o_u
                                , LDU);
                if (CTOT[3 + o_ctot] > 0)
                {
                    KTEMP = 2 + CTOT[1 + o_ctot] + CTOT[2 + o_ctot];
                    this._dgemm.Run("N", "N", NL, K, CTOT[3 + o_ctot], ONE
                                    , U2, 1 + KTEMP * LDU2 + o_u2, LDU2, Q, KTEMP + 1 * LDQ + o_q, LDQ, ONE, ref U, 1 + 1 * LDU + o_u
                                    , LDU);
                }
            }
            else
            {
                if (CTOT[3 + o_ctot] > 0)
                {
                    KTEMP = 2 + CTOT[1 + o_ctot] + CTOT[2 + o_ctot];
                    this._dgemm.Run("N", "N", NL, K, CTOT[3 + o_ctot], ONE
                                    , U2, 1 + KTEMP * LDU2 + o_u2, LDU2, Q, KTEMP + 1 * LDQ + o_q, LDQ, ZERO, ref U, 1 + 1 * LDU + o_u
                                    , LDU);
                }
                else
                {
                    this._dlacpy.Run("F", NL, K, U2, offset_u2, LDU2, ref U, offset_u
                                     , LDU);
                }
            }
            this._dcopy.Run(K, Q, 1 + 1 * LDQ + o_q, LDQ, ref U, NLP1 + 1 * LDU + o_u, LDU);
            KTEMP = 2 + CTOT[1 + o_ctot];
            CTEMP = CTOT[2 + o_ctot] + CTOT[3 + o_ctot];
            this._dgemm.Run("N", "N", NR, K, CTEMP, ONE
                            , U2, NLP2 + KTEMP * LDU2 + o_u2, LDU2, Q, KTEMP + 1 * LDQ + o_q, LDQ, ZERO, ref U, NLP2 + 1 * LDU + o_u
                            , LDU);
            // *
            // *     Generate the right singular vectors.
            // *
            LABEL100 :;
            Q_1 = 1 * LDQ + o_q;
            for (I = 1; I <= K; I++)
            {
                TEMP       = this._dnrm2.Run(K, VT, 1 + I * LDVT + o_vt, 1);
                Q[I + Q_1] = VT[1 + I * LDVT + o_vt] / TEMP;
                for (J = 2; J <= K; J++)
                {
                    JC = IDXC[J + o_idxc];
                    Q[I + J * LDQ + o_q] = VT[JC + I * LDVT + o_vt] / TEMP;
                }
            }
            // *
            // *     Update the right singular vector matrix.
            // *
            if (K == 2)
            {
                this._dgemm.Run("N", "N", K, M, K, ONE
                                , Q, offset_q, LDQ, VT2, offset_vt2, LDVT2, ZERO, ref VT, offset_vt
                                , LDVT);
                return;
            }
            KTEMP = 1 + CTOT[1 + o_ctot];
            this._dgemm.Run("N", "N", K, NLP1, KTEMP, ONE
                            , Q, 1 + 1 * LDQ + o_q, LDQ, VT2, 1 + 1 * LDVT2 + o_vt2, LDVT2, ZERO, ref VT, 1 + 1 * LDVT + o_vt
                            , LDVT);
            KTEMP = 2 + CTOT[1 + o_ctot] + CTOT[2 + o_ctot];
            if (KTEMP <= LDVT2)
            {
                this._dgemm.Run("N", "N", K, NLP1, CTOT[3 + o_ctot], ONE
                                , Q, 1 + KTEMP * LDQ + o_q, LDQ, VT2, KTEMP + 1 * LDVT2 + o_vt2, LDVT2, ONE, ref VT, 1 + 1 * LDVT + o_vt
                                , LDVT);
            }
            // *
            KTEMP = CTOT[1 + o_ctot] + 1;
            NRP1  = NR + SQRE;
            if (KTEMP > 1)
            {
                Q_KTEMP = KTEMP * LDQ + o_q;
                Q_1     = 1 * LDQ + o_q;
                for (I = 1; I <= K; I++)
                {
                    Q[I + Q_KTEMP] = Q[I + Q_1];
                }
                for (I = NLP2; I <= M; I++)
                {
                    VT2[KTEMP + I * LDVT2 + o_vt2] = VT2[1 + I * LDVT2 + o_vt2];
                }
            }
            CTEMP = 1 + CTOT[2 + o_ctot] + CTOT[3 + o_ctot];
            this._dgemm.Run("N", "N", K, NRP1, CTEMP, ONE
                            , Q, 1 + KTEMP * LDQ + o_q, LDQ, VT2, KTEMP + NLP2 * LDVT2 + o_vt2, LDVT2, ZERO, ref VT, 1 + NLP2 * LDVT + o_vt
                            , LDVT);
            // *
            return;

            // *
            // *     End of DLASD3
            // *

            #endregion
        }
예제 #10
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLASD8 finds the square roots of the roots of the secular equation,
        /// as defined by the values in DSIGMA and Z. It makes the appropriate
        /// calls to DLASD4, and stores, for each  element in D, the distance
        /// to its two nearest poles (elements in DSIGMA). It also updates
        /// the arrays VF and VL, the first and last components of all the
        /// right singular vectors of the original bidiagonal matrix.
        ///
        /// DLASD8 is called from DLASD6.
        ///
        ///</summary>
        /// <param name="ICOMPQ">
        /// (input) INTEGER
        /// Specifies whether singular vectors are to be computed in
        /// factored form in the calling routine:
        /// = 0: Compute singular values only.
        /// = 1: Compute singular vectors in factored form as well.
        ///</param>
        /// <param name="K">
        /// (input) INTEGER
        /// The number of terms in the rational function to be solved
        /// by DLASD4.  K .GE. 1.
        ///</param>
        /// <param name="D">
        /// (output) DOUBLE PRECISION array, dimension ( K )
        /// On output, D contains the updated singular values.
        ///</param>
        /// <param name="Z">
        /// (input) DOUBLE PRECISION array, dimension ( K )
        /// The first K elements of this array contain the components
        /// of the deflation-adjusted updating row vector.
        ///</param>
        /// <param name="VF">
        /// (input/output) DOUBLE PRECISION array, dimension ( K )
        /// On entry, VF contains  information passed through DBEDE8.
        /// On exit, VF contains the first K components of the first
        /// components of all right singular vectors of the bidiagonal
        /// matrix.
        ///</param>
        /// <param name="VL">
        /// (input/output) DOUBLE PRECISION array, dimension ( K )
        /// On entry, VL contains  information passed through DBEDE8.
        /// On exit, VL contains the first K components of the last
        /// components of all right singular vectors of the bidiagonal
        /// matrix.
        ///</param>
        /// <param name="DIFL">
        /// (output) DOUBLE PRECISION array, dimension ( K )
        /// On exit, DIFL(I) = D(I) - DSIGMA(I).
        ///</param>
        /// <param name="DIFR">
        /// (output) DOUBLE PRECISION array,
        /// dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
        /// dimension ( K ) if ICOMPQ = 0.
        /// On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
        /// defined and will not be referenced.
        ///
        /// If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
        /// normalizing factors for the right singular vector matrix.
        ///</param>
        /// <param name="LDDIFR">
        /// (input) INTEGER
        /// The leading dimension of DIFR, must be at least K.
        ///</param>
        /// <param name="DSIGMA">
        /// (input) DOUBLE PRECISION array, dimension ( K )
        /// The first K elements of this array contain the old roots
        /// of the deflated updating problem.  These are the poles
        /// of the secular equation.
        ///</param>
        /// <param name="WORK">
        /// (workspace) DOUBLE PRECISION array, dimension at least 3 * K
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit.
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value.
        /// .GT. 0:  if INFO = 1, an singular value did not converge
        ///</param>
        public void Run(int ICOMPQ, int K, ref double[] D, int offset_d, ref double[] Z, int offset_z, ref double[] VF, int offset_vf, ref double[] VL, int offset_vl
                        , ref double[] DIFL, int offset_difl, ref double[] DIFR, int offset_difr, int LDDIFR, ref double[] DSIGMA, int offset_dsigma, ref double[] WORK, int offset_work, ref int INFO)
        {
            #region Variables

            int    I = 0; int IWK1 = 0; int IWK2 = 0; int IWK2I = 0; int IWK3 = 0; int IWK3I = 0; int J = 0; double DIFLJ = 0;
            double DIFRJ = 0; double DJ = 0; double DSIGJ = 0; double DSIGJP = 0; double RHO = 0; double TEMP = 0;

            #endregion


            #region Implicit Variables

            int DIFR_1 = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_z = -1 + offset_z;  int o_vf = -1 + offset_vf;  int o_vl = -1 + offset_vl;
            int o_difl = -1 + offset_difl; int o_difr = -1 - LDDIFR + offset_difr;  int o_dsigma = -1 + offset_dsigma;
            int o_work = -1 + offset_work;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK auxiliary routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLASD8 finds the square roots of the roots of the secular equation,
            // *  as defined by the values in DSIGMA and Z. It makes the appropriate
            // *  calls to DLASD4, and stores, for each  element in D, the distance
            // *  to its two nearest poles (elements in DSIGMA). It also updates
            // *  the arrays VF and VL, the first and last components of all the
            // *  right singular vectors of the original bidiagonal matrix.
            // *
            // *  DLASD8 is called from DLASD6.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  ICOMPQ  (input) INTEGER
            // *          Specifies whether singular vectors are to be computed in
            // *          factored form in the calling routine:
            // *          = 0: Compute singular values only.
            // *          = 1: Compute singular vectors in factored form as well.
            // *
            // *  K       (input) INTEGER
            // *          The number of terms in the rational function to be solved
            // *          by DLASD4.  K >= 1.
            // *
            // *  D       (output) DOUBLE PRECISION array, dimension ( K )
            // *          On output, D contains the updated singular values.
            // *
            // *  Z       (input) DOUBLE PRECISION array, dimension ( K )
            // *          The first K elements of this array contain the components
            // *          of the deflation-adjusted updating row vector.
            // *
            // *  VF      (input/output) DOUBLE PRECISION array, dimension ( K )
            // *          On entry, VF contains  information passed through DBEDE8.
            // *          On exit, VF contains the first K components of the first
            // *          components of all right singular vectors of the bidiagonal
            // *          matrix.
            // *
            // *  VL      (input/output) DOUBLE PRECISION array, dimension ( K )
            // *          On entry, VL contains  information passed through DBEDE8.
            // *          On exit, VL contains the first K components of the last
            // *          components of all right singular vectors of the bidiagonal
            // *          matrix.
            // *
            // *  DIFL    (output) DOUBLE PRECISION array, dimension ( K )
            // *          On exit, DIFL(I) = D(I) - DSIGMA(I).
            // *
            // *  DIFR    (output) DOUBLE PRECISION array,
            // *                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and
            // *                   dimension ( K ) if ICOMPQ = 0.
            // *          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not
            // *          defined and will not be referenced.
            // *
            // *          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the
            // *          normalizing factors for the right singular vector matrix.
            // *
            // *  LDDIFR  (input) INTEGER
            // *          The leading dimension of DIFR, must be at least K.
            // *
            // *  DSIGMA  (input) DOUBLE PRECISION array, dimension ( K )
            // *          The first K elements of this array contain the old roots
            // *          of the deflated updating problem.  These are the poles
            // *          of the secular equation.
            // *
            // *  WORK    (workspace) DOUBLE PRECISION array, dimension at least 3 * K
            // *
            // *  INFO    (output) INTEGER
            // *          = 0:  successful exit.
            // *          < 0:  if INFO = -i, the i-th argument had an illegal value.
            // *          > 0:  if INFO = 1, an singular value did not converge
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Based on contributions by
            // *     Ming Gu and Huan Ren, Computer Science Division, University of
            // *     California at Berkeley, USA
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            if ((ICOMPQ < 0) || (ICOMPQ > 1))
            {
                INFO = -1;
            }
            else
            {
                if (K < 1)
                {
                    INFO = -2;
                }
                else
                {
                    if (LDDIFR < K)
                    {
                        INFO = -9;
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DLASD8", -INFO);
                return;
            }
            // *
            // *     Quick return if possible
            // *
            if (K == 1)
            {
                D[1 + o_d]       = Math.Abs(Z[1 + o_z]);
                DIFL[1 + o_difl] = D[1 + o_d];
                if (ICOMPQ == 1)
                {
                    DIFL[2 + o_difl] = ONE;
                    DIFR[1 + 2 * LDDIFR + o_difr] = ONE;
                }
                return;
            }
            // *
            // *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
            // *     be computed with high relative accuracy (barring over/underflow).
            // *     This is a problem on machines without a guard digit in
            // *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
            // *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
            // *     which on any of these machines zeros out the bottommost
            // *     bit of DSIGMA(I) if it is 1; this makes the subsequent
            // *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
            // *     occurs. On binary machines with a guard digit (almost all
            // *     machines) it does not change DSIGMA(I) at all. On hexadecimal
            // *     and decimal machines with a guard digit, it slightly
            // *     changes the bottommost bits of DSIGMA(I). It does not account
            // *     for hexadecimal or decimal machines without guard digits
            // *     (we know of none). We use a subroutine call to compute
            // *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
            // *     this code.
            // *
            for (I = 1; I <= K; I++)
            {
                DSIGMA[I + o_dsigma] = this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGMA[I + o_dsigma]) - DSIGMA[I + o_dsigma];
            }
            // *
            // *     Book keeping.
            // *
            IWK1  = 1;
            IWK2  = IWK1 + K;
            IWK3  = IWK2 + K;
            IWK2I = IWK2 - 1;
            IWK3I = IWK3 - 1;
            // *
            // *     Normalize Z.
            // *
            RHO = this._dnrm2.Run(K, Z, offset_z, 1);
            this._dlascl.Run("G", 0, 0, RHO, ONE, K
                             , 1, ref Z, offset_z, K, ref INFO);
            RHO *= RHO;
            // *
            // *     Initialize WORK(IWK3).
            // *
            this._dlaset.Run("A", K, 1, ONE, ONE, ref WORK, IWK3 + o_work
                             , K);
            // *
            // *     Compute the updated singular values, the arrays DIFL, DIFR,
            // *     and the updated Z.
            // *
            DIFR_1 = 1 * LDDIFR + o_difr;
            for (J = 1; J <= K; J++)
            {
                this._dlasd4.Run(K, J, DSIGMA, offset_dsigma, Z, offset_z, ref WORK, IWK1 + o_work, RHO
                                 , ref D[J + o_d], ref WORK, IWK2 + o_work, ref INFO);
                // *
                // *        If the root finder fails, the computation is terminated.
                // *
                if (INFO != 0)
                {
                    return;
                }
                WORK[IWK3I + J + o_work] = WORK[IWK3I + J + o_work] * WORK[J + o_work] * WORK[IWK2I + J + o_work];
                DIFL[J + o_difl]         = -WORK[J + o_work];
                DIFR[J + DIFR_1]         = -WORK[J + 1 + o_work];
                for (I = 1; I <= J - 1; I++)
                {
                    WORK[IWK3I + I + o_work] = WORK[IWK3I + I + o_work] * WORK[I + o_work] * WORK[IWK2I + I + o_work] / (DSIGMA[I + o_dsigma] - DSIGMA[J + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + o_dsigma]);
                }
                for (I = J + 1; I <= K; I++)
                {
                    WORK[IWK3I + I + o_work] = WORK[IWK3I + I + o_work] * WORK[I + o_work] * WORK[IWK2I + I + o_work] / (DSIGMA[I + o_dsigma] - DSIGMA[J + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + o_dsigma]);
                }
            }
            // *
            // *     Compute updated Z.
            // *
            for (I = 1; I <= K; I++)
            {
                Z[I + o_z] = FortranLib.Sign(Math.Sqrt(Math.Abs(WORK[IWK3I + I + o_work])), Z[I + o_z]);
            }
            // *
            // *     Update VF and VL.
            // *
            for (J = 1; J <= K; J++)
            {
                DIFLJ = DIFL[J + o_difl];
                DJ    = D[J + o_d];
                DSIGJ = -DSIGMA[J + o_dsigma];
                if (J < K)
                {
                    DIFRJ  = -DIFR[J + 1 * LDDIFR + o_difr];
                    DSIGJP = -DSIGMA[J + 1 + o_dsigma];
                }
                WORK[J + o_work] = -Z[J + o_z] / DIFLJ / (DSIGMA[J + o_dsigma] + DJ);
                for (I = 1; I <= J - 1; I++)
                {
                    WORK[I + o_work] = Z[I + o_z] / (this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGJ) - DIFLJ) / (DSIGMA[I + o_dsigma] + DJ);
                }
                for (I = J + 1; I <= K; I++)
                {
                    WORK[I + o_work] = Z[I + o_z] / (this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGJP) + DIFRJ) / (DSIGMA[I + o_dsigma] + DJ);
                }
                TEMP = this._dnrm2.Run(K, WORK, offset_work, 1);
                WORK[IWK2I + J + o_work] = this._ddot.Run(K, WORK, offset_work, 1, VF, offset_vf, 1) / TEMP;
                WORK[IWK3I + J + o_work] = this._ddot.Run(K, WORK, offset_work, 1, VL, offset_vl, 1) / TEMP;
                if (ICOMPQ == 1)
                {
                    DIFR[J + 2 * LDDIFR + o_difr] = TEMP;
                }
            }
            // *
            this._dcopy.Run(K, WORK, IWK2 + o_work, 1, ref VF, offset_vf, 1);
            this._dcopy.Run(K, WORK, IWK3 + o_work, 1, ref VL, offset_vl, 1);
            // *
            return;

            // *
            // *     End of DLASD8
            // *

            #endregion
        }
예제 #11
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
        /// symmetric tridiagonal matrix using the implicit QL or QR method.
        /// The eigenvectors of a full or band symmetric matrix can also be found
        /// if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
        /// tridiagonal form.
        ///
        ///</summary>
        /// <param name="COMPZ">
        /// (input) CHARACTER*1
        /// = 'N':  Compute eigenvalues only.
        /// = 'V':  Compute eigenvalues and eigenvectors of the original
        /// symmetric matrix.  On entry, Z must contain the
        /// orthogonal matrix used to reduce the original matrix
        /// to tridiagonal form.
        /// = 'I':  Compute eigenvalues and eigenvectors of the
        /// tridiagonal matrix.  Z is initialized to the identity
        /// matrix.
        ///</param>
        /// <param name="N">
        /// (input) INTEGER
        /// The order of the matrix.  N .GE. 0.
        ///</param>
        /// <param name="D">
        /// (input/output) DOUBLE PRECISION array, dimension (N)
        /// On entry, the diagonal elements of the tridiagonal matrix.
        /// On exit, if INFO = 0, the eigenvalues in ascending order.
        ///</param>
        /// <param name="E">
        /// (input/output) DOUBLE PRECISION array, dimension (N-1)
        /// On entry, the (n-1) subdiagonal elements of the tridiagonal
        /// matrix.
        /// On exit, E has been destroyed.
        ///</param>
        /// <param name="Z">
        /// (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
        /// On entry, if  COMPZ = 'V', then Z contains the orthogonal
        /// matrix used in the reduction to tridiagonal form.
        /// On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
        /// orthonormal eigenvectors of the original symmetric matrix,
        /// and if COMPZ = 'I', Z contains the orthonormal eigenvectors
        /// of the symmetric tridiagonal matrix.
        /// If COMPZ = 'N', then Z is not referenced.
        ///</param>
        /// <param name="LDZ">
        /// (input) INTEGER
        /// The leading dimension of the array Z.  LDZ .GE. 1, and if
        /// eigenvectors are desired, then  LDZ .GE. max(1,N).
        ///</param>
        /// <param name="WORK">
        /// (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
        /// If COMPZ = 'N', then WORK is not referenced.
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value
        /// .GT. 0:  the algorithm has failed to find all the eigenvalues in
        /// a total of 30*N iterations; if INFO = i, then i
        /// elements of E have not converged to zero; on exit, D
        /// and E contain the elements of a symmetric tridiagonal
        /// matrix which is orthogonally similar to the original
        /// matrix.
        ///</param>
        public void Run(string COMPZ, int N, ref double[] D, int offset_d, ref double[] E, int offset_e, ref double[] Z, int offset_z, int LDZ
                        , ref double[] WORK, int offset_work, ref int INFO)
        {
            #region Variables

            int    I = 0; int ICOMPZ = 0; int II = 0; int ISCALE = 0; int J = 0; int JTOT = 0; int K = 0; int L = 0; int L1 = 0;
            int    LEND = 0; int LENDM1 = 0; int LENDP1 = 0; int LENDSV = 0; int LM1 = 0; int LSV = 0; int M = 0; int MM = 0;
            int    MM1 = 0; int NM1 = 0; int NMAXIT = 0; double ANORM = 0; double B = 0; double C = 0; double EPS = 0;
            double EPS2 = 0; double F = 0; double G = 0; double P = 0; double R = 0; double RT1 = 0; double RT2 = 0; double S = 0;
            double SAFMAX = 0; double SAFMIN = 0; double SSFMAX = 0; double SSFMIN = 0; double TST = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_e = -1 + offset_e;  int o_z = -1 - LDZ + offset_z;  int o_work = -1 + offset_work;

            #endregion


            #region Strings

            COMPZ = COMPZ.Substring(0, 1);

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
            // *  symmetric tridiagonal matrix using the implicit QL or QR method.
            // *  The eigenvectors of a full or band symmetric matrix can also be found
            // *  if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
            // *  tridiagonal form.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  COMPZ   (input) CHARACTER*1
            // *          = 'N':  Compute eigenvalues only.
            // *          = 'V':  Compute eigenvalues and eigenvectors of the original
            // *                  symmetric matrix.  On entry, Z must contain the
            // *                  orthogonal matrix used to reduce the original matrix
            // *                  to tridiagonal form.
            // *          = 'I':  Compute eigenvalues and eigenvectors of the
            // *                  tridiagonal matrix.  Z is initialized to the identity
            // *                  matrix.
            // *
            // *  N       (input) INTEGER
            // *          The order of the matrix.  N >= 0.
            // *
            // *  D       (input/output) DOUBLE PRECISION array, dimension (N)
            // *          On entry, the diagonal elements of the tridiagonal matrix.
            // *          On exit, if INFO = 0, the eigenvalues in ascending order.
            // *
            // *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
            // *          On entry, the (n-1) subdiagonal elements of the tridiagonal
            // *          matrix.
            // *          On exit, E has been destroyed.
            // *
            // *  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
            // *          On entry, if  COMPZ = 'V', then Z contains the orthogonal
            // *          matrix used in the reduction to tridiagonal form.
            // *          On exit, if INFO = 0, then if  COMPZ = 'V', Z contains the
            // *          orthonormal eigenvectors of the original symmetric matrix,
            // *          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
            // *          of the symmetric tridiagonal matrix.
            // *          If COMPZ = 'N', then Z is not referenced.
            // *
            // *  LDZ     (input) INTEGER
            // *          The leading dimension of the array Z.  LDZ >= 1, and if
            // *          eigenvectors are desired, then  LDZ >= max(1,N).
            // *
            // *  WORK    (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
            // *          If COMPZ = 'N', then WORK is not referenced.
            // *
            // *  INFO    (output) INTEGER
            // *          = 0:  successful exit
            // *          < 0:  if INFO = -i, the i-th argument had an illegal value
            // *          > 0:  the algorithm has failed to find all the eigenvalues in
            // *                a total of 30*N iterations; if INFO = i, then i
            // *                elements of E have not converged to zero; on exit, D
            // *                and E contain the elements of a symmetric tridiagonal
            // *                matrix which is orthogonally similar to the original
            // *                matrix.
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, MAX, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            if (this._lsame.Run(COMPZ, "N"))
            {
                ICOMPZ = 0;
            }
            else
            {
                if (this._lsame.Run(COMPZ, "V"))
                {
                    ICOMPZ = 1;
                }
                else
                {
                    if (this._lsame.Run(COMPZ, "I"))
                    {
                        ICOMPZ = 2;
                    }
                    else
                    {
                        ICOMPZ = -1;
                    }
                }
            }
            if (ICOMPZ < 0)
            {
                INFO = -1;
            }
            else
            {
                if (N < 0)
                {
                    INFO = -2;
                }
                else
                {
                    if ((LDZ < 1) || (ICOMPZ > 0 && LDZ < Math.Max(1, N)))
                    {
                        INFO = -6;
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DSTEQR", -INFO);
                return;
            }
            // *
            // *     Quick return if possible
            // *
            if (N == 0)
            {
                return;
            }
            // *
            if (N == 1)
            {
                if (ICOMPZ == 2)
                {
                    Z[1 + 1 * LDZ + o_z] = ONE;
                }
                return;
            }
            // *
            // *     Determine the unit roundoff and over/underflow thresholds.
            // *
            EPS    = this._dlamch.Run("E");
            EPS2   = Math.Pow(EPS, 2);
            SAFMIN = this._dlamch.Run("S");
            SAFMAX = ONE / SAFMIN;
            SSFMAX = Math.Sqrt(SAFMAX) / THREE;
            SSFMIN = Math.Sqrt(SAFMIN) / EPS2;
            // *
            // *     Compute the eigenvalues and eigenvectors of the tridiagonal
            // *     matrix.
            // *
            if (ICOMPZ == 2)
            {
                this._dlaset.Run("Full", N, N, ZERO, ONE, ref Z, offset_z
                                 , LDZ);
            }
            // *
            NMAXIT = N * MAXIT;
            JTOT   = 0;
            // *
            // *     Determine where the matrix splits and choose QL or QR iteration
            // *     for each block, according to whether top or bottom diagonal
            // *     element is smaller.
            // *
            L1  = 1;
            NM1 = N - 1;
            // *
            LABEL10 :;
            if (L1 > N)
            {
                goto LABEL160;
            }
            if (L1 > 1)
            {
                E[L1 - 1 + o_e] = ZERO;
            }
            if (L1 <= NM1)
            {
                for (M = L1; M <= NM1; M++)
                {
                    TST = Math.Abs(E[M + o_e]);
                    if (TST == ZERO)
                    {
                        goto LABEL30;
                    }
                    if (TST <= (Math.Sqrt(Math.Abs(D[M + o_d])) * Math.Sqrt(Math.Abs(D[M + 1 + o_d]))) * EPS)
                    {
                        E[M + o_e] = ZERO;
                        goto LABEL30;
                    }
                }
            }
            M = N;
            // *
            LABEL30 :;
            L      = L1;
            LSV    = L;
            LEND   = M;
            LENDSV = LEND;
            L1     = M + 1;
            if (LEND == L)
            {
                goto LABEL10;
            }
            // *
            // *     Scale submatrix in rows and columns L to LEND
            // *
            ANORM  = this._dlanst.Run("I", LEND - L + 1, D, L + o_d, E, L + o_e);
            ISCALE = 0;
            if (ANORM == ZERO)
            {
                goto LABEL10;
            }
            if (ANORM > SSFMAX)
            {
                ISCALE = 1;
                this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L + 1
                                 , 1, ref D, L + o_d, N, ref INFO);
                this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L
                                 , 1, ref E, L + o_e, N, ref INFO);
            }
            else
            {
                if (ANORM < SSFMIN)
                {
                    ISCALE = 2;
                    this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L + 1
                                     , 1, ref D, L + o_d, N, ref INFO);
                    this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L
                                     , 1, ref E, L + o_e, N, ref INFO);
                }
            }
            // *
            // *     Choose between QL and QR iteration
            // *
            if (Math.Abs(D[LEND + o_d]) < Math.Abs(D[L + o_d]))
            {
                LEND = LSV;
                L    = LENDSV;
            }
            // *
            if (LEND > L)
            {
                // *
                // *        QL Iteration
                // *
                // *        Look for small subdiagonal element.
                // *
                LABEL40 :;
                if (L != LEND)
                {
                    LENDM1 = LEND - 1;
                    for (M = L; M <= LENDM1; M++)
                    {
                        TST = Math.Pow(Math.Abs(E[M + o_e]), 2);
                        if (TST <= (EPS2 * Math.Abs(D[M + o_d])) * Math.Abs(D[M + 1 + o_d]) + SAFMIN)
                        {
                            goto LABEL60;
                        }
                    }
                }
                // *
                M = LEND;
                // *
                LABEL60 :;
                if (M < LEND)
                {
                    E[M + o_e] = ZERO;
                }
                P = D[L + o_d];
                if (M == L)
                {
                    goto LABEL80;
                }
                // *
                // *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
                // *        to compute its eigensystem.
                // *
                if (M == L + 1)
                {
                    if (ICOMPZ > 0)
                    {
                        this._dlaev2.Run(D[L + o_d], E[L + o_e], D[L + 1 + o_d], ref RT1, ref RT2, ref C
                                         , ref S);
                        WORK[L + o_work]         = C;
                        WORK[N - 1 + L + o_work] = S;
                        this._dlasr.Run("R", "V", "B", N, 2, WORK, L + o_work
                                        , WORK, N - 1 + L + o_work, ref Z, 1 + L * LDZ + o_z, LDZ);
                    }
                    else
                    {
                        this._dlae2.Run(D[L + o_d], E[L + o_e], D[L + 1 + o_d], ref RT1, ref RT2);
                    }
                    D[L + o_d]     = RT1;
                    D[L + 1 + o_d] = RT2;
                    E[L + o_e]     = ZERO;
                    L += 2;
                    if (L <= LEND)
                    {
                        goto LABEL40;
                    }
                    goto LABEL140;
                }
                // *
                if (JTOT == NMAXIT)
                {
                    goto LABEL140;
                }
                JTOT += 1;
                // *
                // *        Form shift.
                // *
                G = (D[L + 1 + o_d] - P) / (TWO * E[L + o_e]);
                R = this._dlapy2.Run(G, ONE);
                G = D[M + o_d] - P + (E[L + o_e] / (G + FortranLib.Sign(R, G)));
                // *
                S = ONE;
                C = ONE;
                P = ZERO;
                // *
                // *        Inner loop
                // *
                MM1 = M - 1;
                for (I = MM1; I >= L; I += -1)
                {
                    F = S * E[I + o_e];
                    B = C * E[I + o_e];
                    this._dlartg.Run(G, F, ref C, ref S, ref R);
                    if (I != M - 1)
                    {
                        E[I + 1 + o_e] = R;
                    }
                    G = D[I + 1 + o_d] - P;
                    R = (D[I + o_d] - G) * S + TWO * C * B;
                    P = S * R;
                    D[I + 1 + o_d] = G + P;
                    G = C * R - B;
                    // *
                    // *           If eigenvectors are desired, then save rotations.
                    // *
                    if (ICOMPZ > 0)
                    {
                        WORK[I + o_work]         = C;
                        WORK[N - 1 + I + o_work] = -S;
                    }
                    // *
                }
                // *
                // *        If eigenvectors are desired, then apply saved rotations.
                // *
                if (ICOMPZ > 0)
                {
                    MM = M - L + 1;
                    this._dlasr.Run("R", "V", "B", N, MM, WORK, L + o_work
                                    , WORK, N - 1 + L + o_work, ref Z, 1 + L * LDZ + o_z, LDZ);
                }
                // *
                D[L + o_d] -= P;
                E[L + o_e]  = G;
                goto LABEL40;
                // *
                // *        Eigenvalue found.
                // *
                LABEL80 :;
                D[L + o_d] = P;
                // *
                L += 1;
                if (L <= LEND)
                {
                    goto LABEL40;
                }
                goto LABEL140;
                // *
            }
            else
            {
                // *
                // *        QR Iteration
                // *
                // *        Look for small superdiagonal element.
                // *
                LABEL90 :;
                if (L != LEND)
                {
                    LENDP1 = LEND + 1;
                    for (M = L; M >= LENDP1; M += -1)
                    {
                        TST = Math.Pow(Math.Abs(E[M - 1 + o_e]), 2);
                        if (TST <= (EPS2 * Math.Abs(D[M + o_d])) * Math.Abs(D[M - 1 + o_d]) + SAFMIN)
                        {
                            goto LABEL110;
                        }
                    }
                }
                // *
                M = LEND;
                // *
                LABEL110 :;
                if (M > LEND)
                {
                    E[M - 1 + o_e] = ZERO;
                }
                P = D[L + o_d];
                if (M == L)
                {
                    goto LABEL130;
                }
                // *
                // *        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
                // *        to compute its eigensystem.
                // *
                if (M == L - 1)
                {
                    if (ICOMPZ > 0)
                    {
                        this._dlaev2.Run(D[L - 1 + o_d], E[L - 1 + o_e], D[L + o_d], ref RT1, ref RT2, ref C
                                         , ref S);
                        WORK[M + o_work]         = C;
                        WORK[N - 1 + M + o_work] = S;
                        this._dlasr.Run("R", "V", "F", N, 2, WORK, M + o_work
                                        , WORK, N - 1 + M + o_work, ref Z, 1 + (L - 1) * LDZ + o_z, LDZ);
                    }
                    else
                    {
                        this._dlae2.Run(D[L - 1 + o_d], E[L - 1 + o_e], D[L + o_d], ref RT1, ref RT2);
                    }
                    D[L - 1 + o_d] = RT1;
                    D[L + o_d]     = RT2;
                    E[L - 1 + o_e] = ZERO;
                    L -= 2;
                    if (L >= LEND)
                    {
                        goto LABEL90;
                    }
                    goto LABEL140;
                }
                // *
                if (JTOT == NMAXIT)
                {
                    goto LABEL140;
                }
                JTOT += 1;
                // *
                // *        Form shift.
                // *
                G = (D[L - 1 + o_d] - P) / (TWO * E[L - 1 + o_e]);
                R = this._dlapy2.Run(G, ONE);
                G = D[M + o_d] - P + (E[L - 1 + o_e] / (G + FortranLib.Sign(R, G)));
                // *
                S = ONE;
                C = ONE;
                P = ZERO;
                // *
                // *        Inner loop
                // *
                LM1 = L - 1;
                for (I = M; I <= LM1; I++)
                {
                    F = S * E[I + o_e];
                    B = C * E[I + o_e];
                    this._dlartg.Run(G, F, ref C, ref S, ref R);
                    if (I != M)
                    {
                        E[I - 1 + o_e] = R;
                    }
                    G          = D[I + o_d] - P;
                    R          = (D[I + 1 + o_d] - G) * S + TWO * C * B;
                    P          = S * R;
                    D[I + o_d] = G + P;
                    G          = C * R - B;
                    // *
                    // *           If eigenvectors are desired, then save rotations.
                    // *
                    if (ICOMPZ > 0)
                    {
                        WORK[I + o_work]         = C;
                        WORK[N - 1 + I + o_work] = S;
                    }
                    // *
                }
                // *
                // *        If eigenvectors are desired, then apply saved rotations.
                // *
                if (ICOMPZ > 0)
                {
                    MM = L - M + 1;
                    this._dlasr.Run("R", "V", "F", N, MM, WORK, M + o_work
                                    , WORK, N - 1 + M + o_work, ref Z, 1 + M * LDZ + o_z, LDZ);
                }
                // *
                D[L + o_d]  -= P;
                E[LM1 + o_e] = G;
                goto LABEL90;
                // *
                // *        Eigenvalue found.
                // *
                LABEL130 :;
                D[L + o_d] = P;
                // *
                L -= 1;
                if (L >= LEND)
                {
                    goto LABEL90;
                }
                goto LABEL140;
                // *
            }
            // *
            // *     Undo scaling if necessary
            // *
            LABEL140 :;
            if (ISCALE == 1)
            {
                this._dlascl.Run("G", 0, 0, SSFMAX, ANORM, LENDSV - LSV + 1
                                 , 1, ref D, LSV + o_d, N, ref INFO);
                this._dlascl.Run("G", 0, 0, SSFMAX, ANORM, LENDSV - LSV
                                 , 1, ref E, LSV + o_e, N, ref INFO);
            }
            else
            {
                if (ISCALE == 2)
                {
                    this._dlascl.Run("G", 0, 0, SSFMIN, ANORM, LENDSV - LSV + 1
                                     , 1, ref D, LSV + o_d, N, ref INFO);
                    this._dlascl.Run("G", 0, 0, SSFMIN, ANORM, LENDSV - LSV
                                     , 1, ref E, LSV + o_e, N, ref INFO);
                }
            }
            // *
            // *     Check for no convergence to an eigenvalue after a total
            // *     of N*MAXIT iterations.
            // *
            if (JTOT < NMAXIT)
            {
                goto LABEL10;
            }
            for (I = 1; I <= N - 1; I++)
            {
                if (E[I + o_e] != ZERO)
                {
                    INFO += 1;
                }
            }
            goto LABEL190;
            // *
            // *     Order eigenvalues and eigenvectors.
            // *
            LABEL160 :;
            if (ICOMPZ == 0)
            {
                // *
                // *        Use Quick Sort
                // *
                this._dlasrt.Run("I", N, ref D, offset_d, ref INFO);
                // *
            }
            else
            {
                // *
                // *        Use Selection Sort to minimize swaps of eigenvectors
                // *
                for (II = 2; II <= N; II++)
                {
                    I = II - 1;
                    K = I;
                    P = D[I + o_d];
                    for (J = II; J <= N; J++)
                    {
                        if (D[J + o_d] < P)
                        {
                            K = J;
                            P = D[J + o_d];
                        }
                    }
                    if (K != I)
                    {
                        D[K + o_d] = D[I + o_d];
                        D[I + o_d] = P;
                        this._dswap.Run(N, ref Z, 1 + I * LDZ + o_z, 1, ref Z, 1 + K * LDZ + o_z, 1);
                    }
                }
            }
            // *
            LABEL190 :;
            return;

            // *
            // *     End of DSTEQR
            // *

            #endregion
        }
예제 #12
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
        /// using the Pal-Walker-Kahan variant of the QL or QR algorithm.
        ///
        ///</summary>
        /// <param name="N">
        /// (input) INTEGER
        /// The order of the matrix.  N .GE. 0.
        ///</param>
        /// <param name="D">
        /// (input/output) DOUBLE PRECISION array, dimension (N)
        /// On entry, the n diagonal elements of the tridiagonal matrix.
        /// On exit, if INFO = 0, the eigenvalues in ascending order.
        ///</param>
        /// <param name="E">
        /// (input/output) DOUBLE PRECISION array, dimension (N-1)
        /// On entry, the (n-1) subdiagonal elements of the tridiagonal
        /// matrix.
        /// On exit, E has been destroyed.
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value
        /// .GT. 0:  the algorithm failed to find all of the eigenvalues in
        /// a total of 30*N iterations; if INFO = i, then i
        /// elements of E have not converged to zero.
        ///</param>
        public void Run(int N, ref double[] D, int offset_d, ref double[] E, int offset_e, ref int INFO)
        {
            #region Variables

            int    I = 0; int ISCALE = 0; int JTOT = 0; int L = 0; int L1 = 0; int LEND = 0; int LENDSV = 0; int LSV = 0; int M = 0;
            int    NMAXIT = 0; double ALPHA = 0; double ANORM = 0; double BB = 0; double C = 0; double EPS = 0; double EPS2 = 0;
            double GAMMA = 0; double OLDC = 0; double OLDGAM = 0; double P = 0; double R = 0; double RT1 = 0; double RT2 = 0;
            double RTE = 0; double S = 0; double SAFMAX = 0; double SAFMIN = 0; double SIGMA = 0; double SSFMAX = 0;
            double SSFMIN = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_e = -1 + offset_e;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DSTERF computes all eigenvalues of a symmetric tridiagonal matrix
            // *  using the Pal-Walker-Kahan variant of the QL or QR algorithm.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  N       (input) INTEGER
            // *          The order of the matrix.  N >= 0.
            // *
            // *  D       (input/output) DOUBLE PRECISION array, dimension (N)
            // *          On entry, the n diagonal elements of the tridiagonal matrix.
            // *          On exit, if INFO = 0, the eigenvalues in ascending order.
            // *
            // *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
            // *          On entry, the (n-1) subdiagonal elements of the tridiagonal
            // *          matrix.
            // *          On exit, E has been destroyed.
            // *
            // *  INFO    (output) INTEGER
            // *          = 0:  successful exit
            // *          < 0:  if INFO = -i, the i-th argument had an illegal value
            // *          > 0:  the algorithm failed to find all of the eigenvalues in
            // *                a total of 30*N iterations; if INFO = i, then i
            // *                elements of E have not converged to zero.
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            // *     Quick return if possible
            // *
            if (N < 0)
            {
                INFO = -1;
                this._xerbla.Run("DSTERF", -INFO);
                return;
            }
            if (N <= 1)
            {
                return;
            }
            // *
            // *     Determine the unit roundoff for this environment.
            // *
            EPS    = this._dlamch.Run("E");
            EPS2   = Math.Pow(EPS, 2);
            SAFMIN = this._dlamch.Run("S");
            SAFMAX = ONE / SAFMIN;
            SSFMAX = Math.Sqrt(SAFMAX) / THREE;
            SSFMIN = Math.Sqrt(SAFMIN) / EPS2;
            // *
            // *     Compute the eigenvalues of the tridiagonal matrix.
            // *
            NMAXIT = N * MAXIT;
            SIGMA  = ZERO;
            JTOT   = 0;
            // *
            // *     Determine where the matrix splits and choose QL or QR iteration
            // *     for each block, according to whether top or bottom diagonal
            // *     element is smaller.
            // *
            L1 = 1;
            // *
            LABEL10 :;
            if (L1 > N)
            {
                goto LABEL170;
            }
            if (L1 > 1)
            {
                E[L1 - 1 + o_e] = ZERO;
            }
            for (M = L1; M <= N - 1; M++)
            {
                if (Math.Abs(E[M + o_e]) <= (Math.Sqrt(Math.Abs(D[M + o_d])) * Math.Sqrt(Math.Abs(D[M + 1 + o_d]))) * EPS)
                {
                    E[M + o_e] = ZERO;
                    goto LABEL30;
                }
            }
            M = N;
            // *
            LABEL30 :;
            L      = L1;
            LSV    = L;
            LEND   = M;
            LENDSV = LEND;
            L1     = M + 1;
            if (LEND == L)
            {
                goto LABEL10;
            }
            // *
            // *     Scale submatrix in rows and columns L to LEND
            // *
            ANORM  = this._dlanst.Run("I", LEND - L + 1, D, L + o_d, E, L + o_e);
            ISCALE = 0;
            if (ANORM > SSFMAX)
            {
                ISCALE = 1;
                this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L + 1
                                 , 1, ref D, L + o_d, N, ref INFO);
                this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L
                                 , 1, ref E, L + o_e, N, ref INFO);
            }
            else
            {
                if (ANORM < SSFMIN)
                {
                    ISCALE = 2;
                    this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L + 1
                                     , 1, ref D, L + o_d, N, ref INFO);
                    this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L
                                     , 1, ref E, L + o_e, N, ref INFO);
                }
            }
            // *
            for (I = L; I <= LEND - 1; I++)
            {
                E[I + o_e] = Math.Pow(E[I + o_e], 2);
            }
            // *
            // *     Choose between QL and QR iteration
            // *
            if (Math.Abs(D[LEND + o_d]) < Math.Abs(D[L + o_d]))
            {
                LEND = LSV;
                L    = LENDSV;
            }
            // *
            if (LEND >= L)
            {
                // *
                // *        QL Iteration
                // *
                // *        Look for small subdiagonal element.
                // *
                LABEL50 :;
                if (L != LEND)
                {
                    for (M = L; M <= LEND - 1; M++)
                    {
                        if (Math.Abs(E[M + o_e]) <= EPS2 * Math.Abs(D[M + o_d] * D[M + 1 + o_d]))
                        {
                            goto LABEL70;
                        }
                    }
                }
                M = LEND;
                // *
                LABEL70 :;
                if (M < LEND)
                {
                    E[M + o_e] = ZERO;
                }
                P = D[L + o_d];
                if (M == L)
                {
                    goto LABEL90;
                }
                // *
                // *        If remaining matrix is 2 by 2, use DLAE2 to compute its
                // *        eigenvalues.
                // *
                if (M == L + 1)
                {
                    RTE = Math.Sqrt(E[L + o_e]);
                    this._dlae2.Run(D[L + o_d], RTE, D[L + 1 + o_d], ref RT1, ref RT2);
                    D[L + o_d]     = RT1;
                    D[L + 1 + o_d] = RT2;
                    E[L + o_e]     = ZERO;
                    L += 2;
                    if (L <= LEND)
                    {
                        goto LABEL50;
                    }
                    goto LABEL150;
                }
                // *
                if (JTOT == NMAXIT)
                {
                    goto LABEL150;
                }
                JTOT += 1;
                // *
                // *        Form shift.
                // *
                RTE   = Math.Sqrt(E[L + o_e]);
                SIGMA = (D[L + 1 + o_d] - P) / (TWO * RTE);
                R     = this._dlapy2.Run(SIGMA, ONE);
                SIGMA = P - (RTE / (SIGMA + FortranLib.Sign(R, SIGMA)));
                // *
                C     = ONE;
                S     = ZERO;
                GAMMA = D[M + o_d] - SIGMA;
                P     = GAMMA * GAMMA;
                // *
                // *        Inner loop
                // *
                for (I = M - 1; I >= L; I += -1)
                {
                    BB = E[I + o_e];
                    R  = P + BB;
                    if (I != M - 1)
                    {
                        E[I + 1 + o_e] = S * R;
                    }
                    OLDC           = C;
                    C              = P / R;
                    S              = BB / R;
                    OLDGAM         = GAMMA;
                    ALPHA          = D[I + o_d];
                    GAMMA          = C * (ALPHA - SIGMA) - S * OLDGAM;
                    D[I + 1 + o_d] = OLDGAM + (ALPHA - GAMMA);
                    if (C != ZERO)
                    {
                        P = (GAMMA * GAMMA) / C;
                    }
                    else
                    {
                        P = OLDC * BB;
                    }
                }
                // *
                E[L + o_e] = S * P;
                D[L + o_d] = SIGMA + GAMMA;
                goto LABEL50;
                // *
                // *        Eigenvalue found.
                // *
                LABEL90 :;
                D[L + o_d] = P;
                // *
                L += 1;
                if (L <= LEND)
                {
                    goto LABEL50;
                }
                goto LABEL150;
                // *
            }
            else
            {
                // *
                // *        QR Iteration
                // *
                // *        Look for small superdiagonal element.
                // *
                LABEL100 :;
                for (M = L; M >= LEND + 1; M += -1)
                {
                    if (Math.Abs(E[M - 1 + o_e]) <= EPS2 * Math.Abs(D[M + o_d] * D[M - 1 + o_d]))
                    {
                        goto LABEL120;
                    }
                }
                M = LEND;
                // *
                LABEL120 :;
                if (M > LEND)
                {
                    E[M - 1 + o_e] = ZERO;
                }
                P = D[L + o_d];
                if (M == L)
                {
                    goto LABEL140;
                }
                // *
                // *        If remaining matrix is 2 by 2, use DLAE2 to compute its
                // *        eigenvalues.
                // *
                if (M == L - 1)
                {
                    RTE = Math.Sqrt(E[L - 1 + o_e]);
                    this._dlae2.Run(D[L + o_d], RTE, D[L - 1 + o_d], ref RT1, ref RT2);
                    D[L + o_d]     = RT1;
                    D[L - 1 + o_d] = RT2;
                    E[L - 1 + o_e] = ZERO;
                    L -= 2;
                    if (L >= LEND)
                    {
                        goto LABEL100;
                    }
                    goto LABEL150;
                }
                // *
                if (JTOT == NMAXIT)
                {
                    goto LABEL150;
                }
                JTOT += 1;
                // *
                // *        Form shift.
                // *
                RTE   = Math.Sqrt(E[L - 1 + o_e]);
                SIGMA = (D[L - 1 + o_d] - P) / (TWO * RTE);
                R     = this._dlapy2.Run(SIGMA, ONE);
                SIGMA = P - (RTE / (SIGMA + FortranLib.Sign(R, SIGMA)));
                // *
                C     = ONE;
                S     = ZERO;
                GAMMA = D[M + o_d] - SIGMA;
                P     = GAMMA * GAMMA;
                // *
                // *        Inner loop
                // *
                for (I = M; I <= L - 1; I++)
                {
                    BB = E[I + o_e];
                    R  = P + BB;
                    if (I != M)
                    {
                        E[I - 1 + o_e] = S * R;
                    }
                    OLDC       = C;
                    C          = P / R;
                    S          = BB / R;
                    OLDGAM     = GAMMA;
                    ALPHA      = D[I + 1 + o_d];
                    GAMMA      = C * (ALPHA - SIGMA) - S * OLDGAM;
                    D[I + o_d] = OLDGAM + (ALPHA - GAMMA);
                    if (C != ZERO)
                    {
                        P = (GAMMA * GAMMA) / C;
                    }
                    else
                    {
                        P = OLDC * BB;
                    }
                }
                // *
                E[L - 1 + o_e] = S * P;
                D[L + o_d]     = SIGMA + GAMMA;
                goto LABEL100;
                // *
                // *        Eigenvalue found.
                // *
                LABEL140 :;
                D[L + o_d] = P;
                // *
                L -= 1;
                if (L >= LEND)
                {
                    goto LABEL100;
                }
                goto LABEL150;
                // *
            }
            // *
            // *     Undo scaling if necessary
            // *
            LABEL150 :;
            if (ISCALE == 1)
            {
                this._dlascl.Run("G", 0, 0, SSFMAX, ANORM, LENDSV - LSV + 1
                                 , 1, ref D, LSV + o_d, N, ref INFO);
            }
            if (ISCALE == 2)
            {
                this._dlascl.Run("G", 0, 0, SSFMIN, ANORM, LENDSV - LSV + 1
                                 , 1, ref D, LSV + o_d, N, ref INFO);
            }
            // *
            // *     Check for no convergence to an eigenvalue after a total
            // *     of N*MAXIT iterations.
            // *
            if (JTOT < NMAXIT)
            {
                goto LABEL10;
            }
            for (I = 1; I <= N - 1; I++)
            {
                if (E[I + o_e] != ZERO)
                {
                    INFO += 1;
                }
            }
            goto LABEL180;
            // *
            // *     Sort eigenvalues in increasing order.
            // *
            LABEL170 :;
            this._dlasrt.Run("I", N, ref D, offset_d, ref INFO);
            // *
            LABEL180 :;
            return;

            // *
            // *     End of DSTERF
            // *

            #endregion
        }
예제 #13
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLAED9 finds the roots of the secular equation, as defined by the
        /// values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
        /// appropriate calls to DLAED4 and then stores the new matrix of
        /// eigenvectors for use in calculating the next level of Z vectors.
        ///
        ///</summary>
        /// <param name="K">
        /// (input) INTEGER
        /// The number of terms in the rational function to be solved by
        /// DLAED4.  K .GE. 0.
        ///</param>
        /// <param name="KSTART">
        /// (input) INTEGER
        ///</param>
        /// <param name="KSTOP">
        /// (input) INTEGER
        /// The updated eigenvalues Lambda(I), KSTART .LE. I .LE. KSTOP
        /// are to be computed.  1 .LE. KSTART .LE. KSTOP .LE. K.
        ///</param>
        /// <param name="N">
        /// (input) INTEGER
        /// The number of rows and columns in the Q matrix.
        /// N .GE. K (delation may result in N .GT. K).
        ///</param>
        /// <param name="D">
        /// (output) DOUBLE PRECISION array, dimension (N)
        /// D(I) contains the updated eigenvalues
        /// for KSTART .LE. I .LE. KSTOP.
        ///</param>
        /// <param name="Q">
        /// (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
        ///</param>
        /// <param name="LDQ">
        /// (input) INTEGER
        /// The leading dimension of the array Q.  LDQ .GE. max( 1, N ).
        ///</param>
        /// <param name="RHO">
        /// (input) DOUBLE PRECISION
        /// The value of the parameter in the rank one update equation.
        /// RHO .GE. 0 required.
        ///</param>
        /// <param name="DLAMDA">
        /// (input) DOUBLE PRECISION array, dimension (K)
        /// The first K elements of this array contain the old roots
        /// of the deflated updating problem.  These are the poles
        /// of the secular equation.
        ///</param>
        /// <param name="W">
        /// (input) DOUBLE PRECISION array, dimension (K)
        /// The first K elements of this array contain the components
        /// of the deflation-adjusted updating vector.
        ///</param>
        /// <param name="S">
        /// (output) DOUBLE PRECISION array, dimension (LDS, K)
        /// Will contain the eigenvectors of the repaired matrix which
        /// will be stored for subsequent Z vector calculation and
        /// multiplied by the previously accumulated eigenvectors
        /// to update the system.
        ///</param>
        /// <param name="LDS">
        /// (input) INTEGER
        /// The leading dimension of S.  LDS .GE. max( 1, K ).
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit.
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value.
        /// .GT. 0:  if INFO = 1, an eigenvalue did not converge
        ///</param>
        public void Run(int K, int KSTART, int KSTOP, int N, ref double[] D, int offset_d, ref double[] Q, int offset_q
                        , int LDQ, double RHO, ref double[] DLAMDA, int offset_dlamda, ref double[] W, int offset_w, ref double[] S, int offset_s, int LDS
                        , ref int INFO)
        {
            #region Variables

            int I = 0; int J = 0; double TEMP = 0;

            #endregion


            #region Implicit Variables

            int S_I = 0; int Q_I = 0; int Q_J = 0; int S_J = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_q = -1 - LDQ + offset_q;  int o_dlamda = -1 + offset_dlamda;
            int o_w = -1 + offset_w; int o_s = -1 - LDS + offset_s;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLAED9 finds the roots of the secular equation, as defined by the
            // *  values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
            // *  appropriate calls to DLAED4 and then stores the new matrix of
            // *  eigenvectors for use in calculating the next level of Z vectors.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  K       (input) INTEGER
            // *          The number of terms in the rational function to be solved by
            // *          DLAED4.  K >= 0.
            // *
            // *  KSTART  (input) INTEGER
            // *  KSTOP   (input) INTEGER
            // *          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
            // *          are to be computed.  1 <= KSTART <= KSTOP <= K.
            // *
            // *  N       (input) INTEGER
            // *          The number of rows and columns in the Q matrix.
            // *          N >= K (delation may result in N > K).
            // *
            // *  D       (output) DOUBLE PRECISION array, dimension (N)
            // *          D(I) contains the updated eigenvalues
            // *          for KSTART <= I <= KSTOP.
            // *
            // *  Q       (workspace) DOUBLE PRECISION array, dimension (LDQ,N)
            // *
            // *  LDQ     (input) INTEGER
            // *          The leading dimension of the array Q.  LDQ >= max( 1, N ).
            // *
            // *  RHO     (input) DOUBLE PRECISION
            // *          The value of the parameter in the rank one update equation.
            // *          RHO >= 0 required.
            // *
            // *  DLAMDA  (input) DOUBLE PRECISION array, dimension (K)
            // *          The first K elements of this array contain the old roots
            // *          of the deflated updating problem.  These are the poles
            // *          of the secular equation.
            // *
            // *  W       (input) DOUBLE PRECISION array, dimension (K)
            // *          The first K elements of this array contain the components
            // *          of the deflation-adjusted updating vector.
            // *
            // *  S       (output) DOUBLE PRECISION array, dimension (LDS, K)
            // *          Will contain the eigenvectors of the repaired matrix which
            // *          will be stored for subsequent Z vector calculation and
            // *          multiplied by the previously accumulated eigenvectors
            // *          to update the system.
            // *
            // *  LDS     (input) INTEGER
            // *          The leading dimension of S.  LDS >= max( 1, K ).
            // *
            // *  INFO    (output) INTEGER
            // *          = 0:  successful exit.
            // *          < 0:  if INFO = -i, the i-th argument had an illegal value.
            // *          > 0:  if INFO = 1, an eigenvalue did not converge
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Based on contributions by
            // *     Jeff Rutter, Computer Science Division, University of California
            // *     at Berkeley, USA
            // *
            // *  =====================================================================
            // *
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          MAX, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            if (K < 0)
            {
                INFO = -1;
            }
            else
            {
                if (KSTART < 1 || KSTART > Math.Max(1, K))
                {
                    INFO = -2;
                }
                else
                {
                    if (Math.Max(1, KSTOP) < KSTART || KSTOP > Math.Max(1, K))
                    {
                        INFO = -3;
                    }
                    else
                    {
                        if (N < K)
                        {
                            INFO = -4;
                        }
                        else
                        {
                            if (LDQ < Math.Max(1, K))
                            {
                                INFO = -7;
                            }
                            else
                            {
                                if (LDS < Math.Max(1, K))
                                {
                                    INFO = -12;
                                }
                            }
                        }
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DLAED9", -INFO);
                return;
            }
            // *
            // *     Quick return if possible
            // *
            if (K == 0)
            {
                return;
            }
            // *
            // *     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
            // *     be computed with high relative accuracy (barring over/underflow).
            // *     This is a problem on machines without a guard digit in
            // *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
            // *     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
            // *     which on any of these machines zeros out the bottommost
            // *     bit of DLAMDA(I) if it is 1; this makes the subsequent
            // *     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
            // *     occurs. On binary machines with a guard digit (almost all
            // *     machines) it does not change DLAMDA(I) at all. On hexadecimal
            // *     and decimal machines with a guard digit, it slightly
            // *     changes the bottommost bits of DLAMDA(I). It does not account
            // *     for hexadecimal or decimal machines without guard digits
            // *     (we know of none). We use a subroutine call to compute
            // *     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
            // *     this code.
            // *
            for (I = 1; I <= N; I++)
            {
                DLAMDA[I + o_dlamda] = this._dlamc3.Run(DLAMDA[I + o_dlamda], DLAMDA[I + o_dlamda]) - DLAMDA[I + o_dlamda];
            }
            // *
            for (J = KSTART; J <= KSTOP; J++)
            {
                this._dlaed4.Run(K, J, DLAMDA, offset_dlamda, W, offset_w, ref Q, 1 + J * LDQ + o_q, RHO
                                 , ref D[J + o_d], ref INFO);
                // *
                // *        If the zero finder fails, the computation is terminated.
                // *
                if (INFO != 0)
                {
                    goto LABEL120;
                }
            }
            // *
            if (K == 1 || K == 2)
            {
                for (I = 1; I <= K; I++)
                {
                    S_I = I * LDS + o_s;
                    Q_I = I * LDQ + o_q;
                    for (J = 1; J <= K; J++)
                    {
                        S[J + S_I] = Q[J + Q_I];
                    }
                }
                goto LABEL120;
            }
            // *
            // *     Compute updated W.
            // *
            this._dcopy.Run(K, W, offset_w, 1, ref S, offset_s, 1);
            // *
            // *     Initialize W(I) = Q(I,I)
            // *
            this._dcopy.Run(K, Q, offset_q, LDQ + 1, ref W, offset_w, 1);
            for (J = 1; J <= K; J++)
            {
                Q_J = J * LDQ + o_q;
                for (I = 1; I <= J - 1; I++)
                {
                    W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda]));
                }
                Q_J = J * LDQ + o_q;
                for (I = J + 1; I <= K; I++)
                {
                    W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda]));
                }
            }
            for (I = 1; I <= K; I++)
            {
                W[I + o_w] = FortranLib.Sign(Math.Sqrt(-W[I + o_w]), S[I + 1 * LDS + o_s]);
            }
            // *
            // *     Compute eigenvectors of the modified rank-1 modification.
            // *
            for (J = 1; J <= K; J++)
            {
                Q_J = J * LDQ + o_q;
                for (I = 1; I <= K; I++)
                {
                    Q[I + Q_J] = W[I + o_w] / Q[I + Q_J];
                }
                TEMP = this._dnrm2.Run(K, Q, 1 + J * LDQ + o_q, 1);
                S_J  = J * LDS + o_s;
                Q_J  = J * LDQ + o_q;
                for (I = 1; I <= K; I++)
                {
                    S[I + S_J] = Q[I + Q_J] / TEMP;
                }
            }
            // *
            LABEL120 :;
            return;

            // *
            // *     End of DLAED9
            // *

            #endregion
        }
예제 #14
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
        /// matrix in standard form:
        ///
        /// [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
        /// [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
        ///
        /// where either
        /// 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
        /// 2) AA = DD and BB*CC .LT. 0, so that AA + or - sqrt(BB*CC) are complex
        /// conjugate eigenvalues.
        ///
        ///</summary>
        /// <param name="A">
        /// (input/output) DOUBLE PRECISION
        ///</param>
        /// <param name="B">
        /// (input/output) DOUBLE PRECISION
        ///</param>
        /// <param name="C">
        /// (input/output) DOUBLE PRECISION
        ///</param>
        /// <param name="D">
        /// (input/output) DOUBLE PRECISION
        /// On entry, the elements of the input matrix.
        /// On exit, they are overwritten by the elements of the
        /// standardised Schur form.
        ///</param>
        /// <param name="RT1R">
        /// (output) DOUBLE PRECISION
        ///</param>
        /// <param name="RT1I">
        /// (output) DOUBLE PRECISION
        ///</param>
        /// <param name="RT2R">
        /// (output) DOUBLE PRECISION
        ///</param>
        /// <param name="RT2I">
        /// (output) DOUBLE PRECISION
        /// The real and imaginary parts of the eigenvalues. If the
        /// eigenvalues are a complex conjugate pair, RT1I .GT. 0.
        ///</param>
        /// <param name="CS">
        /// (output) DOUBLE PRECISION
        ///</param>
        /// <param name="SN">
        /// (output) DOUBLE PRECISION
        /// Parameters of the rotation matrix.
        ///</param>
        public void Run(ref double A, ref double B, ref double C, ref double D, ref double RT1R, ref double RT1I
                        , ref double RT2R, ref double RT2I, ref double CS, ref double SN)
        {
            #region Variables

            double AA = 0; double BB = 0; double BCMAX = 0; double BCMIS = 0; double CC = 0; double CS1 = 0; double DD = 0;
            double EPS = 0; double P = 0; double SAB = 0; double SAC = 0; double SCALE = 0; double SIGMA = 0; double SN1 = 0;
            double TAU = 0; double TEMP = 0; double Z = 0;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK driver routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
            // *  matrix in standard form:
            // *
            // *       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
            // *       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
            // *
            // *  where either
            // *  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
            // *  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
            // *  conjugate eigenvalues.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  A       (input/output) DOUBLE PRECISION
            // *  B       (input/output) DOUBLE PRECISION
            // *  C       (input/output) DOUBLE PRECISION
            // *  D       (input/output) DOUBLE PRECISION
            // *          On entry, the elements of the input matrix.
            // *          On exit, they are overwritten by the elements of the
            // *          standardised Schur form.
            // *
            // *  RT1R    (output) DOUBLE PRECISION
            // *  RT1I    (output) DOUBLE PRECISION
            // *  RT2R    (output) DOUBLE PRECISION
            // *  RT2I    (output) DOUBLE PRECISION
            // *          The real and imaginary parts of the eigenvalues. If the
            // *          eigenvalues are a complex conjugate pair, RT1I > 0.
            // *
            // *  CS      (output) DOUBLE PRECISION
            // *  SN      (output) DOUBLE PRECISION
            // *          Parameters of the rotation matrix.
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Modified by V. Sima, Research Institute for Informatics, Bucharest,
            // *  Romania, to reduce the risk of cancellation errors,
            // *  when computing real eigenvalues, and to ensure, if possible, that
            // *  abs(RT1R) >= abs(RT2R).
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, MAX, MIN, SIGN, SQRT;
            // *     ..
            // *     .. Executable Statements ..
            // *

            #endregion


            #region Body

            EPS = this._dlamch.Run("P");
            if (C == ZERO)
            {
                CS = ONE;
                SN = ZERO;
                goto LABEL10;
                // *
            }
            else
            {
                if (B == ZERO)
                {
                    // *
                    // *        Swap rows and columns
                    // *
                    CS   = ZERO;
                    SN   = ONE;
                    TEMP = D;
                    D    = A;
                    A    = TEMP;
                    B    = -C;
                    C    = ZERO;
                    goto LABEL10;
                }
                else
                {
                    if ((A - D) == ZERO && FortranLib.Sign(ONE, B) != FortranLib.Sign(ONE, C))
                    {
                        CS = ONE;
                        SN = ZERO;
                        goto LABEL10;
                    }
                    else
                    {
                        // *
                        TEMP  = A - D;
                        P     = HALF * TEMP;
                        BCMAX = Math.Max(Math.Abs(B), Math.Abs(C));
                        BCMIS = Math.Min(Math.Abs(B), Math.Abs(C)) * FortranLib.Sign(ONE, B) * FortranLib.Sign(ONE, C);
                        SCALE = Math.Max(Math.Abs(P), BCMAX);
                        Z     = (P / SCALE) * P + (BCMAX / SCALE) * BCMIS;
                        // *
                        // *        If Z is of the order of the machine accuracy, postpone the
                        // *        decision on the nature of eigenvalues
                        // *
                        if (Z >= MULTPL * EPS)
                        {
                            // *
                            // *           Real eigenvalues. Compute A and D.
                            // *
                            Z  = P + FortranLib.Sign(Math.Sqrt(SCALE) * Math.Sqrt(Z), P);
                            A  = D + Z;
                            D += -(BCMAX / Z) * BCMIS;
                            // *
                            // *           Compute B and the rotation matrix
                            // *
                            TAU = this._dlapy2.Run(C, Z);
                            CS  = Z / TAU;
                            SN  = C / TAU;
                            B  -= C;
                            C   = ZERO;
                        }
                        else
                        {
                            // *
                            // *           Complex eigenvalues, or real (almost) equal eigenvalues.
                            // *           Make diagonal elements equal.
                            // *
                            SIGMA = B + C;
                            TAU   = this._dlapy2.Run(SIGMA, TEMP);
                            CS    = Math.Sqrt(HALF * (ONE + Math.Abs(SIGMA) / TAU));
                            SN    = -(P / (TAU * CS)) * FortranLib.Sign(ONE, SIGMA);
                            // *
                            // *           Compute [ AA  BB ] = [ A  B ] [ CS -SN ]
                            // *                   [ CC  DD ]   [ C  D ] [ SN  CS ]
                            // *
                            AA = A * CS + B * SN;
                            BB = -A * SN + B * CS;
                            CC = C * CS + D * SN;
                            DD = -C * SN + D * CS;
                            // *
                            // *           Compute [ A  B ] = [ CS  SN ] [ AA  BB ]
                            // *                   [ C  D ]   [-SN  CS ] [ CC  DD ]
                            // *
                            A = AA * CS + CC * SN;
                            B = BB * CS + DD * SN;
                            C = -AA * SN + CC * CS;
                            D = -BB * SN + DD * CS;
                            // *
                            TEMP = HALF * (A + D);
                            A    = TEMP;
                            D    = TEMP;
                            // *
                            if (C != ZERO)
                            {
                                if (B != ZERO)
                                {
                                    if (FortranLib.Sign(ONE, B) == FortranLib.Sign(ONE, C))
                                    {
                                        // *
                                        // *                    Real eigenvalues: reduce to upper triangular form
                                        // *
                                        SAB  = Math.Sqrt(Math.Abs(B));
                                        SAC  = Math.Sqrt(Math.Abs(C));
                                        P    = FortranLib.Sign(SAB * SAC, C);
                                        TAU  = ONE / Math.Sqrt(Math.Abs(B + C));
                                        A    = TEMP + P;
                                        D    = TEMP - P;
                                        B   -= C;
                                        C    = ZERO;
                                        CS1  = SAB * TAU;
                                        SN1  = SAC * TAU;
                                        TEMP = CS * CS1 - SN * SN1;
                                        SN   = CS * SN1 + SN * CS1;
                                        CS   = TEMP;
                                    }
                                }
                                else
                                {
                                    B    = -C;
                                    C    = ZERO;
                                    TEMP = CS;
                                    CS   = -SN;
                                    SN   = TEMP;
                                }
                            }
                        }
                        // *
                    }
                }
            }
            // *
            LABEL10 :;
            // *
            // *     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
            // *
            RT1R = A;
            RT2R = D;
            if (C == ZERO)
            {
                RT1I = ZERO;
                RT2I = ZERO;
            }
            else
            {
                RT1I = Math.Sqrt(Math.Abs(B)) * Math.Sqrt(Math.Abs(C));
                RT2I = -RT1I;
            }
            return;

            // *
            // *     End of DLANV2
            // *

            #endregion
        }
예제 #15
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DBDSDC computes the singular value decomposition (SVD) of a real
        /// N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
        /// using a divide and conquer method, where S is a diagonal matrix
        /// with non-negative diagonal elements (the singular values of B), and
        /// U and VT are orthogonal matrices of left and right singular vectors,
        /// respectively. DBDSDC can be used to compute all singular values,
        /// and optionally, singular vectors or singular vectors in compact form.
        ///
        /// This code makes very mild assumptions about floating point
        /// arithmetic. It will work on machines with a guard digit in
        /// add/subtract, or on those binary machines without guard digits
        /// which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
        /// It could conceivably fail on hexadecimal or decimal machines
        /// without guard digits, but we know of none.  See DLASD3 for details.
        ///
        /// The code currently calls DLASDQ if singular values only are desired.
        /// However, it can be slightly modified to compute singular values
        /// using the divide and conquer method.
        ///
        ///</summary>
        /// <param name="UPLO">
        /// (input) CHARACTER*1
        /// = 'U':  B is upper bidiagonal.
        /// = 'L':  B is lower bidiagonal.
        ///</param>
        /// <param name="COMPQ">
        /// (input) CHARACTER*1
        /// Specifies whether singular vectors are to be computed
        /// as follows:
        /// = 'N':  Compute singular values only;
        /// = 'P':  Compute singular values and compute singular
        /// vectors in compact form;
        /// = 'I':  Compute singular values and singular vectors.
        ///</param>
        /// <param name="N">
        /// (input) INTEGER
        /// The order of the matrix B.  N .GE. 0.
        ///</param>
        /// <param name="D">
        /// (input/output) DOUBLE PRECISION array, dimension (N)
        /// On entry, the n diagonal elements of the bidiagonal matrix B.
        /// On exit, if INFO=0, the singular values of B.
        ///</param>
        /// <param name="E">
        /// (input/output) DOUBLE PRECISION array, dimension (N-1)
        /// On entry, the elements of E contain the offdiagonal
        /// elements of the bidiagonal matrix whose SVD is desired.
        /// On exit, E has been destroyed.
        ///</param>
        /// <param name="U">
        /// (output) DOUBLE PRECISION array, dimension (LDU,N)
        /// If  COMPQ = 'I', then:
        /// On exit, if INFO = 0, U contains the left singular vectors
        /// of the bidiagonal matrix.
        /// For other values of COMPQ, U is not referenced.
        ///</param>
        /// <param name="LDU">
        /// (input) INTEGER
        /// The leading dimension of the array U.  LDU .GE. 1.
        /// If singular vectors are desired, then LDU .GE. max( 1, N ).
        ///</param>
        /// <param name="VT">
        /// (output) DOUBLE PRECISION array, dimension (LDVT,N)
        /// If  COMPQ = 'I', then:
        /// On exit, if INFO = 0, VT' contains the right singular
        /// vectors of the bidiagonal matrix.
        /// For other values of COMPQ, VT is not referenced.
        ///</param>
        /// <param name="LDVT">
        /// (input) INTEGER
        /// The leading dimension of the array VT.  LDVT .GE. 1.
        /// If singular vectors are desired, then LDVT .GE. max( 1, N ).
        ///</param>
        /// <param name="Q">
        /// (output) DOUBLE PRECISION array, dimension (LDQ)
        /// If  COMPQ = 'P', then:
        /// On exit, if INFO = 0, Q and IQ contain the left
        /// and right singular vectors in a compact form,
        /// requiring O(N log N) space instead of 2*N**2.
        /// In particular, Q contains all the DOUBLE PRECISION data in
        /// LDQ .GE. N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
        /// words of memory, where SMLSIZ is returned by ILAENV and
        /// is equal to the maximum size of the subproblems at the
        /// bottom of the computation tree (usually about 25).
        /// For other values of COMPQ, Q is not referenced.
        ///</param>
        /// <param name="IQ">
        /// (output) INTEGER array, dimension (LDIQ)
        /// If  COMPQ = 'P', then:
        /// On exit, if INFO = 0, Q and IQ contain the left
        /// and right singular vectors in a compact form,
        /// requiring O(N log N) space instead of 2*N**2.
        /// In particular, IQ contains all INTEGER data in
        /// LDIQ .GE. N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
        /// words of memory, where SMLSIZ is returned by ILAENV and
        /// is equal to the maximum size of the subproblems at the
        /// bottom of the computation tree (usually about 25).
        /// For other values of COMPQ, IQ is not referenced.
        ///</param>
        /// <param name="WORK">
        /// (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        /// If COMPQ = 'N' then LWORK .GE. (4 * N).
        /// If COMPQ = 'P' then LWORK .GE. (6 * N).
        /// If COMPQ = 'I' then LWORK .GE. (3 * N**2 + 4 * N).
        ///</param>
        /// <param name="IWORK">
        /// (workspace) INTEGER array, dimension (8*N)
        ///</param>
        /// <param name="INFO">
        /// (output) INTEGER
        /// = 0:  successful exit.
        /// .LT. 0:  if INFO = -i, the i-th argument had an illegal value.
        /// .GT. 0:  The algorithm failed to compute an singular value.
        /// The update process of divide and conquer failed.
        ///</param>
        public void Run(string UPLO, string COMPQ, int N, ref double[] D, int offset_d, ref double[] E, int offset_e, ref double[] U, int offset_u
                        , int LDU, ref double[] VT, int offset_vt, int LDVT, ref double[] Q, int offset_q, ref int[] IQ, int offset_iq, ref double[] WORK, int offset_work
                        , ref int[] IWORK, int offset_iwork, ref int INFO)
        {
            #region Variables

            int    DIFL = 0; int DIFR = 0; int GIVCOL = 0; int GIVNUM = 0; int GIVPTR = 0; int I = 0; int IC = 0; int ICOMPQ = 0;
            int    IERR = 0; int II = 0; int IS = 0; int IU = 0; int IUPLO = 0; int IVT = 0; int J = 0; int K = 0; int KK = 0;
            int    MLVL = 0; int NM1 = 0; int NSIZE = 0; int PERM = 0; int POLES = 0; int QSTART = 0; int SMLSIZ = 0; int SMLSZP = 0;
            int    SQRE = 0; int START = 0; int WSTART = 0; int Z = 0; double CS = 0; double EPS = 0; double ORGNRM = 0; double P = 0;
            double R = 0; double SN = 0;

            #endregion


            #region Array Index Correction

            int o_d = -1 + offset_d;  int o_e = -1 + offset_e;  int o_u = -1 - LDU + offset_u;  int o_vt = -1 - LDVT + offset_vt;
            int o_q = -1 + offset_q; int o_iq = -1 + offset_iq;  int o_work = -1 + offset_work;  int o_iwork = -1 + offset_iwork;

            #endregion


            #region Strings

            UPLO = UPLO.Substring(0, 1);  COMPQ = COMPQ.Substring(0, 1);

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DBDSDC computes the singular value decomposition (SVD) of a real
            // *  N-by-N (upper or lower) bidiagonal matrix B:  B = U * S * VT,
            // *  using a divide and conquer method, where S is a diagonal matrix
            // *  with non-negative diagonal elements (the singular values of B), and
            // *  U and VT are orthogonal matrices of left and right singular vectors,
            // *  respectively. DBDSDC can be used to compute all singular values,
            // *  and optionally, singular vectors or singular vectors in compact form.
            // *
            // *  This code makes very mild assumptions about floating point
            // *  arithmetic. It will work on machines with a guard digit in
            // *  add/subtract, or on those binary machines without guard digits
            // *  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
            // *  It could conceivably fail on hexadecimal or decimal machines
            // *  without guard digits, but we know of none.  See DLASD3 for details.
            // *
            // *  The code currently calls DLASDQ if singular values only are desired.
            // *  However, it can be slightly modified to compute singular values
            // *  using the divide and conquer method.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  UPLO    (input) CHARACTER*1
            // *          = 'U':  B is upper bidiagonal.
            // *          = 'L':  B is lower bidiagonal.
            // *
            // *  COMPQ   (input) CHARACTER*1
            // *          Specifies whether singular vectors are to be computed
            // *          as follows:
            // *          = 'N':  Compute singular values only;
            // *          = 'P':  Compute singular values and compute singular
            // *                  vectors in compact form;
            // *          = 'I':  Compute singular values and singular vectors.
            // *
            // *  N       (input) INTEGER
            // *          The order of the matrix B.  N >= 0.
            // *
            // *  D       (input/output) DOUBLE PRECISION array, dimension (N)
            // *          On entry, the n diagonal elements of the bidiagonal matrix B.
            // *          On exit, if INFO=0, the singular values of B.
            // *
            // *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
            // *          On entry, the elements of E contain the offdiagonal
            // *          elements of the bidiagonal matrix whose SVD is desired.
            // *          On exit, E has been destroyed.
            // *
            // *  U       (output) DOUBLE PRECISION array, dimension (LDU,N)
            // *          If  COMPQ = 'I', then:
            // *             On exit, if INFO = 0, U contains the left singular vectors
            // *             of the bidiagonal matrix.
            // *          For other values of COMPQ, U is not referenced.
            // *
            // *  LDU     (input) INTEGER
            // *          The leading dimension of the array U.  LDU >= 1.
            // *          If singular vectors are desired, then LDU >= max( 1, N ).
            // *
            // *  VT      (output) DOUBLE PRECISION array, dimension (LDVT,N)
            // *          If  COMPQ = 'I', then:
            // *             On exit, if INFO = 0, VT' contains the right singular
            // *             vectors of the bidiagonal matrix.
            // *          For other values of COMPQ, VT is not referenced.
            // *
            // *  LDVT    (input) INTEGER
            // *          The leading dimension of the array VT.  LDVT >= 1.
            // *          If singular vectors are desired, then LDVT >= max( 1, N ).
            // *
            // *  Q       (output) DOUBLE PRECISION array, dimension (LDQ)
            // *          If  COMPQ = 'P', then:
            // *             On exit, if INFO = 0, Q and IQ contain the left
            // *             and right singular vectors in a compact form,
            // *             requiring O(N log N) space instead of 2*N**2.
            // *             In particular, Q contains all the DOUBLE PRECISION data in
            // *             LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1))))
            // *             words of memory, where SMLSIZ is returned by ILAENV and
            // *             is equal to the maximum size of the subproblems at the
            // *             bottom of the computation tree (usually about 25).
            // *          For other values of COMPQ, Q is not referenced.
            // *
            // *  IQ      (output) INTEGER array, dimension (LDIQ)
            // *          If  COMPQ = 'P', then:
            // *             On exit, if INFO = 0, Q and IQ contain the left
            // *             and right singular vectors in a compact form,
            // *             requiring O(N log N) space instead of 2*N**2.
            // *             In particular, IQ contains all INTEGER data in
            // *             LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1))))
            // *             words of memory, where SMLSIZ is returned by ILAENV and
            // *             is equal to the maximum size of the subproblems at the
            // *             bottom of the computation tree (usually about 25).
            // *          For other values of COMPQ, IQ is not referenced.
            // *
            // *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            // *          If COMPQ = 'N' then LWORK >= (4 * N).
            // *          If COMPQ = 'P' then LWORK >= (6 * N).
            // *          If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N).
            // *
            // *  IWORK   (workspace) INTEGER array, dimension (8*N)
            // *
            // *  INFO    (output) INTEGER
            // *          = 0:  successful exit.
            // *          < 0:  if INFO = -i, the i-th argument had an illegal value.
            // *          > 0:  The algorithm failed to compute an singular value.
            // *                The update process of divide and conquer failed.
            // *
            // *  Further Details
            // *  ===============
            // *
            // *  Based on contributions by
            // *     Ming Gu and Huan Ren, Computer Science Division, University of
            // *     California at Berkeley, USA
            // *
            // *  =====================================================================
            // *  Changed dimension statement in comment describing E from (N) to
            // *  (N-1).  Sven, 17 Feb 05.
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, DBLE, INT, LOG, SIGN;
            // *     ..
            // *     .. Executable Statements ..
            // *
            // *     Test the input parameters.
            // *

            #endregion


            #region Body

            INFO = 0;
            // *
            IUPLO = 0;
            if (this._lsame.Run(UPLO, "U"))
            {
                IUPLO = 1;
            }
            if (this._lsame.Run(UPLO, "L"))
            {
                IUPLO = 2;
            }
            if (this._lsame.Run(COMPQ, "N"))
            {
                ICOMPQ = 0;
            }
            else
            {
                if (this._lsame.Run(COMPQ, "P"))
                {
                    ICOMPQ = 1;
                }
                else
                {
                    if (this._lsame.Run(COMPQ, "I"))
                    {
                        ICOMPQ = 2;
                    }
                    else
                    {
                        ICOMPQ = -1;
                    }
                }
            }
            if (IUPLO == 0)
            {
                INFO = -1;
            }
            else
            {
                if (ICOMPQ < 0)
                {
                    INFO = -2;
                }
                else
                {
                    if (N < 0)
                    {
                        INFO = -3;
                    }
                    else
                    {
                        if ((LDU < 1) || ((ICOMPQ == 2) && (LDU < N)))
                        {
                            INFO = -7;
                        }
                        else
                        {
                            if ((LDVT < 1) || ((ICOMPQ == 2) && (LDVT < N)))
                            {
                                INFO = -9;
                            }
                        }
                    }
                }
            }
            if (INFO != 0)
            {
                this._xerbla.Run("DBDSDC", -INFO);
                return;
            }
            // *
            // *     Quick return if possible
            // *
            if (N == 0)
            {
                return;
            }
            SMLSIZ = this._ilaenv.Run(9, "DBDSDC", " ", 0, 0, 0, 0);
            if (N == 1)
            {
                if (ICOMPQ == 1)
                {
                    Q[1 + o_q] = FortranLib.Sign(ONE, D[1 + o_d]);
                    Q[1 + SMLSIZ * N + o_q] = ONE;
                }
                else
                {
                    if (ICOMPQ == 2)
                    {
                        U[1 + 1 * LDU + o_u]    = FortranLib.Sign(ONE, D[1 + o_d]);
                        VT[1 + 1 * LDVT + o_vt] = ONE;
                    }
                }
                D[1 + o_d] = Math.Abs(D[1 + o_d]);
                return;
            }
            NM1 = N - 1;
            // *
            // *     If matrix lower bidiagonal, rotate to be upper bidiagonal
            // *     by applying Givens rotations on the left
            // *
            WSTART = 1;
            QSTART = 3;
            if (ICOMPQ == 1)
            {
                this._dcopy.Run(N, D, offset_d, 1, ref Q, 1 + o_q, 1);
                this._dcopy.Run(N - 1, E, offset_e, 1, ref Q, N + 1 + o_q, 1);
            }
            if (IUPLO == 2)
            {
                QSTART = 5;
                WSTART = 2 * N - 1;
                for (I = 1; I <= N - 1; I++)
                {
                    this._dlartg.Run(D[I + o_d], E[I + o_e], ref CS, ref SN, ref R);
                    D[I + o_d]      = R;
                    E[I + o_e]      = SN * D[I + 1 + o_d];
                    D[I + 1 + o_d] *= CS;
                    if (ICOMPQ == 1)
                    {
                        Q[I + 2 * N + o_q] = CS;
                        Q[I + 3 * N + o_q] = SN;
                    }
                    else
                    {
                        if (ICOMPQ == 2)
                        {
                            WORK[I + o_work]       = CS;
                            WORK[NM1 + I + o_work] = -SN;
                        }
                    }
                }
            }
            // *
            // *     If ICOMPQ = 0, use DLASDQ to compute the singular values.
            // *
            if (ICOMPQ == 0)
            {
                this._dlasdq.Run("U", 0, N, 0, 0, 0
                                 , ref D, offset_d, ref E, offset_e, ref VT, offset_vt, LDVT, ref U, offset_u, LDU
                                 , ref U, offset_u, LDU, ref WORK, WSTART + o_work, ref INFO);
                goto LABEL40;
            }
            // *
            // *     If N is smaller than the minimum divide size SMLSIZ, then solve
            // *     the problem with another solver.
            // *
            if (N <= SMLSIZ)
            {
                if (ICOMPQ == 2)
                {
                    this._dlaset.Run("A", N, N, ZERO, ONE, ref U, offset_u
                                     , LDU);
                    this._dlaset.Run("A", N, N, ZERO, ONE, ref VT, offset_vt
                                     , LDVT);
                    this._dlasdq.Run("U", 0, N, N, N, 0
                                     , ref D, offset_d, ref E, offset_e, ref VT, offset_vt, LDVT, ref U, offset_u, LDU
                                     , ref U, offset_u, LDU, ref WORK, WSTART + o_work, ref INFO);
                }
                else
                {
                    if (ICOMPQ == 1)
                    {
                        IU  = 1;
                        IVT = IU + N;
                        this._dlaset.Run("A", N, N, ZERO, ONE, ref Q, IU + (QSTART - 1) * N + o_q
                                         , N);
                        this._dlaset.Run("A", N, N, ZERO, ONE, ref Q, IVT + (QSTART - 1) * N + o_q
                                         , N);
                        this._dlasdq.Run("U", 0, N, N, N, 0
                                         , ref D, offset_d, ref E, offset_e, ref Q, IVT + (QSTART - 1) * N + o_q, N, ref Q, IU + (QSTART - 1) * N + o_q, N
                                         , ref Q, IU + (QSTART - 1) * N + o_q, N, ref WORK, WSTART + o_work, ref INFO);
                    }
                }
                goto LABEL40;
            }
            // *
            if (ICOMPQ == 2)
            {
                this._dlaset.Run("A", N, N, ZERO, ONE, ref U, offset_u
                                 , LDU);
                this._dlaset.Run("A", N, N, ZERO, ONE, ref VT, offset_vt
                                 , LDVT);
            }
            // *
            // *     Scale.
            // *
            ORGNRM = this._dlanst.Run("M", N, D, offset_d, E, offset_e);
            if (ORGNRM == ZERO)
            {
                return;
            }
            this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N
                             , 1, ref D, offset_d, N, ref IERR);
            this._dlascl.Run("G", 0, 0, ORGNRM, ONE, NM1
                             , 1, ref E, offset_e, NM1, ref IERR);
            // *
            EPS = this._dlamch.Run("Epsilon");
            // *
            MLVL   = Convert.ToInt32(Math.Truncate(Math.Log(Convert.ToDouble(N) / Convert.ToDouble(SMLSIZ + 1)) / Math.Log(TWO))) + 1;
            SMLSZP = SMLSIZ + 1;
            // *
            if (ICOMPQ == 1)
            {
                IU     = 1;
                IVT    = 1 + SMLSIZ;
                DIFL   = IVT + SMLSZP;
                DIFR   = DIFL + MLVL;
                Z      = DIFR + MLVL * 2;
                IC     = Z + MLVL;
                IS     = IC + 1;
                POLES  = IS + 1;
                GIVNUM = POLES + 2 * MLVL;
                // *
                K      = 1;
                GIVPTR = 2;
                PERM   = 3;
                GIVCOL = PERM + MLVL;
            }
            // *
            for (I = 1; I <= N; I++)
            {
                if (Math.Abs(D[I + o_d]) < EPS)
                {
                    D[I + o_d] = FortranLib.Sign(EPS, D[I + o_d]);
                }
            }
            // *
            START = 1;
            SQRE  = 0;
            // *
            for (I = 1; I <= NM1; I++)
            {
                if ((Math.Abs(E[I + o_e]) < EPS) || (I == NM1))
                {
                    // *
                    // *        Subproblem found. First determine its size and then
                    // *        apply divide and conquer on it.
                    // *
                    if (I < NM1)
                    {
                        // *
                        // *        A subproblem with E(I) small for I < NM1.
                        // *
                        NSIZE = I - START + 1;
                    }
                    else
                    {
                        if (Math.Abs(E[I + o_e]) >= EPS)
                        {
                            // *
                            // *        A subproblem with E(NM1) not too small but I = NM1.
                            // *
                            NSIZE = N - START + 1;
                        }
                        else
                        {
                            // *
                            // *        A subproblem with E(NM1) small. This implies an
                            // *        1-by-1 subproblem at D(N). Solve this 1-by-1 problem
                            // *        first.
                            // *
                            NSIZE = I - START + 1;
                            if (ICOMPQ == 2)
                            {
                                U[N + N * LDU + o_u]    = FortranLib.Sign(ONE, D[N + o_d]);
                                VT[N + N * LDVT + o_vt] = ONE;
                            }
                            else
                            {
                                if (ICOMPQ == 1)
                                {
                                    Q[N + (QSTART - 1) * N + o_q]          = FortranLib.Sign(ONE, D[N + o_d]);
                                    Q[N + (SMLSIZ + QSTART - 1) * N + o_q] = ONE;
                                }
                            }
                            D[N + o_d] = Math.Abs(D[N + o_d]);
                        }
                    }
                    if (ICOMPQ == 2)
                    {
                        this._dlasd0.Run(NSIZE, SQRE, ref D, START + o_d, ref E, START + o_e, ref U, START + START * LDU + o_u, LDU
                                         , ref VT, START + START * LDVT + o_vt, LDVT, SMLSIZ, ref IWORK, offset_iwork, ref WORK, WSTART + o_work, ref INFO);
                    }
                    else
                    {
                        this._dlasda.Run(ICOMPQ, SMLSIZ, NSIZE, SQRE, ref D, START + o_d, ref E, START + o_e
                                         , ref Q, START + (IU + QSTART - 2) * N + o_q, N, ref Q, START + (IVT + QSTART - 2) * N + o_q, ref IQ, START + K * N + o_iq, ref Q, START + (DIFL + QSTART - 2) * N + o_q, ref Q, START + (DIFR + QSTART - 2) * N + o_q
                                         , ref Q, START + (Z + QSTART - 2) * N + o_q, ref Q, START + (POLES + QSTART - 2) * N + o_q, ref IQ, START + GIVPTR * N + o_iq, ref IQ, START + GIVCOL * N + o_iq, N, ref IQ, START + PERM * N + o_iq
                                         , ref Q, START + (GIVNUM + QSTART - 2) * N + o_q, ref Q, START + (IC + QSTART - 2) * N + o_q, ref Q, START + (IS + QSTART - 2) * N + o_q, ref WORK, WSTART + o_work, ref IWORK, offset_iwork, ref INFO);
                        if (INFO != 0)
                        {
                            return;
                        }
                    }
                    START = I + 1;
                }
            }
            // *
            // *     Unscale
            // *
            this._dlascl.Run("G", 0, 0, ONE, ORGNRM, N
                             , 1, ref D, offset_d, N, ref IERR);
            LABEL40 :;
            // *
            // *     Use Selection Sort to minimize swaps of singular vectors
            // *
            for (II = 2; II <= N; II++)
            {
                I  = II - 1;
                KK = I;
                P  = D[I + o_d];
                for (J = II; J <= N; J++)
                {
                    if (D[J + o_d] > P)
                    {
                        KK = J;
                        P  = D[J + o_d];
                    }
                }
                if (KK != I)
                {
                    D[KK + o_d] = D[I + o_d];
                    D[I + o_d]  = P;
                    if (ICOMPQ == 1)
                    {
                        IQ[I + o_iq] = KK;
                    }
                    else
                    {
                        if (ICOMPQ == 2)
                        {
                            this._dswap.Run(N, ref U, 1 + I * LDU + o_u, 1, ref U, 1 + KK * LDU + o_u, 1);
                            this._dswap.Run(N, ref VT, I + 1 * LDVT + o_vt, LDVT, ref VT, KK + 1 * LDVT + o_vt, LDVT);
                        }
                    }
                }
                else
                {
                    if (ICOMPQ == 1)
                    {
                        IQ[I + o_iq] = I;
                    }
                }
            }
            // *
            // *     If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO
            // *
            if (ICOMPQ == 1)
            {
                if (IUPLO == 1)
                {
                    IQ[N + o_iq] = 1;
                }
                else
                {
                    IQ[N + o_iq] = 0;
                }
            }
            // *
            // *     If B is lower bidiagonal, update U by those Givens rotations
            // *     which rotated B to be upper bidiagonal
            // *
            if ((IUPLO == 2) && (ICOMPQ == 2))
            {
                this._dlasr.Run("L", "V", "B", N, N, WORK, 1 + o_work
                                , WORK, N + o_work, ref U, offset_u, LDU);
            }
            // *
            return;

            // *
            // *     End of DBDSDC
            // *

            #endregion
        }
예제 #16
0
        /// <summary>
        /// Purpose
        /// =======
        ///
        /// DLARFG generates a real elementary reflector H of order n, such
        /// that
        ///
        /// H * ( alpha ) = ( beta ),   H' * H = I.
        /// (   x   )   (   0  )
        ///
        /// where alpha and beta are scalars, and x is an (n-1)-element real
        /// vector. H is represented in the form
        ///
        /// H = I - tau * ( 1 ) * ( 1 v' ) ,
        /// ( v )
        ///
        /// where tau is a real scalar and v is a real (n-1)-element
        /// vector.
        ///
        /// If the elements of x are all zero, then tau = 0 and H is taken to be
        /// the unit matrix.
        ///
        /// Otherwise  1 .LE. tau .LE. 2.
        ///
        ///</summary>
        /// <param name="N">
        /// (input) INTEGER
        /// The order of the elementary reflector.
        ///</param>
        /// <param name="ALPHA">
        /// (input/output) DOUBLE PRECISION
        /// On entry, the value alpha.
        /// On exit, it is overwritten with the value beta.
        ///</param>
        /// <param name="X">
        /// (input/output) DOUBLE PRECISION array, dimension
        /// (1+(N-2)*abs(INCX))
        /// On entry, the vector x.
        /// On exit, it is overwritten with the vector v.
        ///</param>
        /// <param name="INCX">
        /// (input) INTEGER
        /// The increment between elements of X. INCX .GT. 0.
        ///</param>
        /// <param name="TAU">
        /// (output) DOUBLE PRECISION
        /// The value tau.
        ///</param>
        public void Run(int N, ref double ALPHA, ref double[] X, int offset_x, int INCX, ref double TAU)
        {
            #region Variables

            int J = 0; int KNT = 0; double BETA = 0; double RSAFMN = 0; double SAFMIN = 0; double XNORM = 0;

            #endregion


            #region Array Index Correction

            int o_x = -1 + offset_x;

            #endregion


            #region Prolog

            // *
            // *  -- LAPACK auxiliary routine (version 3.1) --
            // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
            // *     November 2006
            // *
            // *     .. Scalar Arguments ..
            // *     ..
            // *     .. Array Arguments ..
            // *     ..
            // *
            // *  Purpose
            // *  =======
            // *
            // *  DLARFG generates a real elementary reflector H of order n, such
            // *  that
            // *
            // *        H * ( alpha ) = ( beta ),   H' * H = I.
            // *            (   x   )   (   0  )
            // *
            // *  where alpha and beta are scalars, and x is an (n-1)-element real
            // *  vector. H is represented in the form
            // *
            // *        H = I - tau * ( 1 ) * ( 1 v' ) ,
            // *                      ( v )
            // *
            // *  where tau is a real scalar and v is a real (n-1)-element
            // *  vector.
            // *
            // *  If the elements of x are all zero, then tau = 0 and H is taken to be
            // *  the unit matrix.
            // *
            // *  Otherwise  1 <= tau <= 2.
            // *
            // *  Arguments
            // *  =========
            // *
            // *  N       (input) INTEGER
            // *          The order of the elementary reflector.
            // *
            // *  ALPHA   (input/output) DOUBLE PRECISION
            // *          On entry, the value alpha.
            // *          On exit, it is overwritten with the value beta.
            // *
            // *  X       (input/output) DOUBLE PRECISION array, dimension
            // *                         (1+(N-2)*abs(INCX))
            // *          On entry, the vector x.
            // *          On exit, it is overwritten with the vector v.
            // *
            // *  INCX    (input) INTEGER
            // *          The increment between elements of X. INCX > 0.
            // *
            // *  TAU     (output) DOUBLE PRECISION
            // *          The value tau.
            // *
            // *  =====================================================================
            // *
            // *     .. Parameters ..
            // *     ..
            // *     .. Local Scalars ..
            // *     ..
            // *     .. External Functions ..
            // *     ..
            // *     .. Intrinsic Functions ..
            //      INTRINSIC          ABS, SIGN;
            // *     ..
            // *     .. External Subroutines ..
            // *     ..
            // *     .. Executable Statements ..
            // *

            #endregion


            #region Body

            if (N <= 1)
            {
                TAU = ZERO;
                return;
            }
            // *
            XNORM = this._dnrm2.Run(N - 1, X, offset_x, INCX);
            // *
            if (XNORM == ZERO)
            {
                // *
                // *        H  =  I
                // *
                TAU = ZERO;
            }
            else
            {
                // *
                // *        general case
                // *
                BETA   = -FortranLib.Sign(this._dlapy2.Run(ALPHA, XNORM), ALPHA);
                SAFMIN = this._dlamch.Run("S") / this._dlamch.Run("E");
                if (Math.Abs(BETA) < SAFMIN)
                {
                    // *
                    // *           XNORM, BETA may be inaccurate; scale X and recompute them
                    // *
                    RSAFMN = ONE / SAFMIN;
                    KNT    = 0;
                    LABEL10 :;
                    KNT += 1;
                    this._dscal.Run(N - 1, RSAFMN, ref X, offset_x, INCX);
                    BETA  *= RSAFMN;
                    ALPHA *= RSAFMN;
                    if (Math.Abs(BETA) < SAFMIN)
                    {
                        goto LABEL10;
                    }
                    // *
                    // *           New BETA is at most 1, at least SAFMIN
                    // *
                    XNORM = this._dnrm2.Run(N - 1, X, offset_x, INCX);
                    BETA  = -FortranLib.Sign(this._dlapy2.Run(ALPHA, XNORM), ALPHA);
                    TAU   = (BETA - ALPHA) / BETA;
                    this._dscal.Run(N - 1, ONE / (ALPHA - BETA), ref X, offset_x, INCX);
                    // *
                    // *           If ALPHA is subnormal, it may lose relative accuracy
                    // *
                    ALPHA = BETA;
                    for (J = 1; J <= KNT; J++)
                    {
                        ALPHA *= SAFMIN;
                    }
                }
                else
                {
                    TAU = (BETA - ALPHA) / BETA;
                    this._dscal.Run(N - 1, ONE / (ALPHA - BETA), ref X, offset_x, INCX);
                    ALPHA = BETA;
                }
            }
            // *
            return;

            // *
            // *     End of DLARFG
            // *

            #endregion
        }