/// <summary> /// Purpose /// ======= /// /// DLAIC1 applies one step of incremental condition estimation in /// its simplest version: /// /// Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j /// lower triangular matrix L, such that /// twonorm(L*x) = sest /// Then DLAIC1 computes sestpr, s, c such that /// the vector /// [ s*x ] /// xhat = [ c ] /// is an approximate singular vector of /// [ L 0 ] /// Lhat = [ w' gamma ] /// in the sense that /// twonorm(Lhat*xhat) = sestpr. /// /// Depending on JOB, an estimate for the largest or smallest singular /// value is computed. /// /// Note that [s c]' and sestpr**2 is an eigenpair of the system /// /// diag(sest*sest, 0) + [alpha gamma] * [ alpha ] /// [ gamma ] /// /// where alpha = x'*w. /// ///</summary> /// <param name="JOB"> /// (input) INTEGER /// = 1: an estimate for the largest singular value is computed. /// = 2: an estimate for the smallest singular value is computed. ///</param> /// <param name="J"> /// (input) INTEGER /// Length of X and W ///</param> /// <param name="X"> /// (input) DOUBLE PRECISION array, dimension (J) /// The j-vector x. ///</param> /// <param name="SEST"> /// (input) DOUBLE PRECISION /// Estimated singular value of j by j matrix L ///</param> /// <param name="W"> /// (input) DOUBLE PRECISION array, dimension (J) /// The j-vector w. ///</param> /// <param name="GAMMA"> /// (input) DOUBLE PRECISION /// The diagonal element gamma. ///</param> /// <param name="SESTPR"> /// (output) DOUBLE PRECISION /// Estimated singular value of (j+1) by (j+1) matrix Lhat. ///</param> /// <param name="S"> /// (output) DOUBLE PRECISION /// Sine needed in forming xhat. ///</param> /// <param name="C"> /// (output) DOUBLE PRECISION /// Cosine needed in forming xhat. ///</param> public void Run(int JOB, int J, double[] X, int offset_x, double SEST, double[] W, int offset_w, double GAMMA , ref double SESTPR, ref double S, ref double C) { #region Variables double ABSALP = 0; double ABSEST = 0; double ABSGAM = 0; double ALPHA = 0; double B = 0; double COSINE = 0; double EPS = 0; double NORMA = 0; double S1 = 0; double S2 = 0; double SINE = 0; double T = 0; double TEST = 0; double TMP = 0; double ZETA1 = 0; double ZETA2 = 0; #endregion #region Array Index Correction int o_x = -1 + offset_x; int o_w = -1 + offset_w; #endregion #region Prolog // * // * -- LAPACK auxiliary routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLAIC1 applies one step of incremental condition estimation in // * its simplest version: // * // * Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j // * lower triangular matrix L, such that // * twonorm(L*x) = sest // * Then DLAIC1 computes sestpr, s, c such that // * the vector // * [ s*x ] // * xhat = [ c ] // * is an approximate singular vector of // * [ L 0 ] // * Lhat = [ w' gamma ] // * in the sense that // * twonorm(Lhat*xhat) = sestpr. // * // * Depending on JOB, an estimate for the largest or smallest singular // * value is computed. // * // * Note that [s c]' and sestpr**2 is an eigenpair of the system // * // * diag(sest*sest, 0) + [alpha gamma] * [ alpha ] // * [ gamma ] // * // * where alpha = x'*w. // * // * Arguments // * ========= // * // * JOB (input) INTEGER // * = 1: an estimate for the largest singular value is computed. // * = 2: an estimate for the smallest singular value is computed. // * // * J (input) INTEGER // * Length of X and W // * // * X (input) DOUBLE PRECISION array, dimension (J) // * The j-vector x. // * // * SEST (input) DOUBLE PRECISION // * Estimated singular value of j by j matrix L // * // * W (input) DOUBLE PRECISION array, dimension (J) // * The j-vector w. // * // * GAMMA (input) DOUBLE PRECISION // * The diagonal element gamma. // * // * SESTPR (output) DOUBLE PRECISION // * Estimated singular value of (j+1) by (j+1) matrix Lhat. // * // * S (output) DOUBLE PRECISION // * Sine needed in forming xhat. // * // * C (output) DOUBLE PRECISION // * Cosine needed in forming xhat. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, MAX, SIGN, SQRT; // * .. // * .. External Functions .. // * .. // * .. Executable Statements .. // * #endregion #region Body EPS = this._dlamch.Run("Epsilon"); ALPHA = this._ddot.Run(J, X, offset_x, 1, W, offset_w, 1); // * ABSALP = Math.Abs(ALPHA); ABSGAM = Math.Abs(GAMMA); ABSEST = Math.Abs(SEST); // * if (JOB == 1) { // * // * Estimating largest singular value // * // * special cases // * if (SEST == ZERO) { S1 = Math.Max(ABSGAM, ABSALP); if (S1 == ZERO) { S = ZERO; C = ONE; SESTPR = ZERO; } else { S = ALPHA / S1; C = GAMMA / S1; TMP = Math.Sqrt(S * S + C * C); S /= TMP; C /= TMP; SESTPR = S1 * TMP; } return; } else { if (ABSGAM <= EPS * ABSEST) { S = ONE; C = ZERO; TMP = Math.Max(ABSEST, ABSALP); S1 = ABSEST / TMP; S2 = ABSALP / TMP; SESTPR = TMP * Math.Sqrt(S1 * S1 + S2 * S2); return; } else { if (ABSALP <= EPS * ABSEST) { S1 = ABSGAM; S2 = ABSEST; if (S1 <= S2) { S = ONE; C = ZERO; SESTPR = S2; } else { S = ZERO; C = ONE; SESTPR = S1; } return; } else { if (ABSEST <= EPS * ABSALP || ABSEST <= EPS * ABSGAM) { S1 = ABSGAM; S2 = ABSALP; if (S1 <= S2) { TMP = S1 / S2; S = Math.Sqrt(ONE + TMP * TMP); SESTPR = S2 * S; C = (GAMMA / S2) / S; S = FortranLib.Sign(ONE, ALPHA) / S; } else { TMP = S2 / S1; C = Math.Sqrt(ONE + TMP * TMP); SESTPR = S1 * C; S = (ALPHA / S1) / C; C = FortranLib.Sign(ONE, GAMMA) / C; } return; } else { // * // * normal case // * ZETA1 = ALPHA / ABSEST; ZETA2 = GAMMA / ABSEST; // * B = (ONE - ZETA1 * ZETA1 - ZETA2 * ZETA2) * HALF; C = ZETA1 * ZETA1; if (B > ZERO) { T = C / (B + Math.Sqrt(B * B + C)); } else { T = Math.Sqrt(B * B + C) - B; } // * SINE = -ZETA1 / T; COSINE = -ZETA2 / (ONE + T); TMP = Math.Sqrt(SINE * SINE + COSINE * COSINE); S = SINE / TMP; C = COSINE / TMP; SESTPR = Math.Sqrt(T + ONE) * ABSEST; return; } } } } // * } else { if (JOB == 2) { // * // * Estimating smallest singular value // * // * special cases // * if (SEST == ZERO) { SESTPR = ZERO; if (Math.Max(ABSGAM, ABSALP) == ZERO) { SINE = ONE; COSINE = ZERO; } else { SINE = -GAMMA; COSINE = ALPHA; } S1 = Math.Max(Math.Abs(SINE), Math.Abs(COSINE)); S = SINE / S1; C = COSINE / S1; TMP = Math.Sqrt(S * S + C * C); S /= TMP; C /= TMP; return; } else { if (ABSGAM <= EPS * ABSEST) { S = ZERO; C = ONE; SESTPR = ABSGAM; return; } else { if (ABSALP <= EPS * ABSEST) { S1 = ABSGAM; S2 = ABSEST; if (S1 <= S2) { S = ZERO; C = ONE; SESTPR = S1; } else { S = ONE; C = ZERO; SESTPR = S2; } return; } else { if (ABSEST <= EPS * ABSALP || ABSEST <= EPS * ABSGAM) { S1 = ABSGAM; S2 = ABSALP; if (S1 <= S2) { TMP = S1 / S2; C = Math.Sqrt(ONE + TMP * TMP); SESTPR = ABSEST * (TMP / C); S = -(GAMMA / S2) / C; C = FortranLib.Sign(ONE, ALPHA) / C; } else { TMP = S2 / S1; S = Math.Sqrt(ONE + TMP * TMP); SESTPR = ABSEST / S; C = (ALPHA / S1) / S; S = -FortranLib.Sign(ONE, GAMMA) / S; } return; } else { // * // * normal case // * ZETA1 = ALPHA / ABSEST; ZETA2 = GAMMA / ABSEST; // * NORMA = Math.Max(ONE + ZETA1 * ZETA1 + Math.Abs(ZETA1 * ZETA2), Math.Abs(ZETA1 * ZETA2) + ZETA2 * ZETA2); // * // * See if root is closer to zero or to ONE // * TEST = ONE + TWO * (ZETA1 - ZETA2) * (ZETA1 + ZETA2); if (TEST >= ZERO) { // * // * root is close to zero, compute directly // * B = (ZETA1 * ZETA1 + ZETA2 * ZETA2 + ONE) * HALF; C = ZETA2 * ZETA2; T = C / (B + Math.Sqrt(Math.Abs(B * B - C))); SINE = ZETA1 / (ONE - T); COSINE = -ZETA2 / T; SESTPR = Math.Sqrt(T + FOUR * EPS * EPS * NORMA) * ABSEST; } else { // * // * root is closer to ONE, shift by that amount // * B = (ZETA2 * ZETA2 + ZETA1 * ZETA1 - ONE) * HALF; C = ZETA1 * ZETA1; if (B >= ZERO) { T = -C / (B + Math.Sqrt(B * B + C)); } else { T = B - Math.Sqrt(B * B + C); } SINE = -ZETA1 / T; COSINE = -ZETA2 / (ONE + T); SESTPR = Math.Sqrt(ONE + T + FOUR * EPS * EPS * NORMA) * ABSEST; } TMP = Math.Sqrt(SINE * SINE + COSINE * COSINE); S = SINE / TMP; C = COSINE / TMP; return; // * } } } } } } return; // * // * End of DLAIC1 // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DBDSQR computes the singular values and, optionally, the right and/or /// left singular vectors from the singular value decomposition (SVD) of /// a real N-by-N (upper or lower) bidiagonal matrix B using the implicit /// zero-shift QR algorithm. The SVD of B has the form /// /// B = Q * S * P**T /// /// where S is the diagonal matrix of singular values, Q is an orthogonal /// matrix of left singular vectors, and P is an orthogonal matrix of /// right singular vectors. If left singular vectors are requested, this /// subroutine actually returns U*Q instead of Q, and, if right singular /// vectors are requested, this subroutine returns P**T*VT instead of /// P**T, for given real input matrices U and VT. When U and VT are the /// orthogonal matrices that reduce a general matrix A to bidiagonal /// form: A = U*B*VT, as computed by DGEBRD, then /// /// A = (U*Q) * S * (P**T*VT) /// /// is the SVD of A. Optionally, the subroutine may also compute Q**T*C /// for a given real input matrix C. /// /// See "Computing Small Singular Values of Bidiagonal Matrices With /// Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, /// LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, /// no. 5, pp. 873-912, Sept 1990) and /// "Accurate singular values and differential qd algorithms," by /// B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics /// Department, University of California at Berkeley, July 1992 /// for a detailed description of the algorithm. /// ///</summary> /// <param name="UPLO"> /// (input) CHARACTER*1 /// = 'U': B is upper bidiagonal; /// = 'L': B is lower bidiagonal. ///</param> /// <param name="N"> /// (input) INTEGER /// The order of the matrix B. N .GE. 0. ///</param> /// <param name="NCVT"> /// (input) INTEGER /// The number of columns of the matrix VT. NCVT .GE. 0. ///</param> /// <param name="NRU"> /// (input) INTEGER /// The number of rows of the matrix U. NRU .GE. 0. ///</param> /// <param name="NCC"> /// (input) INTEGER /// The number of columns of the matrix C. NCC .GE. 0. ///</param> /// <param name="D"> /// (input/output) DOUBLE PRECISION array, dimension (N) /// On entry, the n diagonal elements of the bidiagonal matrix B. /// On exit, if INFO=0, the singular values of B in decreasing /// order. ///</param> /// <param name="E"> /// (input/output) DOUBLE PRECISION array, dimension (N-1) /// On entry, the N-1 offdiagonal elements of the bidiagonal /// matrix B. /// On exit, if INFO = 0, E is destroyed; if INFO .GT. 0, D and E /// will contain the diagonal and superdiagonal elements of a /// bidiagonal matrix orthogonally equivalent to the one given /// as input. ///</param> /// <param name="VT"> /// (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) /// On entry, an N-by-NCVT matrix VT. /// On exit, VT is overwritten by P**T * VT. /// Not referenced if NCVT = 0. ///</param> /// <param name="LDVT"> /// (input) INTEGER /// The leading dimension of the array VT. /// LDVT .GE. max(1,N) if NCVT .GT. 0; LDVT .GE. 1 if NCVT = 0. ///</param> /// <param name="U"> /// (input/output) DOUBLE PRECISION array, dimension (LDU, N) /// On entry, an NRU-by-N matrix U. /// On exit, U is overwritten by U * Q. /// Not referenced if NRU = 0. ///</param> /// <param name="LDU"> /// (input) INTEGER /// The leading dimension of the array U. LDU .GE. max(1,NRU). ///</param> /// <param name="C"> /// (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) /// On entry, an N-by-NCC matrix C. /// On exit, C is overwritten by Q**T * C. /// Not referenced if NCC = 0. ///</param> /// <param name="LDC"> /// (input) INTEGER /// The leading dimension of the array C. /// LDC .GE. max(1,N) if NCC .GT. 0; LDC .GE.1 if NCC = 0. ///</param> /// <param name="WORK"> /// (workspace) DOUBLE PRECISION array, dimension (2*N) /// if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit /// .LT. 0: If INFO = -i, the i-th argument had an illegal value /// .GT. 0: the algorithm did not converge; D and E contain the /// elements of a bidiagonal matrix which is orthogonally /// similar to the input matrix B; if INFO = i, i /// elements of E have not converged to zero. ///</param> public void Run(string UPLO, int N, int NCVT, int NRU, int NCC, ref double[] D, int offset_d , ref double[] E, int offset_e, ref double[] VT, int offset_vt, int LDVT, ref double[] U, int offset_u, int LDU, ref double[] C, int offset_c , int LDC, ref double[] WORK, int offset_work, ref int INFO) { #region Variables bool LOWER = false; bool ROTATE = false; int I = 0; int IDIR = 0; int ISUB = 0; int ITER = 0; int J = 0; int LL = 0; int LLL = 0; int M = 0; int MAXIT = 0; int NM1 = 0; int NM12 = 0; int NM13 = 0; int OLDLL = 0; int OLDM = 0; double ABSE = 0; double ABSS = 0; double COSL = 0; double COSR = 0; double CS = 0; double EPS = 0; double F = 0; double G = 0; double H = 0; double MU = 0; double OLDCS = 0; double OLDSN = 0; double R = 0; double SHIFT = 0; double SIGMN = 0; double SIGMX = 0; double SINL = 0; double SINR = 0; double SLL = 0; double SMAX = 0; double SMIN = 0; double SMINL = 0; double SMINOA = 0; double SN = 0; double THRESH = 0; double TOL = 0; double TOLMUL = 0; double UNFL = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_e = -1 + offset_e; int o_vt = -1 - LDVT + offset_vt; int o_u = -1 - LDU + offset_u; int o_c = -1 - LDC + offset_c; int o_work = -1 + offset_work; #endregion #region Strings UPLO = UPLO.Substring(0, 1); #endregion #region Prolog // * // * -- LAPACK routine (version 3.1.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * January 2007 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DBDSQR computes the singular values and, optionally, the right and/or // * left singular vectors from the singular value decomposition (SVD) of // * a real N-by-N (upper or lower) bidiagonal matrix B using the implicit // * zero-shift QR algorithm. The SVD of B has the form // * // * B = Q * S * P**T // * // * where S is the diagonal matrix of singular values, Q is an orthogonal // * matrix of left singular vectors, and P is an orthogonal matrix of // * right singular vectors. If left singular vectors are requested, this // * subroutine actually returns U*Q instead of Q, and, if right singular // * vectors are requested, this subroutine returns P**T*VT instead of // * P**T, for given real input matrices U and VT. When U and VT are the // * orthogonal matrices that reduce a general matrix A to bidiagonal // * form: A = U*B*VT, as computed by DGEBRD, then // * // * A = (U*Q) * S * (P**T*VT) // * // * is the SVD of A. Optionally, the subroutine may also compute Q**T*C // * for a given real input matrix C. // * // * See "Computing Small Singular Values of Bidiagonal Matrices With // * Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, // * LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, // * no. 5, pp. 873-912, Sept 1990) and // * "Accurate singular values and differential qd algorithms," by // * B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics // * Department, University of California at Berkeley, July 1992 // * for a detailed description of the algorithm. // * // * Arguments // * ========= // * // * UPLO (input) CHARACTER*1 // * = 'U': B is upper bidiagonal; // * = 'L': B is lower bidiagonal. // * // * N (input) INTEGER // * The order of the matrix B. N >= 0. // * // * NCVT (input) INTEGER // * The number of columns of the matrix VT. NCVT >= 0. // * // * NRU (input) INTEGER // * The number of rows of the matrix U. NRU >= 0. // * // * NCC (input) INTEGER // * The number of columns of the matrix C. NCC >= 0. // * // * D (input/output) DOUBLE PRECISION array, dimension (N) // * On entry, the n diagonal elements of the bidiagonal matrix B. // * On exit, if INFO=0, the singular values of B in decreasing // * order. // * // * E (input/output) DOUBLE PRECISION array, dimension (N-1) // * On entry, the N-1 offdiagonal elements of the bidiagonal // * matrix B. // * On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E // * will contain the diagonal and superdiagonal elements of a // * bidiagonal matrix orthogonally equivalent to the one given // * as input. // * // * VT (input/output) DOUBLE PRECISION array, dimension (LDVT, NCVT) // * On entry, an N-by-NCVT matrix VT. // * On exit, VT is overwritten by P**T * VT. // * Not referenced if NCVT = 0. // * // * LDVT (input) INTEGER // * The leading dimension of the array VT. // * LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. // * // * U (input/output) DOUBLE PRECISION array, dimension (LDU, N) // * On entry, an NRU-by-N matrix U. // * On exit, U is overwritten by U * Q. // * Not referenced if NRU = 0. // * // * LDU (input) INTEGER // * The leading dimension of the array U. LDU >= max(1,NRU). // * // * C (input/output) DOUBLE PRECISION array, dimension (LDC, NCC) // * On entry, an N-by-NCC matrix C. // * On exit, C is overwritten by Q**T * C. // * Not referenced if NCC = 0. // * // * LDC (input) INTEGER // * The leading dimension of the array C. // * LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. // * // * WORK (workspace) DOUBLE PRECISION array, dimension (2*N) // * if NCVT = NRU = NCC = 0, (max(1, 4*N)) otherwise // * // * INFO (output) INTEGER // * = 0: successful exit // * < 0: If INFO = -i, the i-th argument had an illegal value // * > 0: the algorithm did not converge; D and E contain the // * elements of a bidiagonal matrix which is orthogonally // * similar to the input matrix B; if INFO = i, i // * elements of E have not converged to zero. // * // * Internal Parameters // * =================== // * // * TOLMUL DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8))) // * TOLMUL controls the convergence criterion of the QR loop. // * If it is positive, TOLMUL*EPS is the desired relative // * precision in the computed singular values. // * If it is negative, abs(TOLMUL*EPS*sigma_max) is the // * desired absolute accuracy in the computed singular // * values (corresponds to relative accuracy // * abs(TOLMUL*EPS) in the largest singular value. // * abs(TOLMUL) should be between 1 and 1/EPS, and preferably // * between 10 (for fast convergence) and .1/EPS // * (for there to be some accuracy in the results). // * Default is to lose at either one eighth or 2 of the // * available decimal digits in each computed singular value // * (whichever is smaller). // * // * MAXITR INTEGER, default = 6 // * MAXITR controls the maximum number of passes of the // * algorithm through its inner loop. The algorithms stops // * (and so fails to converge) if the number of passes // * through the inner loop exceeds MAXITR*N**2. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, DBLE, MAX, MIN, SIGN, SQRT; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; LOWER = this._lsame.Run(UPLO, "L"); if (!this._lsame.Run(UPLO, "U") && !LOWER) { INFO = -1; } else { if (N < 0) { INFO = -2; } else { if (NCVT < 0) { INFO = -3; } else { if (NRU < 0) { INFO = -4; } else { if (NCC < 0) { INFO = -5; } else { if ((NCVT == 0 && LDVT < 1) || (NCVT > 0 && LDVT < Math.Max(1, N))) { INFO = -9; } else { if (LDU < Math.Max(1, NRU)) { INFO = -11; } else { if ((NCC == 0 && LDC < 1) || (NCC > 0 && LDC < Math.Max(1, N))) { INFO = -13; } } } } } } } } if (INFO != 0) { this._xerbla.Run("DBDSQR", -INFO); return; } if (N == 0) { return; } if (N == 1) { goto LABEL160; } // * // * ROTATE is true if any singular vectors desired, false otherwise // * ROTATE = (NCVT > 0) || (NRU > 0) || (NCC > 0); // * // * If no singular vectors desired, use qd algorithm // * if (!ROTATE) { this._dlasq1.Run(N, ref D, offset_d, E, offset_e, ref WORK, offset_work, ref INFO); return; } // * NM1 = N - 1; NM12 = NM1 + NM1; NM13 = NM12 + NM1; IDIR = 0; // * // * Get machine constants // * EPS = this._dlamch.Run("Epsilon"); UNFL = this._dlamch.Run("Safe minimum"); // * // * If matrix lower bidiagonal, rotate to be upper bidiagonal // * by applying Givens rotations on the left // * if (LOWER) { for (I = 1; I <= N - 1; I++) { this._dlartg.Run(D[I + o_d], E[I + o_e], ref CS, ref SN, ref R); D[I + o_d] = R; E[I + o_e] = SN * D[I + 1 + o_d]; D[I + 1 + o_d] *= CS; WORK[I + o_work] = CS; WORK[NM1 + I + o_work] = SN; } // * // * Update singular vectors if desired // * if (NRU > 0) { this._dlasr.Run("R", "V", "F", NRU, N, WORK, 1 + o_work , WORK, N + o_work, ref U, offset_u, LDU); } if (NCC > 0) { this._dlasr.Run("L", "V", "F", N, NCC, WORK, 1 + o_work , WORK, N + o_work, ref C, offset_c, LDC); } } // * // * Compute singular values to relative accuracy TOL // * (By setting TOL to be negative, algorithm will compute // * singular values to absolute accuracy ABS(TOL)*norm(input matrix)) // * TOLMUL = Math.Max(TEN, Math.Min(HNDRD, Math.Pow(EPS, MEIGTH))); TOL = TOLMUL * EPS; // * // * Compute approximate maximum, minimum singular values // * SMAX = ZERO; for (I = 1; I <= N; I++) { SMAX = Math.Max(SMAX, Math.Abs(D[I + o_d])); } for (I = 1; I <= N - 1; I++) { SMAX = Math.Max(SMAX, Math.Abs(E[I + o_e])); } SMINL = ZERO; if (TOL >= ZERO) { // * // * Relative accuracy desired // * SMINOA = Math.Abs(D[1 + o_d]); if (SMINOA == ZERO) { goto LABEL50; } MU = SMINOA; for (I = 2; I <= N; I++) { MU = Math.Abs(D[I + o_d]) * (MU / (MU + Math.Abs(E[I - 1 + o_e]))); SMINOA = Math.Min(SMINOA, MU); if (SMINOA == ZERO) { goto LABEL50; } } LABEL50 :; SMINOA /= Math.Sqrt(Convert.ToDouble(N)); THRESH = Math.Max(TOL * SMINOA, MAXITR * N * N * UNFL); } else { // * // * Absolute accuracy desired // * THRESH = Math.Max(Math.Abs(TOL) * SMAX, MAXITR * N * N * UNFL); } // * // * Prepare for main iteration loop for the singular values // * (MAXIT is the maximum number of passes through the inner // * loop permitted before nonconvergence signalled.) // * MAXIT = MAXITR * N * N; ITER = 0; OLDLL = -1; OLDM = -1; // * // * M points to last element of unconverged part of matrix // * M = N; // * // * Begin main iteration loop // * LABEL60 :; // * // * Check for convergence or exceeding iteration count // * if (M <= 1) { goto LABEL160; } if (ITER > MAXIT) { goto LABEL200; } // * // * Find diagonal block of matrix to work on // * if (TOL < ZERO && Math.Abs(D[M + o_d]) <= THRESH) { D[M + o_d] = ZERO; } SMAX = Math.Abs(D[M + o_d]); SMIN = SMAX; for (LLL = 1; LLL <= M - 1; LLL++) { LL = M - LLL; ABSS = Math.Abs(D[LL + o_d]); ABSE = Math.Abs(E[LL + o_e]); if (TOL < ZERO && ABSS <= THRESH) { D[LL + o_d] = ZERO; } if (ABSE <= THRESH) { goto LABEL80; } SMIN = Math.Min(SMIN, ABSS); SMAX = Math.Max(SMAX, Math.Max(ABSS, ABSE)); } LL = 0; goto LABEL90; LABEL80 :; E[LL + o_e] = ZERO; // * // * Matrix splits since E(LL) = 0 // * if (LL == M - 1) { // * // * Convergence of bottom singular value, return to top of loop // * M -= 1; goto LABEL60; } LABEL90 :; LL += 1; // * // * E(LL) through E(M-1) are nonzero, E(LL-1) is zero // * if (LL == M - 1) { // * // * 2 by 2 block, handle separately // * this._dlasv2.Run(D[M - 1 + o_d], E[M - 1 + o_e], D[M + o_d], ref SIGMN, ref SIGMX, ref SINR , ref COSR, ref SINL, ref COSL); D[M - 1 + o_d] = SIGMX; E[M - 1 + o_e] = ZERO; D[M + o_d] = SIGMN; // * // * Compute singular vectors, if desired // * if (NCVT > 0) { this._drot.Run(NCVT, ref VT, M - 1 + 1 * LDVT + o_vt, LDVT, ref VT, M + 1 * LDVT + o_vt, LDVT, COSR , SINR); } if (NRU > 0) { this._drot.Run(NRU, ref U, 1 + (M - 1) * LDU + o_u, 1, ref U, 1 + M * LDU + o_u, 1, COSL , SINL); } if (NCC > 0) { this._drot.Run(NCC, ref C, M - 1 + 1 * LDC + o_c, LDC, ref C, M + 1 * LDC + o_c, LDC, COSL , SINL); } M -= 2; goto LABEL60; } // * // * If working on new submatrix, choose shift direction // * (from larger end diagonal element towards smaller) // * if (LL > OLDM || M < OLDLL) { if (Math.Abs(D[LL + o_d]) >= Math.Abs(D[M + o_d])) { // * // * Chase bulge from top (big end) to bottom (small end) // * IDIR = 1; } else { // * // * Chase bulge from bottom (big end) to top (small end) // * IDIR = 2; } } // * // * Apply convergence tests // * if (IDIR == 1) { // * // * Run convergence test in forward direction // * First apply standard test to bottom of matrix // * if (Math.Abs(E[M - 1 + o_e]) <= Math.Abs(TOL) * Math.Abs(D[M + o_d]) || (TOL < ZERO && Math.Abs(E[M - 1 + o_e]) <= THRESH)) { E[M - 1 + o_e] = ZERO; goto LABEL60; } // * if (TOL >= ZERO) { // * // * If relative accuracy desired, // * apply convergence criterion forward // * MU = Math.Abs(D[LL + o_d]); SMINL = MU; for (LLL = LL; LLL <= M - 1; LLL++) { if (Math.Abs(E[LLL + o_e]) <= TOL * MU) { E[LLL + o_e] = ZERO; goto LABEL60; } MU = Math.Abs(D[LLL + 1 + o_d]) * (MU / (MU + Math.Abs(E[LLL + o_e]))); SMINL = Math.Min(SMINL, MU); } } // * } else { // * // * Run convergence test in backward direction // * First apply standard test to top of matrix // * if (Math.Abs(E[LL + o_e]) <= Math.Abs(TOL) * Math.Abs(D[LL + o_d]) || (TOL < ZERO && Math.Abs(E[LL + o_e]) <= THRESH)) { E[LL + o_e] = ZERO; goto LABEL60; } // * if (TOL >= ZERO) { // * // * If relative accuracy desired, // * apply convergence criterion backward // * MU = Math.Abs(D[M + o_d]); SMINL = MU; for (LLL = M - 1; LLL >= LL; LLL += -1) { if (Math.Abs(E[LLL + o_e]) <= TOL * MU) { E[LLL + o_e] = ZERO; goto LABEL60; } MU = Math.Abs(D[LLL + o_d]) * (MU / (MU + Math.Abs(E[LLL + o_e]))); SMINL = Math.Min(SMINL, MU); } } } OLDLL = LL; OLDM = M; // * // * Compute shift. First, test if shifting would ruin relative // * accuracy, and if so set the shift to zero. // * if (TOL >= ZERO && N * TOL * (SMINL / SMAX) <= Math.Max(EPS, HNDRTH * TOL)) { // * // * Use a zero shift to avoid loss of relative accuracy // * SHIFT = ZERO; } else { // * // * Compute the shift from 2-by-2 block at end of matrix // * if (IDIR == 1) { SLL = Math.Abs(D[LL + o_d]); this._dlas2.Run(D[M - 1 + o_d], E[M - 1 + o_e], D[M + o_d], ref SHIFT, ref R); } else { SLL = Math.Abs(D[M + o_d]); this._dlas2.Run(D[LL + o_d], E[LL + o_e], D[LL + 1 + o_d], ref SHIFT, ref R); } // * // * Test if shift negligible, and if so set to zero // * if (SLL > ZERO) { if (Math.Pow(SHIFT / SLL, 2) < EPS) { SHIFT = ZERO; } } } // * // * Increment iteration count // * ITER += M - LL; // * // * If SHIFT = 0, do simplified QR iteration // * if (SHIFT == ZERO) { if (IDIR == 1) { // * // * Chase bulge from top to bottom // * Save cosines and sines for later singular vector updates // * CS = ONE; OLDCS = ONE; for (I = LL; I <= M - 1; I++) { this._dlartg.Run(D[I + o_d] * CS, E[I + o_e], ref CS, ref SN, ref R); if (I > LL) { E[I - 1 + o_e] = OLDSN * R; } this._dlartg.Run(OLDCS * R, D[I + 1 + o_d] * SN, ref OLDCS, ref OLDSN, ref D[I + o_d]); WORK[I - LL + 1 + o_work] = CS; WORK[I - LL + 1 + NM1 + o_work] = SN; WORK[I - LL + 1 + NM12 + o_work] = OLDCS; WORK[I - LL + 1 + NM13 + o_work] = OLDSN; } H = D[M + o_d] * CS; D[M + o_d] = H * OLDCS; E[M - 1 + o_e] = H * OLDSN; // * // * Update singular vectors // * if (NCVT > 0) { this._dlasr.Run("L", "V", "F", M - LL + 1, NCVT, WORK, 1 + o_work , WORK, N + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT); } if (NRU > 0) { this._dlasr.Run("R", "V", "F", NRU, M - LL + 1, WORK, NM12 + 1 + o_work , WORK, NM13 + 1 + o_work, ref U, 1 + LL * LDU + o_u, LDU); } if (NCC > 0) { this._dlasr.Run("L", "V", "F", M - LL + 1, NCC, WORK, NM12 + 1 + o_work , WORK, NM13 + 1 + o_work, ref C, LL + 1 * LDC + o_c, LDC); } // * // * Test convergence // * if (Math.Abs(E[M - 1 + o_e]) <= THRESH) { E[M - 1 + o_e] = ZERO; } // * } else { // * // * Chase bulge from bottom to top // * Save cosines and sines for later singular vector updates // * CS = ONE; OLDCS = ONE; for (I = M; I >= LL + 1; I += -1) { this._dlartg.Run(D[I + o_d] * CS, E[I - 1 + o_e], ref CS, ref SN, ref R); if (I < M) { E[I + o_e] = OLDSN * R; } this._dlartg.Run(OLDCS * R, D[I - 1 + o_d] * SN, ref OLDCS, ref OLDSN, ref D[I + o_d]); WORK[I - LL + o_work] = CS; WORK[I - LL + NM1 + o_work] = -SN; WORK[I - LL + NM12 + o_work] = OLDCS; WORK[I - LL + NM13 + o_work] = -OLDSN; } H = D[LL + o_d] * CS; D[LL + o_d] = H * OLDCS; E[LL + o_e] = H * OLDSN; // * // * Update singular vectors // * if (NCVT > 0) { this._dlasr.Run("L", "V", "B", M - LL + 1, NCVT, WORK, NM12 + 1 + o_work , WORK, NM13 + 1 + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT); } if (NRU > 0) { this._dlasr.Run("R", "V", "B", NRU, M - LL + 1, WORK, 1 + o_work , WORK, N + o_work, ref U, 1 + LL * LDU + o_u, LDU); } if (NCC > 0) { this._dlasr.Run("L", "V", "B", M - LL + 1, NCC, WORK, 1 + o_work , WORK, N + o_work, ref C, LL + 1 * LDC + o_c, LDC); } // * // * Test convergence // * if (Math.Abs(E[LL + o_e]) <= THRESH) { E[LL + o_e] = ZERO; } } } else { // * // * Use nonzero shift // * if (IDIR == 1) { // * // * Chase bulge from top to bottom // * Save cosines and sines for later singular vector updates // * F = (Math.Abs(D[LL + o_d]) - SHIFT) * (FortranLib.Sign(ONE, D[LL + o_d]) + SHIFT / D[LL + o_d]); G = E[LL + o_e]; for (I = LL; I <= M - 1; I++) { this._dlartg.Run(F, G, ref COSR, ref SINR, ref R); if (I > LL) { E[I - 1 + o_e] = R; } F = COSR * D[I + o_d] + SINR * E[I + o_e]; E[I + o_e] = COSR * E[I + o_e] - SINR * D[I + o_d]; G = SINR * D[I + 1 + o_d]; D[I + 1 + o_d] *= COSR; this._dlartg.Run(F, G, ref COSL, ref SINL, ref R); D[I + o_d] = R; F = COSL * E[I + o_e] + SINL * D[I + 1 + o_d]; D[I + 1 + o_d] = COSL * D[I + 1 + o_d] - SINL * E[I + o_e]; if (I < M - 1) { G = SINL * E[I + 1 + o_e]; E[I + 1 + o_e] *= COSL; } WORK[I - LL + 1 + o_work] = COSR; WORK[I - LL + 1 + NM1 + o_work] = SINR; WORK[I - LL + 1 + NM12 + o_work] = COSL; WORK[I - LL + 1 + NM13 + o_work] = SINL; } E[M - 1 + o_e] = F; // * // * Update singular vectors // * if (NCVT > 0) { this._dlasr.Run("L", "V", "F", M - LL + 1, NCVT, WORK, 1 + o_work , WORK, N + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT); } if (NRU > 0) { this._dlasr.Run("R", "V", "F", NRU, M - LL + 1, WORK, NM12 + 1 + o_work , WORK, NM13 + 1 + o_work, ref U, 1 + LL * LDU + o_u, LDU); } if (NCC > 0) { this._dlasr.Run("L", "V", "F", M - LL + 1, NCC, WORK, NM12 + 1 + o_work , WORK, NM13 + 1 + o_work, ref C, LL + 1 * LDC + o_c, LDC); } // * // * Test convergence // * if (Math.Abs(E[M - 1 + o_e]) <= THRESH) { E[M - 1 + o_e] = ZERO; } // * } else { // * // * Chase bulge from bottom to top // * Save cosines and sines for later singular vector updates // * F = (Math.Abs(D[M + o_d]) - SHIFT) * (FortranLib.Sign(ONE, D[M + o_d]) + SHIFT / D[M + o_d]); G = E[M - 1 + o_e]; for (I = M; I >= LL + 1; I += -1) { this._dlartg.Run(F, G, ref COSR, ref SINR, ref R); if (I < M) { E[I + o_e] = R; } F = COSR * D[I + o_d] + SINR * E[I - 1 + o_e]; E[I - 1 + o_e] = COSR * E[I - 1 + o_e] - SINR * D[I + o_d]; G = SINR * D[I - 1 + o_d]; D[I - 1 + o_d] *= COSR; this._dlartg.Run(F, G, ref COSL, ref SINL, ref R); D[I + o_d] = R; F = COSL * E[I - 1 + o_e] + SINL * D[I - 1 + o_d]; D[I - 1 + o_d] = COSL * D[I - 1 + o_d] - SINL * E[I - 1 + o_e]; if (I > LL + 1) { G = SINL * E[I - 2 + o_e]; E[I - 2 + o_e] *= COSL; } WORK[I - LL + o_work] = COSR; WORK[I - LL + NM1 + o_work] = -SINR; WORK[I - LL + NM12 + o_work] = COSL; WORK[I - LL + NM13 + o_work] = -SINL; } E[LL + o_e] = F; // * // * Test convergence // * if (Math.Abs(E[LL + o_e]) <= THRESH) { E[LL + o_e] = ZERO; } // * // * Update singular vectors if desired // * if (NCVT > 0) { this._dlasr.Run("L", "V", "B", M - LL + 1, NCVT, WORK, NM12 + 1 + o_work , WORK, NM13 + 1 + o_work, ref VT, LL + 1 * LDVT + o_vt, LDVT); } if (NRU > 0) { this._dlasr.Run("R", "V", "B", NRU, M - LL + 1, WORK, 1 + o_work , WORK, N + o_work, ref U, 1 + LL * LDU + o_u, LDU); } if (NCC > 0) { this._dlasr.Run("L", "V", "B", M - LL + 1, NCC, WORK, 1 + o_work , WORK, N + o_work, ref C, LL + 1 * LDC + o_c, LDC); } } } // * // * QR iteration finished, go back and check convergence // * goto LABEL60; // * // * All singular values converged, so make them positive // * LABEL160 :; for (I = 1; I <= N; I++) { if (D[I + o_d] < ZERO) { D[I + o_d] = -D[I + o_d]; // * // * Change sign of singular vectors, if desired // * if (NCVT > 0) { this._dscal.Run(NCVT, NEGONE, ref VT, I + 1 * LDVT + o_vt, LDVT); } } } // * // * Sort the singular values into decreasing order (insertion sort on // * singular values, but only one transposition per singular vector) // * for (I = 1; I <= N - 1; I++) { // * // * Scan for smallest D(I) // * ISUB = 1; SMIN = D[1 + o_d]; for (J = 2; J <= N + 1 - I; J++) { if (D[J + o_d] <= SMIN) { ISUB = J; SMIN = D[J + o_d]; } } if (ISUB != N + 1 - I) { // * // * Swap singular values and vectors // * D[ISUB + o_d] = D[N + 1 - I + o_d]; D[N + 1 - I + o_d] = SMIN; if (NCVT > 0) { this._dswap.Run(NCVT, ref VT, ISUB + 1 * LDVT + o_vt, LDVT, ref VT, N + 1 - I + 1 * LDVT + o_vt, LDVT); } if (NRU > 0) { this._dswap.Run(NRU, ref U, 1 + ISUB * LDU + o_u, 1, ref U, 1 + (N + 1 - I) * LDU + o_u, 1); } if (NCC > 0) { this._dswap.Run(NCC, ref C, ISUB + 1 * LDC + o_c, LDC, ref C, N + 1 - I + 1 * LDC + o_c, LDC); } } } goto LABEL220; // * // * Maximum number of iterations exceeded, failure to converge // * LABEL200 :; INFO = 0; for (I = 1; I <= N - 1; I++) { if (E[I + o_e] != ZERO) { INFO += 1; } } LABEL220 :; return; // * // * End of DBDSQR // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DLASV2 computes the singular value decomposition of a 2-by-2 /// triangular matrix /// [ F G ] /// [ 0 H ]. /// On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the /// smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and /// right singular vectors for abs(SSMAX), giving the decomposition /// /// [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] /// [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. /// ///</summary> /// <param name="F"> /// (input) DOUBLE PRECISION /// The (1,1) element of the 2-by-2 matrix. ///</param> /// <param name="G"> /// (input) DOUBLE PRECISION /// The (1,2) element of the 2-by-2 matrix. ///</param> /// <param name="H"> /// (input) DOUBLE PRECISION /// The (2,2) element of the 2-by-2 matrix. ///</param> /// <param name="SSMIN"> /// (output) DOUBLE PRECISION /// abs(SSMIN) is the smaller singular value. ///</param> /// <param name="SSMAX"> /// (output) DOUBLE PRECISION /// abs(SSMAX) is the larger singular value. ///</param> /// <param name="SNR"> /// (output) DOUBLE PRECISION ///</param> /// <param name="CSR"> /// (output) DOUBLE PRECISION /// The vector (CSR, SNR) is a unit right singular vector for the /// singular value abs(SSMAX). ///</param> /// <param name="SNL"> /// (output) DOUBLE PRECISION ///</param> /// <param name="CSL"> /// (output) DOUBLE PRECISION /// The vector (CSL, SNL) is a unit left singular vector for the /// singular value abs(SSMAX). ///</param> public void Run(double F, double G, double H, ref double SSMIN, ref double SSMAX, ref double SNR , ref double CSR, ref double SNL, ref double CSL) { #region Variables bool GASMAL = false; bool SWAP = false; int PMAX = 0; double A = 0; double CLT = 0; double CRT = 0; double D = 0; double FA = 0; double FT = 0; double GA = 0; double GT = 0; double HA = 0; double HT = 0; double L = 0; double M = 0; double MM = 0; double R = 0; double S = 0; double SLT = 0; double SRT = 0; double T = 0; double TEMP = 0; double TSIGN = 0; double TT = 0; #endregion #region Prolog // * // * -- LAPACK auxiliary routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * // * Purpose // * ======= // * // * DLASV2 computes the singular value decomposition of a 2-by-2 // * triangular matrix // * [ F G ] // * [ 0 H ]. // * On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the // * smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and // * right singular vectors for abs(SSMAX), giving the decomposition // * // * [ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ] // * [-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ]. // * // * Arguments // * ========= // * // * F (input) DOUBLE PRECISION // * The (1,1) element of the 2-by-2 matrix. // * // * G (input) DOUBLE PRECISION // * The (1,2) element of the 2-by-2 matrix. // * // * H (input) DOUBLE PRECISION // * The (2,2) element of the 2-by-2 matrix. // * // * SSMIN (output) DOUBLE PRECISION // * abs(SSMIN) is the smaller singular value. // * // * SSMAX (output) DOUBLE PRECISION // * abs(SSMAX) is the larger singular value. // * // * SNL (output) DOUBLE PRECISION // * CSL (output) DOUBLE PRECISION // * The vector (CSL, SNL) is a unit left singular vector for the // * singular value abs(SSMAX). // * // * SNR (output) DOUBLE PRECISION // * CSR (output) DOUBLE PRECISION // * The vector (CSR, SNR) is a unit right singular vector for the // * singular value abs(SSMAX). // * // * Further Details // * =============== // * // * Any input parameter may be aliased with any output parameter. // * // * Barring over/underflow and assuming a guard digit in subtraction, all // * output quantities are correct to within a few units in the last // * place (ulps). // * // * In IEEE arithmetic, the code works correctly if one matrix element is // * infinite. // * // * Overflow will not occur unless the largest singular value itself // * overflows or is within a few ulps of overflow. (On machines with // * partial overflow, like the Cray, overflow may occur if the largest // * singular value is within a factor of 2 of overflow.) // * // * Underflow is harmless if underflow is gradual. Otherwise, results // * may correspond to a matrix modified by perturbations of size near // * the underflow threshold. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, SIGN, SQRT; // * .. // * .. External Functions .. // * .. // * .. Executable Statements .. // * #endregion #region Body FT = F; FA = Math.Abs(FT); HT = H; HA = Math.Abs(H); // * // * PMAX points to the maximum absolute element of matrix // * PMAX = 1 if F largest in absolute values // * PMAX = 2 if G largest in absolute values // * PMAX = 3 if H largest in absolute values // * PMAX = 1; SWAP = (HA > FA); if (SWAP) { PMAX = 3; TEMP = FT; FT = HT; HT = TEMP; TEMP = FA; FA = HA; HA = TEMP; // * // * Now FA .ge. HA // * } GT = G; GA = Math.Abs(GT); if (GA == ZERO) { // * // * Diagonal matrix // * SSMIN = HA; SSMAX = FA; CLT = ONE; CRT = ONE; SLT = ZERO; SRT = ZERO; } else { GASMAL = true; if (GA > FA) { PMAX = 2; if ((FA / GA) < this._dlamch.Run("EPS")) { // * // * Case of very large GA // * GASMAL = false; SSMAX = GA; if (HA > ONE) { SSMIN = FA / (GA / HA); } else { SSMIN = (FA / GA) * HA; } CLT = ONE; SLT = HT / GT; SRT = ONE; CRT = FT / GT; } } if (GASMAL) { // * // * Normal case // * D = FA - HA; if (D == FA) { // * // * Copes with infinite F or H // * L = ONE; } else { L = D / FA; } // * // * Note that 0 .le. L .le. 1 // * M = GT / FT; // * // * Note that abs(M) .le. 1/macheps // * T = TWO - L; // * // * Note that T .ge. 1 // * MM = M * M; TT = T * T; S = Math.Sqrt(TT + MM); // * // * Note that 1 .le. S .le. 1 + 1/macheps // * if (L == ZERO) { R = Math.Abs(M); } else { R = Math.Sqrt(L * L + MM); } // * // * Note that 0 .le. R .le. 1 + 1/macheps // * A = HALF * (S + R); // * // * Note that 1 .le. A .le. 1 + abs(M) // * SSMIN = HA / A; SSMAX = FA * A; if (MM == ZERO) { // * // * Note that M is very tiny // * if (L == ZERO) { T = FortranLib.Sign(TWO, FT) * FortranLib.Sign(ONE, GT); } else { T = GT / FortranLib.Sign(D, FT) + M / T; } } else { T = (M / (S + T) + M / (R + L)) * (ONE + A); } L = Math.Sqrt(T * T + FOUR); CRT = TWO / L; SRT = T / L; CLT = (CRT + SRT * M) / A; SLT = (HT / FT) * SRT / A; } } if (SWAP) { CSL = SRT; SNL = CRT; CSR = SLT; SNR = CLT; } else { CSL = CLT; SNL = SLT; CSR = CRT; SNR = SRT; } // * // * Correct signs of SSMAX and SSMIN // * if (PMAX == 1) { TSIGN = FortranLib.Sign(ONE, CSR) * FortranLib.Sign(ONE, CSL) * FortranLib.Sign(ONE, F); } if (PMAX == 2) { TSIGN = FortranLib.Sign(ONE, SNR) * FortranLib.Sign(ONE, CSL) * FortranLib.Sign(ONE, G); } if (PMAX == 3) { TSIGN = FortranLib.Sign(ONE, SNR) * FortranLib.Sign(ONE, SNL) * FortranLib.Sign(ONE, H); } SSMAX = FortranLib.Sign(SSMAX, TSIGN); SSMIN = FortranLib.Sign(SSMIN, TSIGN * FortranLib.Sign(ONE, F) * FortranLib.Sign(ONE, H)); return; // * // * End of DLASV2 // * #endregion }
public double Run(int N, IFAREN FCN, double X, double[] Y, int offset_y, double XEND, double POSNEG , double[] F0, int offset_f0, ref double[] F1, int offset_f1, ref double[] Y1, int offset_y1, int IORD, double HMAX, double[] ATOL, int offset_atol , double[] RTOL, int offset_rtol, int ITOL, double[] RPAR, int offset_rpar, int[] IPAR, int offset_ipar) { double hinit = 0; #region Implicit Variables double DNF = 0; double DNY = 0; double ATOLI = 0; double RTOLI = 0; double SK = 0; int I = 0; double H = 0; double DER2 = 0; double DER12 = 0; double H1 = 0; #endregion #region Array Index Correction int o_y = -1 + offset_y; int o_f0 = -1 + offset_f0; int o_f1 = -1 + offset_f1; int o_y1 = -1 + offset_y1; int o_atol = -1 + offset_atol; int o_rtol = -1 + offset_rtol; int o_rpar = -1 + offset_rpar; int o_ipar = -1 + offset_ipar; #endregion // C ---------------------------------------------------------- // C ---- COMPUTATION OF AN INITIAL STEP SIZE GUESS // C ---------------------------------------------------------- // C ---- COMPUTE A FIRST GUESS FOR EXPLICIT EULER AS // C ---- H = 0.01 * NORM (Y0) / NORM (F0) // C ---- THE INCREMENT FOR EXPLICIT EULER IS SMALL // C ---- COMPARED TO THE SOLUTION #region Body DNF = 0.0E0; DNY = 0.0E0; ATOLI = ATOL[1 + o_atol]; RTOLI = RTOL[1 + o_rtol]; if (ITOL == 0) { for (I = 1; I <= N; I++) { SK = ATOLI + RTOLI * Math.Abs(Y[I + o_y]); DNF += Math.Pow(F0[I + o_f0] / SK, 2); DNY += Math.Pow(Y[I + o_y] / SK, 2); } } else { for (I = 1; I <= N; I++) { SK = ATOL[I + o_atol] + RTOL[I + o_rtol] * Math.Abs(Y[I + o_y]); DNF += Math.Pow(F0[I + o_f0] / SK, 2); DNY += Math.Pow(Y[I + o_y] / SK, 2); } } if (DNF <= 1.0E-10 || DNY <= 1.0E-10) { H = 1.0E-6; } else { H = Math.Sqrt(DNY / DNF) * 0.01E0; } H = Math.Min(H, HMAX); H = FortranLib.Sign(H, POSNEG); // C ---- PERFORM AN EXPLICIT EULER STEP for (I = 1; I <= N; I++) { Y1[I + o_y1] = Y[I + o_y] + H * F0[I + o_f0]; } FCN.Run(N, X + H, Y1, offset_y1, ref F1, offset_f1, RPAR, offset_rpar, IPAR[1 + o_ipar]); // C ---- ESTIMATE THE SECOND DERIVATIVE OF THE SOLUTION DER2 = 0.0E0; if (ITOL == 0) { for (I = 1; I <= N; I++) { SK = ATOLI + RTOLI * Math.Abs(Y[I + o_y]); DER2 += Math.Pow((F1[I + o_f1] - F0[I + o_f0]) / SK, 2); } } else { for (I = 1; I <= N; I++) { SK = ATOL[I + o_atol] + RTOL[I + o_rtol] * Math.Abs(Y[I + o_y]); DER2 += Math.Pow((F1[I + o_f1] - F0[I + o_f0]) / SK, 2); } } DER2 = Math.Sqrt(DER2) / H; // C ---- STEP SIZE IS COMPUTED SUCH THAT // C ---- H**IORD * MAX ( NORM (F0), NORM (DER2)) = 0.01 DER12 = Math.Max(Math.Abs(DER2), Math.Sqrt(DNF)); if (DER12 <= 1.0E-15) { H1 = Math.Max(1.0E-6, Math.Abs(H) * 1.0E-3); } else { H1 = Math.Pow(0.01E0 / DER12, 1.0E0 / IORD); } H = Math.Min(100 * Math.Abs(H), Math.Min(H1, HMAX)); hinit = FortranLib.Sign(H, POSNEG); return(hinit); #endregion }
/// <summary> /// Purpose /// ======= /// /// DLALSD uses the singular value decomposition of A to solve the least /// squares problem of finding X to minimize the Euclidean norm of each /// column of A*X-B, where A is N-by-N upper bidiagonal, and X and B /// are N-by-NRHS. The solution X overwrites B. /// /// The singular values of A smaller than RCOND times the largest /// singular value are treated as zero in solving the least squares /// problem; in this case a minimum norm solution is returned. /// The actual singular values are returned in D in ascending order. /// /// This code makes very mild assumptions about floating point /// arithmetic. It will work on machines with a guard digit in /// add/subtract, or on those binary machines without guard digits /// which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. /// It could conceivably fail on hexadecimal or decimal machines /// without guard digits, but we know of none. /// ///</summary> /// <param name="UPLO"> /// (input) CHARACTER*1 /// = 'U': D and E define an upper bidiagonal matrix. /// = 'L': D and E define a lower bidiagonal matrix. ///</param> /// <param name="SMLSIZ"> /// (input) INTEGER /// The maximum size of the subproblems at the bottom of the /// computation tree. ///</param> /// <param name="N"> /// (input) INTEGER /// The dimension of the bidiagonal matrix. N .GE. 0. ///</param> /// <param name="NRHS"> /// (input) INTEGER /// The number of columns of B. NRHS must be at least 1. ///</param> /// <param name="D"> /// (input/output) DOUBLE PRECISION array, dimension (N) /// On entry D contains the main diagonal of the bidiagonal /// matrix. On exit, if INFO = 0, D contains its singular values. ///</param> /// <param name="E"> /// (input/output) DOUBLE PRECISION array, dimension (N-1) /// Contains the super-diagonal entries of the bidiagonal matrix. /// On exit, E has been destroyed. ///</param> /// <param name="B"> /// (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) /// On input, B contains the right hand sides of the least /// squares problem. On output, B contains the solution X. ///</param> /// <param name="LDB"> /// (input) INTEGER /// The leading dimension of B in the calling subprogram. /// LDB must be at least max(1,N). ///</param> /// <param name="RCOND"> /// (input) DOUBLE PRECISION /// The singular values of A less than or equal to RCOND times /// the largest singular value are treated as zero in solving /// the least squares problem. If RCOND is negative, /// machine precision is used instead. /// For example, if diag(S)*X=B were the least squares problem, /// where diag(S) is a diagonal matrix of singular values, the /// solution would be X(i) = B(i) / S(i) if S(i) is greater than /// RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to /// RCOND*max(S). ///</param> /// <param name="RANK"> /// (output) INTEGER /// The number of singular values of A greater than RCOND times /// the largest singular value. ///</param> /// <param name="WORK"> /// (workspace) DOUBLE PRECISION array, dimension at least /// (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), /// where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). ///</param> /// <param name="IWORK"> /// (workspace) INTEGER array, dimension at least /// (3*N*NLVL + 11*N) ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit. /// .LT. 0: if INFO = -i, the i-th argument had an illegal value. /// .GT. 0: The algorithm failed to compute an singular value while /// working on the submatrix lying in rows and columns /// INFO/(N+1) through MOD(INFO,N+1). ///</param> public void Run(string UPLO, int SMLSIZ, int N, int NRHS, ref double[] D, int offset_d, ref double[] E, int offset_e , ref double[] B, int offset_b, int LDB, double RCOND, ref int RANK, ref double[] WORK, int offset_work, ref int[] IWORK, int offset_iwork , ref int INFO) { #region Variables int BX = 0; int BXST = 0; int C = 0; int DIFL = 0; int DIFR = 0; int GIVCOL = 0; int GIVNUM = 0; int GIVPTR = 0; int I = 0; int ICMPQ1 = 0; int ICMPQ2 = 0; int IWK = 0; int J = 0; int K = 0; int NLVL = 0; int NM1 = 0; int NSIZE = 0; int NSUB = 0; int NWORK = 0; int PERM = 0; int POLES = 0; int S = 0; int SIZEI = 0; int SMLSZP = 0; int SQRE = 0; int ST = 0; int ST1 = 0; int U = 0; int VT = 0; int Z = 0; double CS = 0; double EPS = 0; double ORGNRM = 0; double R = 0; double RCND = 0; double SN = 0; double TOL = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_e = -1 + offset_e; int o_b = -1 - LDB + offset_b; int o_work = -1 + offset_work; int o_iwork = -1 + offset_iwork; #endregion #region Strings UPLO = UPLO.Substring(0, 1); #endregion #region Prolog // * // * -- LAPACK routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLALSD uses the singular value decomposition of A to solve the least // * squares problem of finding X to minimize the Euclidean norm of each // * column of A*X-B, where A is N-by-N upper bidiagonal, and X and B // * are N-by-NRHS. The solution X overwrites B. // * // * The singular values of A smaller than RCOND times the largest // * singular value are treated as zero in solving the least squares // * problem; in this case a minimum norm solution is returned. // * The actual singular values are returned in D in ascending order. // * // * This code makes very mild assumptions about floating point // * arithmetic. It will work on machines with a guard digit in // * add/subtract, or on those binary machines without guard digits // * which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. // * It could conceivably fail on hexadecimal or decimal machines // * without guard digits, but we know of none. // * // * Arguments // * ========= // * // * UPLO (input) CHARACTER*1 // * = 'U': D and E define an upper bidiagonal matrix. // * = 'L': D and E define a lower bidiagonal matrix. // * // * SMLSIZ (input) INTEGER // * The maximum size of the subproblems at the bottom of the // * computation tree. // * // * N (input) INTEGER // * The dimension of the bidiagonal matrix. N >= 0. // * // * NRHS (input) INTEGER // * The number of columns of B. NRHS must be at least 1. // * // * D (input/output) DOUBLE PRECISION array, dimension (N) // * On entry D contains the main diagonal of the bidiagonal // * matrix. On exit, if INFO = 0, D contains its singular values. // * // * E (input/output) DOUBLE PRECISION array, dimension (N-1) // * Contains the super-diagonal entries of the bidiagonal matrix. // * On exit, E has been destroyed. // * // * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) // * On input, B contains the right hand sides of the least // * squares problem. On output, B contains the solution X. // * // * LDB (input) INTEGER // * The leading dimension of B in the calling subprogram. // * LDB must be at least max(1,N). // * // * RCOND (input) DOUBLE PRECISION // * The singular values of A less than or equal to RCOND times // * the largest singular value are treated as zero in solving // * the least squares problem. If RCOND is negative, // * machine precision is used instead. // * For example, if diag(S)*X=B were the least squares problem, // * where diag(S) is a diagonal matrix of singular values, the // * solution would be X(i) = B(i) / S(i) if S(i) is greater than // * RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to // * RCOND*max(S). // * // * RANK (output) INTEGER // * The number of singular values of A greater than RCOND times // * the largest singular value. // * // * WORK (workspace) DOUBLE PRECISION array, dimension at least // * (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), // * where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). // * // * IWORK (workspace) INTEGER array, dimension at least // * (3*N*NLVL + 11*N) // * // * INFO (output) INTEGER // * = 0: successful exit. // * < 0: if INFO = -i, the i-th argument had an illegal value. // * > 0: The algorithm failed to compute an singular value while // * working on the submatrix lying in rows and columns // * INFO/(N+1) through MOD(INFO,N+1). // * // * Further Details // * =============== // * // * Based on contributions by // * Ming Gu and Ren-Cang Li, Computer Science Division, University of // * California at Berkeley, USA // * Osni Marques, LBNL/NERSC, USA // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, DBLE, INT, LOG, SIGN; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * if (N < 0) { INFO = -3; } else { if (NRHS < 1) { INFO = -4; } else { if ((LDB < 1) || (LDB < N)) { INFO = -8; } } } if (INFO != 0) { this._xerbla.Run("DLALSD", -INFO); return; } // * EPS = this._dlamch.Run("Epsilon"); // * // * Set up the tolerance. // * if ((RCOND <= ZERO) || (RCOND >= ONE)) { RCND = EPS; } else { RCND = RCOND; } // * RANK = 0; // * // * Quick return if possible. // * if (N == 0) { return; } else { if (N == 1) { if (D[1 + o_d] == ZERO) { this._dlaset.Run("A", 1, NRHS, ZERO, ZERO, ref B, offset_b , LDB); } else { RANK = 1; this._dlascl.Run("G", 0, 0, D[1 + o_d], ONE, 1 , NRHS, ref B, offset_b, LDB, ref INFO); D[1 + o_d] = Math.Abs(D[1 + o_d]); } return; } } // * // * Rotate the matrix if it is lower bidiagonal. // * if (UPLO == "L") { for (I = 1; I <= N - 1; I++) { this._dlartg.Run(D[I + o_d], E[I + o_e], ref CS, ref SN, ref R); D[I + o_d] = R; E[I + o_e] = SN * D[I + 1 + o_d]; D[I + 1 + o_d] *= CS; if (NRHS == 1) { this._drot.Run(1, ref B, I + 1 * LDB + o_b, 1, ref B, I + 1 + 1 * LDB + o_b, 1, CS , SN); } else { WORK[I * 2 - 1 + o_work] = CS; WORK[I * 2 + o_work] = SN; } } if (NRHS > 1) { for (I = 1; I <= NRHS; I++) { for (J = 1; J <= N - 1; J++) { CS = WORK[J * 2 - 1 + o_work]; SN = WORK[J * 2 + o_work]; this._drot.Run(1, ref B, J + I * LDB + o_b, 1, ref B, J + 1 + I * LDB + o_b, 1, CS , SN); } } } } // * // * Scale. // * NM1 = N - 1; ORGNRM = this._dlanst.Run("M", N, D, offset_d, E, offset_e); if (ORGNRM == ZERO) { this._dlaset.Run("A", N, NRHS, ZERO, ZERO, ref B, offset_b , LDB); return; } // * this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N , 1, ref D, offset_d, N, ref INFO); this._dlascl.Run("G", 0, 0, ORGNRM, ONE, NM1 , 1, ref E, offset_e, NM1, ref INFO); // * // * If N is smaller than the minimum divide size SMLSIZ, then solve // * the problem with another solver. // * if (N <= SMLSIZ) { NWORK = 1 + N * N; this._dlaset.Run("A", N, N, ZERO, ONE, ref WORK, offset_work , N); this._dlasdq.Run("U", 0, N, N, 0, NRHS , ref D, offset_d, ref E, offset_e, ref WORK, offset_work, N, ref WORK, offset_work, N , ref B, offset_b, LDB, ref WORK, NWORK + o_work, ref INFO); if (INFO != 0) { return; } TOL = RCND * Math.Abs(D[this._idamax.Run(N, D, offset_d, 1) + o_d]); for (I = 1; I <= N; I++) { if (D[I + o_d] <= TOL) { this._dlaset.Run("A", 1, NRHS, ZERO, ZERO, ref B, I + 1 * LDB + o_b , LDB); } else { this._dlascl.Run("G", 0, 0, D[I + o_d], ONE, 1 , NRHS, ref B, I + 1 * LDB + o_b, LDB, ref INFO); RANK += 1; } } this._dgemm.Run("T", "N", N, NRHS, N, ONE , WORK, offset_work, N, B, offset_b, LDB, ZERO, ref WORK, NWORK + o_work , N); this._dlacpy.Run("A", N, NRHS, WORK, NWORK + o_work, N, ref B, offset_b , LDB); // * // * Unscale. // * this._dlascl.Run("G", 0, 0, ONE, ORGNRM, N , 1, ref D, offset_d, N, ref INFO); this._dlasrt.Run("D", N, ref D, offset_d, ref INFO); this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N , NRHS, ref B, offset_b, LDB, ref INFO); // * return; } // * // * Book-keeping and setting up some constants. // * NLVL = Convert.ToInt32(Math.Truncate(Math.Log(Convert.ToDouble(N) / Convert.ToDouble(SMLSIZ + 1)) / Math.Log(TWO))) + 1; // * SMLSZP = SMLSIZ + 1; // * U = 1; VT = 1 + SMLSIZ * N; DIFL = VT + SMLSZP * N; DIFR = DIFL + NLVL * N; Z = DIFR + NLVL * N * 2; C = Z + NLVL * N; S = C + N; POLES = S + N; GIVNUM = POLES + 2 * NLVL * N; BX = GIVNUM + 2 * NLVL * N; NWORK = BX + N * NRHS; // * SIZEI = 1 + N; K = SIZEI + N; GIVPTR = K + N; PERM = GIVPTR + N; GIVCOL = PERM + NLVL * N; IWK = GIVCOL + NLVL * N * 2; // * ST = 1; SQRE = 0; ICMPQ1 = 1; ICMPQ2 = 0; NSUB = 0; // * for (I = 1; I <= N; I++) { if (Math.Abs(D[I + o_d]) < EPS) { D[I + o_d] = FortranLib.Sign(EPS, D[I + o_d]); } } // * for (I = 1; I <= NM1; I++) { if ((Math.Abs(E[I + o_e]) < EPS) || (I == NM1)) { NSUB += 1; IWORK[NSUB + o_iwork] = ST; // * // * Subproblem found. First determine its size and then // * apply divide and conquer on it. // * if (I < NM1) { // * // * A subproblem with E(I) small for I < NM1. // * NSIZE = I - ST + 1; IWORK[SIZEI + NSUB - 1 + o_iwork] = NSIZE; } else { if (Math.Abs(E[I + o_e]) >= EPS) { // * // * A subproblem with E(NM1) not too small but I = NM1. // * NSIZE = N - ST + 1; IWORK[SIZEI + NSUB - 1 + o_iwork] = NSIZE; } else { // * // * A subproblem with E(NM1) small. This implies an // * 1-by-1 subproblem at D(N), which is not solved // * explicitly. // * NSIZE = I - ST + 1; IWORK[SIZEI + NSUB - 1 + o_iwork] = NSIZE; NSUB += 1; IWORK[NSUB + o_iwork] = N; IWORK[SIZEI + NSUB - 1 + o_iwork] = 1; this._dcopy.Run(NRHS, B, N + 1 * LDB + o_b, LDB, ref WORK, BX + NM1 + o_work, N); } } ST1 = ST - 1; if (NSIZE == 1) { // * // * This is a 1-by-1 subproblem and is not solved // * explicitly. // * this._dcopy.Run(NRHS, B, ST + 1 * LDB + o_b, LDB, ref WORK, BX + ST1 + o_work, N); } else { if (NSIZE <= SMLSIZ) { // * // * This is a small subproblem and is solved by DLASDQ. // * this._dlaset.Run("A", NSIZE, NSIZE, ZERO, ONE, ref WORK, VT + ST1 + o_work , N); this._dlasdq.Run("U", 0, NSIZE, NSIZE, 0, NRHS , ref D, ST + o_d, ref E, ST + o_e, ref WORK, VT + ST1 + o_work, N, ref WORK, NWORK + o_work, N , ref B, ST + 1 * LDB + o_b, LDB, ref WORK, NWORK + o_work, ref INFO); if (INFO != 0) { return; } this._dlacpy.Run("A", NSIZE, NRHS, B, ST + 1 * LDB + o_b, LDB, ref WORK, BX + ST1 + o_work , N); } else { // * // * A large problem. Solve it using divide and conquer. // * this._dlasda.Run(ICMPQ1, SMLSIZ, NSIZE, SQRE, ref D, ST + o_d, ref E, ST + o_e , ref WORK, U + ST1 + o_work, N, ref WORK, VT + ST1 + o_work, ref IWORK, K + ST1 + o_iwork, ref WORK, DIFL + ST1 + o_work, ref WORK, DIFR + ST1 + o_work , ref WORK, Z + ST1 + o_work, ref WORK, POLES + ST1 + o_work, ref IWORK, GIVPTR + ST1 + o_iwork, ref IWORK, GIVCOL + ST1 + o_iwork, N, ref IWORK, PERM + ST1 + o_iwork , ref WORK, GIVNUM + ST1 + o_work, ref WORK, C + ST1 + o_work, ref WORK, S + ST1 + o_work, ref WORK, NWORK + o_work, ref IWORK, IWK + o_iwork, ref INFO); if (INFO != 0) { return; } BXST = BX + ST1; this._dlalsa.Run(ICMPQ2, SMLSIZ, NSIZE, NRHS, ref B, ST + 1 * LDB + o_b, LDB , ref WORK, BXST + o_work, N, WORK, U + ST1 + o_work, N, WORK, VT + ST1 + o_work, IWORK, K + ST1 + o_iwork , WORK, DIFL + ST1 + o_work, WORK, DIFR + ST1 + o_work, WORK, Z + ST1 + o_work, WORK, POLES + ST1 + o_work, IWORK, GIVPTR + ST1 + o_iwork, IWORK, GIVCOL + ST1 + o_iwork , N, IWORK, PERM + ST1 + o_iwork, WORK, GIVNUM + ST1 + o_work, WORK, C + ST1 + o_work, WORK, S + ST1 + o_work, ref WORK, NWORK + o_work , ref IWORK, IWK + o_iwork, ref INFO); if (INFO != 0) { return; } } } ST = I + 1; } } // * // * Apply the singular values and treat the tiny ones as zero. // * TOL = RCND * Math.Abs(D[this._idamax.Run(N, D, offset_d, 1) + o_d]); // * for (I = 1; I <= N; I++) { // * // * Some of the elements in D can be negative because 1-by-1 // * subproblems were not solved explicitly. // * if (Math.Abs(D[I + o_d]) <= TOL) { this._dlaset.Run("A", 1, NRHS, ZERO, ZERO, ref WORK, BX + I - 1 + o_work , N); } else { RANK += 1; this._dlascl.Run("G", 0, 0, D[I + o_d], ONE, 1 , NRHS, ref WORK, BX + I - 1 + o_work, N, ref INFO); } D[I + o_d] = Math.Abs(D[I + o_d]); } // * // * Now apply back the right singular vectors. // * ICMPQ2 = 1; for (I = 1; I <= NSUB; I++) { ST = IWORK[I + o_iwork]; ST1 = ST - 1; NSIZE = IWORK[SIZEI + I - 1 + o_iwork]; BXST = BX + ST1; if (NSIZE == 1) { this._dcopy.Run(NRHS, WORK, BXST + o_work, N, ref B, ST + 1 * LDB + o_b, LDB); } else { if (NSIZE <= SMLSIZ) { this._dgemm.Run("T", "N", NSIZE, NRHS, NSIZE, ONE , WORK, VT + ST1 + o_work, N, WORK, BXST + o_work, N, ZERO, ref B, ST + 1 * LDB + o_b , LDB); } else { this._dlalsa.Run(ICMPQ2, SMLSIZ, NSIZE, NRHS, ref WORK, BXST + o_work, N , ref B, ST + 1 * LDB + o_b, LDB, WORK, U + ST1 + o_work, N, WORK, VT + ST1 + o_work, IWORK, K + ST1 + o_iwork , WORK, DIFL + ST1 + o_work, WORK, DIFR + ST1 + o_work, WORK, Z + ST1 + o_work, WORK, POLES + ST1 + o_work, IWORK, GIVPTR + ST1 + o_iwork, IWORK, GIVCOL + ST1 + o_iwork , N, IWORK, PERM + ST1 + o_iwork, WORK, GIVNUM + ST1 + o_work, WORK, C + ST1 + o_work, WORK, S + ST1 + o_work, ref WORK, NWORK + o_work , ref IWORK, IWK + o_iwork, ref INFO); if (INFO != 0) { return; } } } } // * // * Unscale and sort the singular values. // * this._dlascl.Run("G", 0, 0, ONE, ORGNRM, N , 1, ref D, offset_d, N, ref INFO); this._dlasrt.Run("D", N, ref D, offset_d, ref INFO); this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N , NRHS, ref B, offset_b, LDB, ref INFO); // * return; // * // * End of DLALSD // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DLACON estimates the 1-norm of a square, real matrix A. /// Reverse communication is used for evaluating matrix-vector products. /// ///</summary> /// <param name="N"> /// (input) INTEGER /// The order of the matrix. N .GE. 1. ///</param> /// <param name="V"> /// (workspace) DOUBLE PRECISION array, dimension (N) /// On the final return, V = A*W, where EST = norm(V)/norm(W) /// (W is not returned). ///</param> /// <param name="X"> /// (input/output) DOUBLE PRECISION array, dimension (N) /// On an intermediate return, X should be overwritten by /// A * X, if KASE=1, /// A' * X, if KASE=2, /// and DLACON must be re-called with all the other parameters /// unchanged. ///</param> /// <param name="ISGN"> /// (workspace) INTEGER array, dimension (N) ///</param> /// <param name="EST"> /// (output) DOUBLE PRECISION /// An estimate (a lower bound) for norm(A). ///</param> /// <param name="KASE"> /// (input/output) INTEGER /// On the initial call to DLACON, KASE should be 0. /// On an intermediate return, KASE will be 1 or 2, indicating /// whether X should be overwritten by A * X or A' * X. /// On the final return from DLACON, KASE will again be 0. ///</param> public void Run(int N, ref double[] V, int offset_v, ref double[] X, int offset_x, ref int[] ISGN, int offset_isgn, ref double EST, ref int KASE) { #region Array Index Correction int o_v = -1 + offset_v; int o_x = -1 + offset_x; int o_isgn = -1 + offset_isgn; #endregion #region Prolog // * // * -- LAPACK auxiliary routine (version 3.0) -- // * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., // * Courant Institute, Argonne National Lab, and Rice University // * February 29, 1992 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLACON estimates the 1-norm of a square, real matrix A. // * Reverse communication is used for evaluating matrix-vector products. // * // * Arguments // * ========= // * // * N (input) INTEGER // * The order of the matrix. N >= 1. // * // * V (workspace) DOUBLE PRECISION array, dimension (N) // * On the final return, V = A*W, where EST = norm(V)/norm(W) // * (W is not returned). // * // * X (input/output) DOUBLE PRECISION array, dimension (N) // * On an intermediate return, X should be overwritten by // * A * X, if KASE=1, // * A' * X, if KASE=2, // * and DLACON must be re-called with all the other parameters // * unchanged. // * // * ISGN (workspace) INTEGER array, dimension (N) // * // * EST (output) DOUBLE PRECISION // * An estimate (a lower bound) for norm(A). // * // * KASE (input/output) INTEGER // * On the initial call to DLACON, KASE should be 0. // * On an intermediate return, KASE will be 1 or 2, indicating // * whether X should be overwritten by A * X or A' * X. // * On the final return from DLACON, KASE will again be 0. // * // * Further Details // * ======= ======= // * // * Contributed by Nick Higham, University of Manchester. // * Originally named SONEST, dated March 16, 1988. // * // * Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of // * a real or complex matrix, with applications to condition estimation", // * ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, DBLE, NINT, SIGN; // * .. // * .. Save statement .. // * .. // * .. Executable Statements .. // * #endregion #region Body if (KASE == 0) { for (I = 1; I <= N; I++) { X[I + o_x] = ONE / Convert.ToDouble(N); } KASE = 1; JUMP = 1; return; } // * switch (JUMP) { case 1: goto LABEL20; case 2: goto LABEL40; case 3: goto LABEL70; case 4: goto LABEL110; case 5: goto LABEL140; } // * // * ................ ENTRY (JUMP = 1) // * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY A*X. // * LABEL20 :; if (N == 1) { V[1 + o_v] = X[1 + o_x]; EST = Math.Abs(V[1 + o_v]); // * ... QUIT goto LABEL150; } EST = this._dasum.Run(N, X, offset_x, 1); // * for (I = 1; I <= N; I++) { X[I + o_x] = FortranLib.Sign(ONE, X[I + o_x]); ISGN[I + o_isgn] = (int)Math.Round(X[I + o_x]); } KASE = 2; JUMP = 2; return; // * // * ................ ENTRY (JUMP = 2) // * FIRST ITERATION. X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. // * LABEL40 :; J = this._idamax.Run(N, X, offset_x, 1); ITER = 2; // * // * MAIN LOOP - ITERATIONS 2,3,...,ITMAX. // * LABEL50 :; for (I = 1; I <= N; I++) { X[I + o_x] = ZERO; } X[J + o_x] = ONE; KASE = 1; JUMP = 3; return; // * // * ................ ENTRY (JUMP = 3) // * X HAS BEEN OVERWRITTEN BY A*X. // * LABEL70 :; this._dcopy.Run(N, X, offset_x, 1, ref V, offset_v, 1); ESTOLD = EST; EST = this._dasum.Run(N, V, offset_v, 1); for (I = 1; I <= N; I++) { if (Math.Round(FortranLib.Sign(ONE, X[I + o_x])) != ISGN[I + o_isgn]) { goto LABEL90; } } // * REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. goto LABEL120; // * LABEL90 :; // * TEST FOR CYCLING. if (EST <= ESTOLD) { goto LABEL120; } // * for (I = 1; I <= N; I++) { X[I + o_x] = FortranLib.Sign(ONE, X[I + o_x]); ISGN[I + o_isgn] = (int)Math.Round(X[I + o_x]); } KASE = 2; JUMP = 4; return; // * // * ................ ENTRY (JUMP = 4) // * X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. // * LABEL110 :; JLAST = J; J = this._idamax.Run(N, X, offset_x, 1); if ((X[JLAST + o_x] != Math.Abs(X[J + o_x])) && (ITER < ITMAX)) { ITER += 1; goto LABEL50; } // * // * ITERATION COMPLETE. FINAL STAGE. // * LABEL120 :; ALTSGN = ONE; for (I = 1; I <= N; I++) { X[I + o_x] = ALTSGN * (ONE + Convert.ToDouble(I - 1) / Convert.ToDouble(N - 1)); ALTSGN = -ALTSGN; } KASE = 1; JUMP = 5; return; // * // * ................ ENTRY (JUMP = 5) // * X HAS BEEN OVERWRITTEN BY A*X. // * LABEL140 :; TEMP = TWO * (this._dasum.Run(N, X, offset_x, 1) / Convert.ToDouble(3 * N)); if (TEMP > EST) { this._dcopy.Run(N, X, offset_x, 1, ref V, offset_v, 1); EST = TEMP; } // * LABEL150 :; KASE = 0; return; // * // * End of DLACON // * #endregion }
public void Run(int N, IFAREN FCN, ref double X, ref double[] Y, int offset_y, double XEND, ref double HMAX , ref double H, double[] RTOL, int offset_rtol, double[] ATOL, int offset_atol, int ITOL, int IPRINT, ISOLOUT SOLOUT , int IOUT, ref int IDID, int NMAX, double UROUND, int METH, int NSTIFF , double SAFE, double BETA, double FAC1, double FAC2, ref double[] Y1, int offset_y1, ref double[] K1, int offset_k1 , ref double[] K2, int offset_k2, ref double[] K3, int offset_k3, ref double[] K4, int offset_k4, ref double[] K5, int offset_k5, ref double[] K6, int offset_k6, ref double[] YSTI, int offset_ysti , ref double[] CONT, int offset_cont, int[] ICOMP, int offset_icomp, int NRD, double[] RPAR, int offset_rpar, int[] IPAR, int offset_ipar, ref int NFCN , ref int NSTEP, ref int NACCPT, ref int NREJCT) { #region Variables bool REJECT = false; bool LAST = false; #endregion #region Implicit Variables double FACOLD = 0; double EXPO1 = 0; double FACC1 = 0; double FACC2 = 0; double POSNEG = 0; double ATOLI = 0; double RTOLI = 0; double HLAMB = 0; int IASTI = 0; int IORD = 0; int IRTRN = 0; int I = 0; double A21 = 0; double A31 = 0; double A32 = 0; double A41 = 0; double A42 = 0; double A43 = 0; double A51 = 0; double A52 = 0; double A53 = 0; double A54 = 0; double A61 = 0; double A62 = 0; double A63 = 0; double A64 = 0; double A65 = 0; double XPH = 0; double A71 = 0; double A73 = 0; double A74 = 0; double A75 = 0; double A76 = 0; int J = 0; double D1 = 0; double D3 = 0; double D4 = 0; double D5 = 0; double D6 = 0; double D7 = 0; double E1 = 0; double E3 = 0; double E4 = 0; double E5 = 0; double E6 = 0; double E7 = 0; double ERR = 0; double SK = 0; double FAC11 = 0; double FAC = 0; double HNEW = 0; double STNUM = 0; double STDEN = 0; int NONSTI = 0; double YD0 = 0; double YDIFF = 0; double BSPL = 0; double C2 = 0; double C3 = 0; double C4 = 0; double C5 = 0; #endregion #region Array Index Correction int o_y = -1 + offset_y; int o_rtol = -1 + offset_rtol; int o_atol = -1 + offset_atol; int o_y1 = -1 + offset_y1; int o_k1 = -1 + offset_k1; int o_k2 = -1 + offset_k2; int o_k3 = -1 + offset_k3; int o_k4 = -1 + offset_k4; int o_k5 = -1 + offset_k5; int o_k6 = -1 + offset_k6; int o_ysti = -1 + offset_ysti; int o_cont = -1 + offset_cont; int o_icomp = -1 + offset_icomp; int o_rpar = -1 + offset_rpar; int o_ipar = -1 + offset_ipar; #endregion // C ---------------------------------------------------------- // C CORE INTEGRATOR FOR DOPRI5 // C PARAMETERS SAME AS IN DOPRI5 WITH WORKSPACE ADDED // C ---------------------------------------------------------- // C DECLARATIONS // C ---------------------------------------------------------- // C *** *** *** *** *** *** *** // C INITIALISATIONS // C *** *** *** *** *** *** *** #region Body if (METH == 1) { this._cdopri.Run(ref C2, ref C3, ref C4, ref C5, ref E1, ref E3 , ref E4, ref E5, ref E6, ref E7, ref A21, ref A31 , ref A32, ref A41, ref A42, ref A43, ref A51, ref A52 , ref A53, ref A54, ref A61, ref A62, ref A63, ref A64 , ref A65, ref A71, ref A73, ref A74, ref A75, ref A76 , ref D1, ref D3, ref D4, ref D5, ref D6, ref D7); } FACOLD = 1.0E-4; EXPO1 = 0.2E0 - BETA * 0.75E0; FACC1 = 1.0E0 / FAC1; FACC2 = 1.0E0 / FAC2; POSNEG = FortranLib.Sign(1.0E0, XEND - X); // C --- INITIAL PREPARATIONS ATOLI = ATOL[1 + o_atol]; RTOLI = RTOL[1 + o_rtol]; LAST = false; HLAMB = 0.0E0; IASTI = 0; FCN.Run(N, X, Y, offset_y, ref K1, offset_k1, RPAR, offset_rpar, IPAR[1 + o_ipar]); HMAX = Math.Abs(HMAX); IORD = 5; if (H == 0.0E0) { H = this._hinit.Run(N, FCN, X, Y, offset_y, XEND, POSNEG, K1, offset_k1, ref K2, offset_k2, ref K3, offset_k3, IORD, HMAX, ATOL, offset_atol, RTOL, offset_rtol, ITOL, RPAR, offset_rpar, IPAR, offset_ipar); } NFCN += 2; REJECT = false; XOLD.v = X; if (IOUT != 0) { IRTRN = 1; HOUT.v = H; SOLOUT.Run(NACCPT + 1, XOLD.v, X, Y, offset_y, N, CONT, offset_cont , ICOMP, offset_icomp, NRD, RPAR, offset_rpar, IPAR[1 + o_ipar], IRTRN); if (IRTRN < 0) { goto LABEL79; } } else { IRTRN = 0; } // C --- BASIC INTEGRATION STEP LABEL1 :; if (NSTEP > NMAX) { goto LABEL78; } if (0.1E0 * Math.Abs(H) <= Math.Abs(X) * UROUND) { goto LABEL77; } if ((X + 1.01E0 * H - XEND) * POSNEG > 0.0E0) { H = XEND - X; LAST = true; } NSTEP += 1; // C --- THE FIRST 6 STAGES if (IRTRN >= 2) { FCN.Run(N, X, Y, offset_y, ref K1, offset_k1, RPAR, offset_rpar, IPAR[1 + o_ipar]); } for (I = 1; I <= N; I++) { Y1[I + o_y1] = Y[I + o_y] + H * A21 * K1[I + o_k1]; } FCN.Run(N, X + C2 * H, Y1, offset_y1, ref K2, offset_k2, RPAR, offset_rpar, IPAR[1 + o_ipar]); for (I = 1; I <= N; I++) { Y1[I + o_y1] = Y[I + o_y] + H * (A31 * K1[I + o_k1] + A32 * K2[I + o_k2]); } FCN.Run(N, X + C3 * H, Y1, offset_y1, ref K3, offset_k3, RPAR, offset_rpar, IPAR[1 + o_ipar]); for (I = 1; I <= N; I++) { Y1[I + o_y1] = Y[I + o_y] + H * (A41 * K1[I + o_k1] + A42 * K2[I + o_k2] + A43 * K3[I + o_k3]); } FCN.Run(N, X + C4 * H, Y1, offset_y1, ref K4, offset_k4, RPAR, offset_rpar, IPAR[1 + o_ipar]); for (I = 1; I <= N; I++) { Y1[I + o_y1] = Y[I + o_y] + H * (A51 * K1[I + o_k1] + A52 * K2[I + o_k2] + A53 * K3[I + o_k3] + A54 * K4[I + o_k4]); } FCN.Run(N, X + C5 * H, Y1, offset_y1, ref K5, offset_k5, RPAR, offset_rpar, IPAR[1 + o_ipar]); for (I = 1; I <= N; I++) { YSTI[I + o_ysti] = Y[I + o_y] + H * (A61 * K1[I + o_k1] + A62 * K2[I + o_k2] + A63 * K3[I + o_k3] + A64 * K4[I + o_k4] + A65 * K5[I + o_k5]); } XPH = X + H; FCN.Run(N, XPH, YSTI, offset_ysti, ref K6, offset_k6, RPAR, offset_rpar, IPAR[1 + o_ipar]); for (I = 1; I <= N; I++) { Y1[I + o_y1] = Y[I + o_y] + H * (A71 * K1[I + o_k1] + A73 * K3[I + o_k3] + A74 * K4[I + o_k4] + A75 * K5[I + o_k5] + A76 * K6[I + o_k6]); } FCN.Run(N, XPH, Y1, offset_y1, ref K2, offset_k2, RPAR, offset_rpar, IPAR[1 + o_ipar]); if (IOUT >= 2) { for (J = 1; J <= NRD; J++) { I = ICOMP[J + o_icomp]; CONT[4 * NRD + J + o_cont] = H * (D1 * K1[I + o_k1] + D3 * K3[I + o_k3] + D4 * K4[I + o_k4] + D5 * K5[I + o_k5] + D6 * K6[I + o_k6] + D7 * K2[I + o_k2]); } } for (I = 1; I <= N; I++) { K4[I + o_k4] = (E1 * K1[I + o_k1] + E3 * K3[I + o_k3] + E4 * K4[I + o_k4] + E5 * K5[I + o_k5] + E6 * K6[I + o_k6] + E7 * K2[I + o_k2]) * H; } NFCN += 6; // C --- ERROR ESTIMATION ERR = 0.0E0; if (ITOL == 0) { for (I = 1; I <= N; I++) { SK = ATOLI + RTOLI * Math.Max(Math.Abs(Y[I + o_y]), Math.Abs(Y1[I + o_y1])); ERR += Math.Pow(K4[I + o_k4] / SK, 2); } } else { for (I = 1; I <= N; I++) { SK = ATOL[I + o_atol] + RTOL[I + o_rtol] * Math.Max(Math.Abs(Y[I + o_y]), Math.Abs(Y1[I + o_y1])); ERR += Math.Pow(K4[I + o_k4] / SK, 2); } } ERR = Math.Sqrt(ERR / N); // C --- COMPUTATION OF HNEW FAC11 = Math.Pow(ERR, EXPO1); // C --- LUND-STABILIZATION FAC = FAC11 / Math.Pow(FACOLD, BETA); // C --- WE REQUIRE FAC1 <= HNEW/H <= FAC2 FAC = Math.Max(FACC2, Math.Min(FACC1, FAC / SAFE)); HNEW = H / FAC; if (ERR <= 1.0E0) { // C --- STEP IS ACCEPTED FACOLD = Math.Max(ERR, 1.0E-4); NACCPT += 1; // C ------- STIFFNESS DETECTION if (FortranLib.Mod(NACCPT, NSTIFF) == 0 || IASTI > 0) { STNUM = 0.0E0; STDEN = 0.0E0; for (I = 1; I <= N; I++) { STNUM += Math.Pow(K2[I + o_k2] - K6[I + o_k6], 2); STDEN += Math.Pow(Y1[I + o_y1] - YSTI[I + o_ysti], 2); } if (STDEN > 0.0E0) { HLAMB = H * Math.Sqrt(STNUM / STDEN); } if (HLAMB > 3.25E0) { NONSTI = 0; IASTI += 1; if (IASTI == 15) { if (IPRINT > 0) { ; //ERROR-ERRORWRITE(IPRINT,*)' THE PROBLEM SEEMS TO BECOME STIFF AT X = ',X } if (IPRINT <= 0) { goto LABEL76; } } } else { NONSTI += 1; if (NONSTI == 6) { IASTI = 0; } } } if (IOUT >= 2) { for (J = 1; J <= NRD; J++) { I = ICOMP[J + o_icomp]; YD0 = Y[I + o_y]; YDIFF = Y1[I + o_y1] - YD0; BSPL = H * K1[I + o_k1] - YDIFF; CONT[J + o_cont] = Y[I + o_y]; CONT[NRD + J + o_cont] = YDIFF; CONT[2 * NRD + J + o_cont] = BSPL; CONT[3 * NRD + J + o_cont] = -H * K2[I + o_k2] + YDIFF - BSPL; } } for (I = 1; I <= N; I++) { K1[I + o_k1] = K2[I + o_k2]; Y[I + o_y] = Y1[I + o_y1]; } XOLD.v = X; X = XPH; if (IOUT != 0) { HOUT.v = H; SOLOUT.Run(NACCPT + 1, XOLD.v, X, Y, offset_y, N, CONT, offset_cont , ICOMP, offset_icomp, NRD, RPAR, offset_rpar, IPAR[1 + o_ipar], IRTRN); if (IRTRN < 0) { goto LABEL79; } } // C ------- NORMAL EXIT if (LAST) { H = HNEW; IDID = 1; return; } if (Math.Abs(HNEW) > HMAX) { HNEW = POSNEG * HMAX; } if (REJECT) { HNEW = POSNEG * Math.Min(Math.Abs(HNEW), Math.Abs(H)); } REJECT = false; } else { // C --- STEP IS REJECTED HNEW = H / Math.Min(FACC1, FAC11 / SAFE); REJECT = true; if (NACCPT >= 1) { NREJCT += 1; } LAST = false; } H = HNEW; goto LABEL1; // C --- FAIL EXIT LABEL76 :; IDID = -4; return; LABEL77 :; if (IPRINT > 0) { ; //ERROR-ERRORWRITE(IPRINT,979)X } if (IPRINT > 0) { ; //ERROR-ERRORWRITE(IPRINT,*)' STEP SIZE T0O SMALL, H=',H } IDID = -3; return; LABEL78 :; if (IPRINT > 0) { ; //ERROR-ERRORWRITE(IPRINT,979)X } if (IPRINT > 0) { ; //ERROR-ERRORWRITE(IPRINT,*)' MORE THAN NMAX =',NMAX,'STEPS ARE NEEDED' } IDID = -2; return; LABEL79 :; if (IPRINT > 0) { ; //ERROR-ERRORWRITE(IPRINT,979)X } IDID = 2; return; #endregion }
/// <summary> /// Purpose /// ======= /// /// DLAED3 finds the roots of the secular equation, as defined by the /// values in D, W, and RHO, between 1 and K. It makes the /// appropriate calls to DLAED4 and then updates the eigenvectors by /// multiplying the matrix of eigenvectors of the pair of eigensystems /// being combined by the matrix of eigenvectors of the K-by-K system /// which is solved here. /// /// This code makes very mild assumptions about floating point /// arithmetic. It will work on machines with a guard digit in /// add/subtract, or on those binary machines without guard digits /// which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. /// It could conceivably fail on hexadecimal or decimal machines /// without guard digits, but we know of none. /// ///</summary> /// <param name="K"> /// (input) INTEGER /// The number of terms in the rational function to be solved by /// DLAED4. K .GE. 0. ///</param> /// <param name="N"> /// (input) INTEGER /// The number of rows and columns in the Q matrix. /// N .GE. K (deflation may result in N.GT.K). ///</param> /// <param name="N1"> /// (input) INTEGER /// The location of the last eigenvalue in the leading submatrix. /// min(1,N) .LE. N1 .LE. N/2. ///</param> /// <param name="D"> /// (output) DOUBLE PRECISION array, dimension (N) /// D(I) contains the updated eigenvalues for /// 1 .LE. I .LE. K. ///</param> /// <param name="Q"> /// (output) DOUBLE PRECISION array, dimension (LDQ,N) /// Initially the first K columns are used as workspace. /// On output the columns 1 to K contain /// the updated eigenvectors. ///</param> /// <param name="LDQ"> /// (input) INTEGER /// The leading dimension of the array Q. LDQ .GE. max(1,N). ///</param> /// <param name="RHO"> /// (input) DOUBLE PRECISION /// The value of the parameter in the rank one update equation. /// RHO .GE. 0 required. ///</param> /// <param name="DLAMDA"> /// (input/output) DOUBLE PRECISION array, dimension (K) /// The first K elements of this array contain the old roots /// of the deflated updating problem. These are the poles /// of the secular equation. May be changed on output by /// having lowest order bit set to zero on Cray X-MP, Cray Y-MP, /// Cray-2, or Cray C-90, as described above. ///</param> /// <param name="Q2"> /// (input) DOUBLE PRECISION array, dimension (LDQ2, N) /// The first K columns of this matrix contain the non-deflated /// eigenvectors for the split problem. ///</param> /// <param name="INDX"> /// (input) INTEGER array, dimension (N) /// The permutation used to arrange the columns of the deflated /// Q matrix into three groups (see DLAED2). /// The rows of the eigenvectors found by DLAED4 must be likewise /// permuted before the matrix multiply can take place. ///</param> /// <param name="CTOT"> /// (input) INTEGER array, dimension (4) /// A count of the total number of the various types of columns /// in Q, as described in INDX. The fourth column type is any /// column which has been deflated. ///</param> /// <param name="W"> /// (input/output) DOUBLE PRECISION array, dimension (K) /// The first K elements of this array contain the components /// of the deflation-adjusted updating vector. Destroyed on /// output. ///</param> /// <param name="S"> /// (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K /// Will contain the eigenvectors of the repaired matrix which /// will be multiplied by the previously accumulated eigenvectors /// to update the system. ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit. /// .LT. 0: if INFO = -i, the i-th argument had an illegal value. /// .GT. 0: if INFO = 1, an eigenvalue did not converge ///</param> public void Run(int K, int N, int N1, ref double[] D, int offset_d, ref double[] Q, int offset_q, int LDQ , double RHO, ref double[] DLAMDA, int offset_dlamda, double[] Q2, int offset_q2, int[] INDX, int offset_indx, int[] CTOT, int offset_ctot, ref double[] W, int offset_w , ref double[] S, int offset_s, ref int INFO) { #region Variables int I = 0; int II = 0; int IQ2 = 0; int J = 0; int N12 = 0; int N2 = 0; int N23 = 0; double TEMP = 0; #endregion #region Implicit Variables int Q_J = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_q = -1 - LDQ + offset_q; int o_dlamda = -1 + offset_dlamda; int o_q2 = -1 + offset_q2; int o_indx = -1 + offset_indx; int o_ctot = -1 + offset_ctot; int o_w = -1 + offset_w; int o_s = -1 + offset_s; #endregion #region Prolog // * // * -- LAPACK routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLAED3 finds the roots of the secular equation, as defined by the // * values in D, W, and RHO, between 1 and K. It makes the // * appropriate calls to DLAED4 and then updates the eigenvectors by // * multiplying the matrix of eigenvectors of the pair of eigensystems // * being combined by the matrix of eigenvectors of the K-by-K system // * which is solved here. // * // * This code makes very mild assumptions about floating point // * arithmetic. It will work on machines with a guard digit in // * add/subtract, or on those binary machines without guard digits // * which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. // * It could conceivably fail on hexadecimal or decimal machines // * without guard digits, but we know of none. // * // * Arguments // * ========= // * // * K (input) INTEGER // * The number of terms in the rational function to be solved by // * DLAED4. K >= 0. // * // * N (input) INTEGER // * The number of rows and columns in the Q matrix. // * N >= K (deflation may result in N>K). // * // * N1 (input) INTEGER // * The location of the last eigenvalue in the leading submatrix. // * min(1,N) <= N1 <= N/2. // * // * D (output) DOUBLE PRECISION array, dimension (N) // * D(I) contains the updated eigenvalues for // * 1 <= I <= K. // * // * Q (output) DOUBLE PRECISION array, dimension (LDQ,N) // * Initially the first K columns are used as workspace. // * On output the columns 1 to K contain // * the updated eigenvectors. // * // * LDQ (input) INTEGER // * The leading dimension of the array Q. LDQ >= max(1,N). // * // * RHO (input) DOUBLE PRECISION // * The value of the parameter in the rank one update equation. // * RHO >= 0 required. // * // * DLAMDA (input/output) DOUBLE PRECISION array, dimension (K) // * The first K elements of this array contain the old roots // * of the deflated updating problem. These are the poles // * of the secular equation. May be changed on output by // * having lowest order bit set to zero on Cray X-MP, Cray Y-MP, // * Cray-2, or Cray C-90, as described above. // * // * Q2 (input) DOUBLE PRECISION array, dimension (LDQ2, N) // * The first K columns of this matrix contain the non-deflated // * eigenvectors for the split problem. // * // * INDX (input) INTEGER array, dimension (N) // * The permutation used to arrange the columns of the deflated // * Q matrix into three groups (see DLAED2). // * The rows of the eigenvectors found by DLAED4 must be likewise // * permuted before the matrix multiply can take place. // * // * CTOT (input) INTEGER array, dimension (4) // * A count of the total number of the various types of columns // * in Q, as described in INDX. The fourth column type is any // * column which has been deflated. // * // * W (input/output) DOUBLE PRECISION array, dimension (K) // * The first K elements of this array contain the components // * of the deflation-adjusted updating vector. Destroyed on // * output. // * // * S (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K // * Will contain the eigenvectors of the repaired matrix which // * will be multiplied by the previously accumulated eigenvectors // * to update the system. // * // * LDS (input) INTEGER // * The leading dimension of S. LDS >= max(1,K). // * // * INFO (output) INTEGER // * = 0: successful exit. // * < 0: if INFO = -i, the i-th argument had an illegal value. // * > 0: if INFO = 1, an eigenvalue did not converge // * // * Further Details // * =============== // * // * Based on contributions by // * Jeff Rutter, Computer Science Division, University of California // * at Berkeley, USA // * Modified by Francoise Tisseur, University of Tennessee. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC MAX, SIGN, SQRT; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * if (K < 0) { INFO = -1; } else { if (N < K) { INFO = -2; } else { if (LDQ < Math.Max(1, N)) { INFO = -6; } } } if (INFO != 0) { this._xerbla.Run("DLAED3", -INFO); return; } // * // * Quick return if possible // * if (K == 0) { return; } // * // * Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can // * be computed with high relative accuracy (barring over/underflow). // * This is a problem on machines without a guard digit in // * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). // * The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), // * which on any of these machines zeros out the bottommost // * bit of DLAMDA(I) if it is 1; this makes the subsequent // * subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation // * occurs. On binary machines with a guard digit (almost all // * machines) it does not change DLAMDA(I) at all. On hexadecimal // * and decimal machines with a guard digit, it slightly // * changes the bottommost bits of DLAMDA(I). It does not account // * for hexadecimal or decimal machines without guard digits // * (we know of none). We use a subroutine call to compute // * 2*DLAMBDA(I) to prevent optimizing compilers from eliminating // * this code. // * for (I = 1; I <= K; I++) { DLAMDA[I + o_dlamda] = this._dlamc3.Run(DLAMDA[I + o_dlamda], DLAMDA[I + o_dlamda]) - DLAMDA[I + o_dlamda]; } // * for (J = 1; J <= K; J++) { this._dlaed4.Run(K, J, DLAMDA, offset_dlamda, W, offset_w, ref Q, 1 + J * LDQ + o_q, RHO , ref D[J + o_d], ref INFO); // * // * If the zero finder fails, the computation is terminated. // * if (INFO != 0) { goto LABEL120; } } // * if (K == 1) { goto LABEL110; } if (K == 2) { for (J = 1; J <= K; J++) { W[1 + o_w] = Q[1 + J * LDQ + o_q]; W[2 + o_w] = Q[2 + J * LDQ + o_q]; II = INDX[1 + o_indx]; Q[1 + J * LDQ + o_q] = W[II + o_w]; II = INDX[2 + o_indx]; Q[2 + J * LDQ + o_q] = W[II + o_w]; } goto LABEL110; } // * // * Compute updated W. // * this._dcopy.Run(K, W, offset_w, 1, ref S, offset_s, 1); // * // * Initialize W(I) = Q(I,I) // * this._dcopy.Run(K, Q, offset_q, LDQ + 1, ref W, offset_w, 1); for (J = 1; J <= K; J++) { Q_J = J * LDQ + o_q; for (I = 1; I <= J - 1; I++) { W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda])); } Q_J = J * LDQ + o_q; for (I = J + 1; I <= K; I++) { W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda])); } } for (I = 1; I <= K; I++) { W[I + o_w] = FortranLib.Sign(Math.Sqrt(-W[I + o_w]), S[I + o_s]); } // * // * Compute eigenvectors of the modified rank-1 modification. // * for (J = 1; J <= K; J++) { Q_J = J * LDQ + o_q; for (I = 1; I <= K; I++) { S[I + o_s] = W[I + o_w] / Q[I + Q_J]; } TEMP = this._dnrm2.Run(K, S, offset_s, 1); Q_J = J * LDQ + o_q; for (I = 1; I <= K; I++) { II = INDX[I + o_indx]; Q[I + Q_J] = S[II + o_s] / TEMP; } } // * // * Compute the updated eigenvectors. // * LABEL110 :; // * N2 = N - N1; N12 = CTOT[1 + o_ctot] + CTOT[2 + o_ctot]; N23 = CTOT[2 + o_ctot] + CTOT[3 + o_ctot]; // * this._dlacpy.Run("A", N23, K, Q, CTOT[1 + o_ctot] + 1 + 1 * LDQ + o_q, LDQ, ref S, offset_s , N23); IQ2 = N1 * N12 + 1; if (N23 != 0) { this._dgemm.Run("N", "N", N2, K, N23, ONE , Q2, IQ2 + o_q2, N2, S, offset_s, N23, ZERO, ref Q, N1 + 1 + 1 * LDQ + o_q , LDQ); } else { this._dlaset.Run("A", N2, K, ZERO, ZERO, ref Q, N1 + 1 + 1 * LDQ + o_q , LDQ); } // * this._dlacpy.Run("A", N12, K, Q, offset_q, LDQ, ref S, offset_s , N12); if (N12 != 0) { this._dgemm.Run("N", "N", N1, K, N12, ONE , Q2, offset_q2, N1, S, offset_s, N12, ZERO, ref Q, offset_q , LDQ); } else { this._dlaset.Run("A", N1, K, ZERO, ZERO, ref Q, 1 + 1 * LDQ + o_q , LDQ); } // * // * LABEL120 :; return; // * // * End of DLAED3 // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DLASD3 finds all the square roots of the roots of the secular /// equation, as defined by the values in D and Z. It makes the /// appropriate calls to DLASD4 and then updates the singular /// vectors by matrix multiplication. /// /// This code makes very mild assumptions about floating point /// arithmetic. It will work on machines with a guard digit in /// add/subtract, or on those binary machines without guard digits /// which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. /// It could conceivably fail on hexadecimal or decimal machines /// without guard digits, but we know of none. /// /// DLASD3 is called from DLASD1. /// ///</summary> /// <param name="NL"> /// (input) INTEGER /// The row dimension of the upper block. NL .GE. 1. ///</param> /// <param name="NR"> /// (input) INTEGER /// The row dimension of the lower block. NR .GE. 1. ///</param> /// <param name="SQRE"> /// (input) INTEGER /// = 0: the lower block is an NR-by-NR square matrix. /// = 1: the lower block is an NR-by-(NR+1) rectangular matrix. /// /// The bidiagonal matrix has N = NL + NR + 1 rows and /// M = N + SQRE .GE. N columns. ///</param> /// <param name="K"> /// (input) INTEGER /// The size of the secular equation, 1 =.LT. K = .LT. N. ///</param> /// <param name="D"> /// (output) DOUBLE PRECISION array, dimension(K) /// On exit the square roots of the roots of the secular equation, /// in ascending order. ///</param> /// <param name="Q"> /// (workspace) DOUBLE PRECISION array, /// dimension at least (LDQ,K). ///</param> /// <param name="LDQ"> /// (input) INTEGER /// The leading dimension of the array Q. LDQ .GE. K. ///</param> /// <param name="DSIGMA"> /// (input) DOUBLE PRECISION array, dimension(K) /// The first K elements of this array contain the old roots /// of the deflated updating problem. These are the poles /// of the secular equation. ///</param> /// <param name="U"> /// (output) DOUBLE PRECISION array, dimension (LDU, N) /// The last N - K columns of this matrix contain the deflated /// left singular vectors. ///</param> /// <param name="LDU"> /// (input) INTEGER /// The leading dimension of the array U. LDU .GE. N. ///</param> /// <param name="U2"> /// (input/output) DOUBLE PRECISION array, dimension (LDU2, N) /// The first K columns of this matrix contain the non-deflated /// left singular vectors for the split problem. ///</param> /// <param name="LDU2"> /// (input) INTEGER /// The leading dimension of the array U2. LDU2 .GE. N. ///</param> /// <param name="VT"> /// (output) DOUBLE PRECISION array, dimension (LDVT, M) /// The last M - K columns of VT' contain the deflated /// right singular vectors. ///</param> /// <param name="LDVT"> /// (input) INTEGER /// The leading dimension of the array VT. LDVT .GE. N. ///</param> /// <param name="VT2"> /// (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) /// The first K columns of VT2' contain the non-deflated /// right singular vectors for the split problem. ///</param> /// <param name="LDVT2"> /// (input) INTEGER /// The leading dimension of the array VT2. LDVT2 .GE. N. ///</param> /// <param name="IDXC"> /// (input) INTEGER array, dimension ( N ) /// The permutation used to arrange the columns of U (and rows of /// VT) into three groups: the first group contains non-zero /// entries only at and above (or before) NL +1; the second /// contains non-zero entries only at and below (or after) NL+2; /// and the third is dense. The first column of U and the row of /// VT are treated separately, however. /// /// The rows of the singular vectors found by DLASD4 /// must be likewise permuted before the matrix multiplies can /// take place. ///</param> /// <param name="CTOT"> /// (input) INTEGER array, dimension ( 4 ) /// A count of the total number of the various types of columns /// in U (or rows in VT), as described in IDXC. The fourth column /// type is any column which has been deflated. ///</param> /// <param name="Z"> /// (input) DOUBLE PRECISION array, dimension (K) /// The first K elements of this array contain the components /// of the deflation-adjusted updating row vector. ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit. /// .LT. 0: if INFO = -i, the i-th argument had an illegal value. /// .GT. 0: if INFO = 1, an singular value did not converge ///</param> public void Run(int NL, int NR, int SQRE, int K, ref double[] D, int offset_d, ref double[] Q, int offset_q , int LDQ, ref double[] DSIGMA, int offset_dsigma, ref double[] U, int offset_u, int LDU, double[] U2, int offset_u2, int LDU2 , ref double[] VT, int offset_vt, int LDVT, ref double[] VT2, int offset_vt2, int LDVT2, int[] IDXC, int offset_idxc, int[] CTOT, int offset_ctot , ref double[] Z, int offset_z, ref int INFO) { #region Variables int CTEMP = 0; int I = 0; int J = 0; int JC = 0; int KTEMP = 0; int M = 0; int N = 0; int NLP1 = 0; int NLP2 = 0; int NRP1 = 0; double RHO = 0; double TEMP = 0; #endregion #region Implicit Variables int U_1 = 0; int U2_1 = 0; int U_K = 0; int VT_K = 0; int VT_I = 0; int U_I = 0; int Q_I = 0; int Q_1 = 0; int Q_KTEMP = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_q = -1 - LDQ + offset_q; int o_dsigma = -1 + offset_dsigma; int o_u = -1 - LDU + offset_u; int o_u2 = -1 - LDU2 + offset_u2; int o_vt = -1 - LDVT + offset_vt; int o_vt2 = -1 - LDVT2 + offset_vt2; int o_idxc = -1 + offset_idxc; int o_ctot = -1 + offset_ctot; int o_z = -1 + offset_z; #endregion #region Prolog // * // * -- LAPACK auxiliary routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLASD3 finds all the square roots of the roots of the secular // * equation, as defined by the values in D and Z. It makes the // * appropriate calls to DLASD4 and then updates the singular // * vectors by matrix multiplication. // * // * This code makes very mild assumptions about floating point // * arithmetic. It will work on machines with a guard digit in // * add/subtract, or on those binary machines without guard digits // * which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. // * It could conceivably fail on hexadecimal or decimal machines // * without guard digits, but we know of none. // * // * DLASD3 is called from DLASD1. // * // * Arguments // * ========= // * // * NL (input) INTEGER // * The row dimension of the upper block. NL >= 1. // * // * NR (input) INTEGER // * The row dimension of the lower block. NR >= 1. // * // * SQRE (input) INTEGER // * = 0: the lower block is an NR-by-NR square matrix. // * = 1: the lower block is an NR-by-(NR+1) rectangular matrix. // * // * The bidiagonal matrix has N = NL + NR + 1 rows and // * M = N + SQRE >= N columns. // * // * K (input) INTEGER // * The size of the secular equation, 1 =< K = < N. // * // * D (output) DOUBLE PRECISION array, dimension(K) // * On exit the square roots of the roots of the secular equation, // * in ascending order. // * // * Q (workspace) DOUBLE PRECISION array, // * dimension at least (LDQ,K). // * // * LDQ (input) INTEGER // * The leading dimension of the array Q. LDQ >= K. // * // * DSIGMA (input) DOUBLE PRECISION array, dimension(K) // * The first K elements of this array contain the old roots // * of the deflated updating problem. These are the poles // * of the secular equation. // * // * U (output) DOUBLE PRECISION array, dimension (LDU, N) // * The last N - K columns of this matrix contain the deflated // * left singular vectors. // * // * LDU (input) INTEGER // * The leading dimension of the array U. LDU >= N. // * // * U2 (input/output) DOUBLE PRECISION array, dimension (LDU2, N) // * The first K columns of this matrix contain the non-deflated // * left singular vectors for the split problem. // * // * LDU2 (input) INTEGER // * The leading dimension of the array U2. LDU2 >= N. // * // * VT (output) DOUBLE PRECISION array, dimension (LDVT, M) // * The last M - K columns of VT' contain the deflated // * right singular vectors. // * // * LDVT (input) INTEGER // * The leading dimension of the array VT. LDVT >= N. // * // * VT2 (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) // * The first K columns of VT2' contain the non-deflated // * right singular vectors for the split problem. // * // * LDVT2 (input) INTEGER // * The leading dimension of the array VT2. LDVT2 >= N. // * // * IDXC (input) INTEGER array, dimension ( N ) // * The permutation used to arrange the columns of U (and rows of // * VT) into three groups: the first group contains non-zero // * entries only at and above (or before) NL +1; the second // * contains non-zero entries only at and below (or after) NL+2; // * and the third is dense. The first column of U and the row of // * VT are treated separately, however. // * // * The rows of the singular vectors found by DLASD4 // * must be likewise permuted before the matrix multiplies can // * take place. // * // * CTOT (input) INTEGER array, dimension ( 4 ) // * A count of the total number of the various types of columns // * in U (or rows in VT), as described in IDXC. The fourth column // * type is any column which has been deflated. // * // * Z (input) DOUBLE PRECISION array, dimension (K) // * The first K elements of this array contain the components // * of the deflation-adjusted updating row vector. // * // * INFO (output) INTEGER // * = 0: successful exit. // * < 0: if INFO = -i, the i-th argument had an illegal value. // * > 0: if INFO = 1, an singular value did not converge // * // * Further Details // * =============== // * // * Based on contributions by // * Ming Gu and Huan Ren, Computer Science Division, University of // * California at Berkeley, USA // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, SIGN, SQRT; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * if (NL < 1) { INFO = -1; } else { if (NR < 1) { INFO = -2; } else { if ((SQRE != 1) && (SQRE != 0)) { INFO = -3; } } } // * N = NL + NR + 1; M = N + SQRE; NLP1 = NL + 1; NLP2 = NL + 2; // * if ((K < 1) || (K > N)) { INFO = -4; } else { if (LDQ < K) { INFO = -7; } else { if (LDU < N) { INFO = -10; } else { if (LDU2 < N) { INFO = -12; } else { if (LDVT < M) { INFO = -14; } else { if (LDVT2 < M) { INFO = -16; } } } } } } if (INFO != 0) { this._xerbla.Run("DLASD3", -INFO); return; } // * // * Quick return if possible // * if (K == 1) { D[1 + o_d] = Math.Abs(Z[1 + o_z]); this._dcopy.Run(M, VT2, 1 + 1 * LDVT2 + o_vt2, LDVT2, ref VT, 1 + 1 * LDVT + o_vt, LDVT); if (Z[1 + o_z] > ZERO) { this._dcopy.Run(N, U2, 1 + 1 * LDU2 + o_u2, 1, ref U, 1 + 1 * LDU + o_u, 1); } else { U_1 = 1 * LDU + o_u; U2_1 = 1 * LDU2 + o_u2; for (I = 1; I <= N; I++) { U[I + U_1] = -U2[I + U2_1]; } } return; } // * // * Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can // * be computed with high relative accuracy (barring over/underflow). // * This is a problem on machines without a guard digit in // * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). // * The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), // * which on any of these machines zeros out the bottommost // * bit of DSIGMA(I) if it is 1; this makes the subsequent // * subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation // * occurs. On binary machines with a guard digit (almost all // * machines) it does not change DSIGMA(I) at all. On hexadecimal // * and decimal machines with a guard digit, it slightly // * changes the bottommost bits of DSIGMA(I). It does not account // * for hexadecimal or decimal machines without guard digits // * (we know of none). We use a subroutine call to compute // * 2*DSIGMA(I) to prevent optimizing compilers from eliminating // * this code. // * for (I = 1; I <= K; I++) { DSIGMA[I + o_dsigma] = this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGMA[I + o_dsigma]) - DSIGMA[I + o_dsigma]; } // * // * Keep a copy of Z. // * this._dcopy.Run(K, Z, offset_z, 1, ref Q, offset_q, 1); // * // * Normalize Z. // * RHO = this._dnrm2.Run(K, Z, offset_z, 1); this._dlascl.Run("G", 0, 0, RHO, ONE, K , 1, ref Z, offset_z, K, ref INFO); RHO *= RHO; // * // * Find the new singular values. // * for (J = 1; J <= K; J++) { this._dlasd4.Run(K, J, DSIGMA, offset_dsigma, Z, offset_z, ref U, 1 + J * LDU + o_u, RHO , ref D[J + o_d], ref VT, 1 + J * LDVT + o_vt, ref INFO); // * // * If the zero finder fails, the computation is terminated. // * if (INFO != 0) { return; } } // * // * Compute updated Z. // * U_K = K * LDU + o_u; VT_K = K * LDVT + o_vt; for (I = 1; I <= K; I++) { Z[I + o_z] = U[I + U_K] * VT[I + VT_K]; for (J = 1; J <= I - 1; J++) { Z[I + o_z] = Z[I + o_z] * (U[I + J * LDU + o_u] * VT[I + J * LDVT + o_vt] / (DSIGMA[I + o_dsigma] - DSIGMA[J + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + o_dsigma])); } for (J = I; J <= K - 1; J++) { Z[I + o_z] = Z[I + o_z] * (U[I + J * LDU + o_u] * VT[I + J * LDVT + o_vt] / (DSIGMA[I + o_dsigma] - DSIGMA[J + 1 + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + 1 + o_dsigma])); } Z[I + o_z] = FortranLib.Sign(Math.Sqrt(Math.Abs(Z[I + o_z])), Q[I + 1 * LDQ + o_q]); } // * // * Compute left singular vectors of the modified diagonal matrix, // * and store related information for the right singular vectors. // * for (I = 1; I <= K; I++) { VT[1 + I * LDVT + o_vt] = Z[1 + o_z] / U[1 + I * LDU + o_u] / VT[1 + I * LDVT + o_vt]; U[1 + I * LDU + o_u] = NEGONE; VT_I = I * LDVT + o_vt; U_I = I * LDU + o_u; for (J = 2; J <= K; J++) { VT[J + VT_I] = Z[J + o_z] / U[J + U_I] / VT[J + VT_I]; U[J + U_I] = DSIGMA[J + o_dsigma] * VT[J + VT_I]; } TEMP = this._dnrm2.Run(K, U, 1 + I * LDU + o_u, 1); Q[1 + I * LDQ + o_q] = U[1 + I * LDU + o_u] / TEMP; Q_I = I * LDQ + o_q; for (J = 2; J <= K; J++) { JC = IDXC[J + o_idxc]; Q[J + Q_I] = U[JC + I * LDU + o_u] / TEMP; } } // * // * Update the left singular vector matrix. // * if (K == 2) { this._dgemm.Run("N", "N", N, K, K, ONE , U2, offset_u2, LDU2, Q, offset_q, LDQ, ZERO, ref U, offset_u , LDU); goto LABEL100; } if (CTOT[1 + o_ctot] > 0) { this._dgemm.Run("N", "N", NL, K, CTOT[1 + o_ctot], ONE , U2, 1 + 2 * LDU2 + o_u2, LDU2, Q, 2 + 1 * LDQ + o_q, LDQ, ZERO, ref U, 1 + 1 * LDU + o_u , LDU); if (CTOT[3 + o_ctot] > 0) { KTEMP = 2 + CTOT[1 + o_ctot] + CTOT[2 + o_ctot]; this._dgemm.Run("N", "N", NL, K, CTOT[3 + o_ctot], ONE , U2, 1 + KTEMP * LDU2 + o_u2, LDU2, Q, KTEMP + 1 * LDQ + o_q, LDQ, ONE, ref U, 1 + 1 * LDU + o_u , LDU); } } else { if (CTOT[3 + o_ctot] > 0) { KTEMP = 2 + CTOT[1 + o_ctot] + CTOT[2 + o_ctot]; this._dgemm.Run("N", "N", NL, K, CTOT[3 + o_ctot], ONE , U2, 1 + KTEMP * LDU2 + o_u2, LDU2, Q, KTEMP + 1 * LDQ + o_q, LDQ, ZERO, ref U, 1 + 1 * LDU + o_u , LDU); } else { this._dlacpy.Run("F", NL, K, U2, offset_u2, LDU2, ref U, offset_u , LDU); } } this._dcopy.Run(K, Q, 1 + 1 * LDQ + o_q, LDQ, ref U, NLP1 + 1 * LDU + o_u, LDU); KTEMP = 2 + CTOT[1 + o_ctot]; CTEMP = CTOT[2 + o_ctot] + CTOT[3 + o_ctot]; this._dgemm.Run("N", "N", NR, K, CTEMP, ONE , U2, NLP2 + KTEMP * LDU2 + o_u2, LDU2, Q, KTEMP + 1 * LDQ + o_q, LDQ, ZERO, ref U, NLP2 + 1 * LDU + o_u , LDU); // * // * Generate the right singular vectors. // * LABEL100 :; Q_1 = 1 * LDQ + o_q; for (I = 1; I <= K; I++) { TEMP = this._dnrm2.Run(K, VT, 1 + I * LDVT + o_vt, 1); Q[I + Q_1] = VT[1 + I * LDVT + o_vt] / TEMP; for (J = 2; J <= K; J++) { JC = IDXC[J + o_idxc]; Q[I + J * LDQ + o_q] = VT[JC + I * LDVT + o_vt] / TEMP; } } // * // * Update the right singular vector matrix. // * if (K == 2) { this._dgemm.Run("N", "N", K, M, K, ONE , Q, offset_q, LDQ, VT2, offset_vt2, LDVT2, ZERO, ref VT, offset_vt , LDVT); return; } KTEMP = 1 + CTOT[1 + o_ctot]; this._dgemm.Run("N", "N", K, NLP1, KTEMP, ONE , Q, 1 + 1 * LDQ + o_q, LDQ, VT2, 1 + 1 * LDVT2 + o_vt2, LDVT2, ZERO, ref VT, 1 + 1 * LDVT + o_vt , LDVT); KTEMP = 2 + CTOT[1 + o_ctot] + CTOT[2 + o_ctot]; if (KTEMP <= LDVT2) { this._dgemm.Run("N", "N", K, NLP1, CTOT[3 + o_ctot], ONE , Q, 1 + KTEMP * LDQ + o_q, LDQ, VT2, KTEMP + 1 * LDVT2 + o_vt2, LDVT2, ONE, ref VT, 1 + 1 * LDVT + o_vt , LDVT); } // * KTEMP = CTOT[1 + o_ctot] + 1; NRP1 = NR + SQRE; if (KTEMP > 1) { Q_KTEMP = KTEMP * LDQ + o_q; Q_1 = 1 * LDQ + o_q; for (I = 1; I <= K; I++) { Q[I + Q_KTEMP] = Q[I + Q_1]; } for (I = NLP2; I <= M; I++) { VT2[KTEMP + I * LDVT2 + o_vt2] = VT2[1 + I * LDVT2 + o_vt2]; } } CTEMP = 1 + CTOT[2 + o_ctot] + CTOT[3 + o_ctot]; this._dgemm.Run("N", "N", K, NRP1, CTEMP, ONE , Q, 1 + KTEMP * LDQ + o_q, LDQ, VT2, KTEMP + NLP2 * LDVT2 + o_vt2, LDVT2, ZERO, ref VT, 1 + NLP2 * LDVT + o_vt , LDVT); // * return; // * // * End of DLASD3 // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DLASD8 finds the square roots of the roots of the secular equation, /// as defined by the values in DSIGMA and Z. It makes the appropriate /// calls to DLASD4, and stores, for each element in D, the distance /// to its two nearest poles (elements in DSIGMA). It also updates /// the arrays VF and VL, the first and last components of all the /// right singular vectors of the original bidiagonal matrix. /// /// DLASD8 is called from DLASD6. /// ///</summary> /// <param name="ICOMPQ"> /// (input) INTEGER /// Specifies whether singular vectors are to be computed in /// factored form in the calling routine: /// = 0: Compute singular values only. /// = 1: Compute singular vectors in factored form as well. ///</param> /// <param name="K"> /// (input) INTEGER /// The number of terms in the rational function to be solved /// by DLASD4. K .GE. 1. ///</param> /// <param name="D"> /// (output) DOUBLE PRECISION array, dimension ( K ) /// On output, D contains the updated singular values. ///</param> /// <param name="Z"> /// (input) DOUBLE PRECISION array, dimension ( K ) /// The first K elements of this array contain the components /// of the deflation-adjusted updating row vector. ///</param> /// <param name="VF"> /// (input/output) DOUBLE PRECISION array, dimension ( K ) /// On entry, VF contains information passed through DBEDE8. /// On exit, VF contains the first K components of the first /// components of all right singular vectors of the bidiagonal /// matrix. ///</param> /// <param name="VL"> /// (input/output) DOUBLE PRECISION array, dimension ( K ) /// On entry, VL contains information passed through DBEDE8. /// On exit, VL contains the first K components of the last /// components of all right singular vectors of the bidiagonal /// matrix. ///</param> /// <param name="DIFL"> /// (output) DOUBLE PRECISION array, dimension ( K ) /// On exit, DIFL(I) = D(I) - DSIGMA(I). ///</param> /// <param name="DIFR"> /// (output) DOUBLE PRECISION array, /// dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and /// dimension ( K ) if ICOMPQ = 0. /// On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not /// defined and will not be referenced. /// /// If ICOMPQ = 1, DIFR(1:K,2) is an array containing the /// normalizing factors for the right singular vector matrix. ///</param> /// <param name="LDDIFR"> /// (input) INTEGER /// The leading dimension of DIFR, must be at least K. ///</param> /// <param name="DSIGMA"> /// (input) DOUBLE PRECISION array, dimension ( K ) /// The first K elements of this array contain the old roots /// of the deflated updating problem. These are the poles /// of the secular equation. ///</param> /// <param name="WORK"> /// (workspace) DOUBLE PRECISION array, dimension at least 3 * K ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit. /// .LT. 0: if INFO = -i, the i-th argument had an illegal value. /// .GT. 0: if INFO = 1, an singular value did not converge ///</param> public void Run(int ICOMPQ, int K, ref double[] D, int offset_d, ref double[] Z, int offset_z, ref double[] VF, int offset_vf, ref double[] VL, int offset_vl , ref double[] DIFL, int offset_difl, ref double[] DIFR, int offset_difr, int LDDIFR, ref double[] DSIGMA, int offset_dsigma, ref double[] WORK, int offset_work, ref int INFO) { #region Variables int I = 0; int IWK1 = 0; int IWK2 = 0; int IWK2I = 0; int IWK3 = 0; int IWK3I = 0; int J = 0; double DIFLJ = 0; double DIFRJ = 0; double DJ = 0; double DSIGJ = 0; double DSIGJP = 0; double RHO = 0; double TEMP = 0; #endregion #region Implicit Variables int DIFR_1 = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_z = -1 + offset_z; int o_vf = -1 + offset_vf; int o_vl = -1 + offset_vl; int o_difl = -1 + offset_difl; int o_difr = -1 - LDDIFR + offset_difr; int o_dsigma = -1 + offset_dsigma; int o_work = -1 + offset_work; #endregion #region Prolog // * // * -- LAPACK auxiliary routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLASD8 finds the square roots of the roots of the secular equation, // * as defined by the values in DSIGMA and Z. It makes the appropriate // * calls to DLASD4, and stores, for each element in D, the distance // * to its two nearest poles (elements in DSIGMA). It also updates // * the arrays VF and VL, the first and last components of all the // * right singular vectors of the original bidiagonal matrix. // * // * DLASD8 is called from DLASD6. // * // * Arguments // * ========= // * // * ICOMPQ (input) INTEGER // * Specifies whether singular vectors are to be computed in // * factored form in the calling routine: // * = 0: Compute singular values only. // * = 1: Compute singular vectors in factored form as well. // * // * K (input) INTEGER // * The number of terms in the rational function to be solved // * by DLASD4. K >= 1. // * // * D (output) DOUBLE PRECISION array, dimension ( K ) // * On output, D contains the updated singular values. // * // * Z (input) DOUBLE PRECISION array, dimension ( K ) // * The first K elements of this array contain the components // * of the deflation-adjusted updating row vector. // * // * VF (input/output) DOUBLE PRECISION array, dimension ( K ) // * On entry, VF contains information passed through DBEDE8. // * On exit, VF contains the first K components of the first // * components of all right singular vectors of the bidiagonal // * matrix. // * // * VL (input/output) DOUBLE PRECISION array, dimension ( K ) // * On entry, VL contains information passed through DBEDE8. // * On exit, VL contains the first K components of the last // * components of all right singular vectors of the bidiagonal // * matrix. // * // * DIFL (output) DOUBLE PRECISION array, dimension ( K ) // * On exit, DIFL(I) = D(I) - DSIGMA(I). // * // * DIFR (output) DOUBLE PRECISION array, // * dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and // * dimension ( K ) if ICOMPQ = 0. // * On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not // * defined and will not be referenced. // * // * If ICOMPQ = 1, DIFR(1:K,2) is an array containing the // * normalizing factors for the right singular vector matrix. // * // * LDDIFR (input) INTEGER // * The leading dimension of DIFR, must be at least K. // * // * DSIGMA (input) DOUBLE PRECISION array, dimension ( K ) // * The first K elements of this array contain the old roots // * of the deflated updating problem. These are the poles // * of the secular equation. // * // * WORK (workspace) DOUBLE PRECISION array, dimension at least 3 * K // * // * INFO (output) INTEGER // * = 0: successful exit. // * < 0: if INFO = -i, the i-th argument had an illegal value. // * > 0: if INFO = 1, an singular value did not converge // * // * Further Details // * =============== // * // * Based on contributions by // * Ming Gu and Huan Ren, Computer Science Division, University of // * California at Berkeley, USA // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Subroutines .. // * .. // * .. External Functions .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, SIGN, SQRT; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * if ((ICOMPQ < 0) || (ICOMPQ > 1)) { INFO = -1; } else { if (K < 1) { INFO = -2; } else { if (LDDIFR < K) { INFO = -9; } } } if (INFO != 0) { this._xerbla.Run("DLASD8", -INFO); return; } // * // * Quick return if possible // * if (K == 1) { D[1 + o_d] = Math.Abs(Z[1 + o_z]); DIFL[1 + o_difl] = D[1 + o_d]; if (ICOMPQ == 1) { DIFL[2 + o_difl] = ONE; DIFR[1 + 2 * LDDIFR + o_difr] = ONE; } return; } // * // * Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can // * be computed with high relative accuracy (barring over/underflow). // * This is a problem on machines without a guard digit in // * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). // * The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), // * which on any of these machines zeros out the bottommost // * bit of DSIGMA(I) if it is 1; this makes the subsequent // * subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation // * occurs. On binary machines with a guard digit (almost all // * machines) it does not change DSIGMA(I) at all. On hexadecimal // * and decimal machines with a guard digit, it slightly // * changes the bottommost bits of DSIGMA(I). It does not account // * for hexadecimal or decimal machines without guard digits // * (we know of none). We use a subroutine call to compute // * 2*DSIGMA(I) to prevent optimizing compilers from eliminating // * this code. // * for (I = 1; I <= K; I++) { DSIGMA[I + o_dsigma] = this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGMA[I + o_dsigma]) - DSIGMA[I + o_dsigma]; } // * // * Book keeping. // * IWK1 = 1; IWK2 = IWK1 + K; IWK3 = IWK2 + K; IWK2I = IWK2 - 1; IWK3I = IWK3 - 1; // * // * Normalize Z. // * RHO = this._dnrm2.Run(K, Z, offset_z, 1); this._dlascl.Run("G", 0, 0, RHO, ONE, K , 1, ref Z, offset_z, K, ref INFO); RHO *= RHO; // * // * Initialize WORK(IWK3). // * this._dlaset.Run("A", K, 1, ONE, ONE, ref WORK, IWK3 + o_work , K); // * // * Compute the updated singular values, the arrays DIFL, DIFR, // * and the updated Z. // * DIFR_1 = 1 * LDDIFR + o_difr; for (J = 1; J <= K; J++) { this._dlasd4.Run(K, J, DSIGMA, offset_dsigma, Z, offset_z, ref WORK, IWK1 + o_work, RHO , ref D[J + o_d], ref WORK, IWK2 + o_work, ref INFO); // * // * If the root finder fails, the computation is terminated. // * if (INFO != 0) { return; } WORK[IWK3I + J + o_work] = WORK[IWK3I + J + o_work] * WORK[J + o_work] * WORK[IWK2I + J + o_work]; DIFL[J + o_difl] = -WORK[J + o_work]; DIFR[J + DIFR_1] = -WORK[J + 1 + o_work]; for (I = 1; I <= J - 1; I++) { WORK[IWK3I + I + o_work] = WORK[IWK3I + I + o_work] * WORK[I + o_work] * WORK[IWK2I + I + o_work] / (DSIGMA[I + o_dsigma] - DSIGMA[J + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + o_dsigma]); } for (I = J + 1; I <= K; I++) { WORK[IWK3I + I + o_work] = WORK[IWK3I + I + o_work] * WORK[I + o_work] * WORK[IWK2I + I + o_work] / (DSIGMA[I + o_dsigma] - DSIGMA[J + o_dsigma]) / (DSIGMA[I + o_dsigma] + DSIGMA[J + o_dsigma]); } } // * // * Compute updated Z. // * for (I = 1; I <= K; I++) { Z[I + o_z] = FortranLib.Sign(Math.Sqrt(Math.Abs(WORK[IWK3I + I + o_work])), Z[I + o_z]); } // * // * Update VF and VL. // * for (J = 1; J <= K; J++) { DIFLJ = DIFL[J + o_difl]; DJ = D[J + o_d]; DSIGJ = -DSIGMA[J + o_dsigma]; if (J < K) { DIFRJ = -DIFR[J + 1 * LDDIFR + o_difr]; DSIGJP = -DSIGMA[J + 1 + o_dsigma]; } WORK[J + o_work] = -Z[J + o_z] / DIFLJ / (DSIGMA[J + o_dsigma] + DJ); for (I = 1; I <= J - 1; I++) { WORK[I + o_work] = Z[I + o_z] / (this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGJ) - DIFLJ) / (DSIGMA[I + o_dsigma] + DJ); } for (I = J + 1; I <= K; I++) { WORK[I + o_work] = Z[I + o_z] / (this._dlamc3.Run(DSIGMA[I + o_dsigma], DSIGJP) + DIFRJ) / (DSIGMA[I + o_dsigma] + DJ); } TEMP = this._dnrm2.Run(K, WORK, offset_work, 1); WORK[IWK2I + J + o_work] = this._ddot.Run(K, WORK, offset_work, 1, VF, offset_vf, 1) / TEMP; WORK[IWK3I + J + o_work] = this._ddot.Run(K, WORK, offset_work, 1, VL, offset_vl, 1) / TEMP; if (ICOMPQ == 1) { DIFR[J + 2 * LDDIFR + o_difr] = TEMP; } } // * this._dcopy.Run(K, WORK, IWK2 + o_work, 1, ref VF, offset_vf, 1); this._dcopy.Run(K, WORK, IWK3 + o_work, 1, ref VL, offset_vl, 1); // * return; // * // * End of DLASD8 // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DSTEQR computes all eigenvalues and, optionally, eigenvectors of a /// symmetric tridiagonal matrix using the implicit QL or QR method. /// The eigenvectors of a full or band symmetric matrix can also be found /// if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to /// tridiagonal form. /// ///</summary> /// <param name="COMPZ"> /// (input) CHARACTER*1 /// = 'N': Compute eigenvalues only. /// = 'V': Compute eigenvalues and eigenvectors of the original /// symmetric matrix. On entry, Z must contain the /// orthogonal matrix used to reduce the original matrix /// to tridiagonal form. /// = 'I': Compute eigenvalues and eigenvectors of the /// tridiagonal matrix. Z is initialized to the identity /// matrix. ///</param> /// <param name="N"> /// (input) INTEGER /// The order of the matrix. N .GE. 0. ///</param> /// <param name="D"> /// (input/output) DOUBLE PRECISION array, dimension (N) /// On entry, the diagonal elements of the tridiagonal matrix. /// On exit, if INFO = 0, the eigenvalues in ascending order. ///</param> /// <param name="E"> /// (input/output) DOUBLE PRECISION array, dimension (N-1) /// On entry, the (n-1) subdiagonal elements of the tridiagonal /// matrix. /// On exit, E has been destroyed. ///</param> /// <param name="Z"> /// (input/output) DOUBLE PRECISION array, dimension (LDZ, N) /// On entry, if COMPZ = 'V', then Z contains the orthogonal /// matrix used in the reduction to tridiagonal form. /// On exit, if INFO = 0, then if COMPZ = 'V', Z contains the /// orthonormal eigenvectors of the original symmetric matrix, /// and if COMPZ = 'I', Z contains the orthonormal eigenvectors /// of the symmetric tridiagonal matrix. /// If COMPZ = 'N', then Z is not referenced. ///</param> /// <param name="LDZ"> /// (input) INTEGER /// The leading dimension of the array Z. LDZ .GE. 1, and if /// eigenvectors are desired, then LDZ .GE. max(1,N). ///</param> /// <param name="WORK"> /// (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) /// If COMPZ = 'N', then WORK is not referenced. ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit /// .LT. 0: if INFO = -i, the i-th argument had an illegal value /// .GT. 0: the algorithm has failed to find all the eigenvalues in /// a total of 30*N iterations; if INFO = i, then i /// elements of E have not converged to zero; on exit, D /// and E contain the elements of a symmetric tridiagonal /// matrix which is orthogonally similar to the original /// matrix. ///</param> public void Run(string COMPZ, int N, ref double[] D, int offset_d, ref double[] E, int offset_e, ref double[] Z, int offset_z, int LDZ , ref double[] WORK, int offset_work, ref int INFO) { #region Variables int I = 0; int ICOMPZ = 0; int II = 0; int ISCALE = 0; int J = 0; int JTOT = 0; int K = 0; int L = 0; int L1 = 0; int LEND = 0; int LENDM1 = 0; int LENDP1 = 0; int LENDSV = 0; int LM1 = 0; int LSV = 0; int M = 0; int MM = 0; int MM1 = 0; int NM1 = 0; int NMAXIT = 0; double ANORM = 0; double B = 0; double C = 0; double EPS = 0; double EPS2 = 0; double F = 0; double G = 0; double P = 0; double R = 0; double RT1 = 0; double RT2 = 0; double S = 0; double SAFMAX = 0; double SAFMIN = 0; double SSFMAX = 0; double SSFMIN = 0; double TST = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_e = -1 + offset_e; int o_z = -1 - LDZ + offset_z; int o_work = -1 + offset_work; #endregion #region Strings COMPZ = COMPZ.Substring(0, 1); #endregion #region Prolog // * // * -- LAPACK routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DSTEQR computes all eigenvalues and, optionally, eigenvectors of a // * symmetric tridiagonal matrix using the implicit QL or QR method. // * The eigenvectors of a full or band symmetric matrix can also be found // * if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to // * tridiagonal form. // * // * Arguments // * ========= // * // * COMPZ (input) CHARACTER*1 // * = 'N': Compute eigenvalues only. // * = 'V': Compute eigenvalues and eigenvectors of the original // * symmetric matrix. On entry, Z must contain the // * orthogonal matrix used to reduce the original matrix // * to tridiagonal form. // * = 'I': Compute eigenvalues and eigenvectors of the // * tridiagonal matrix. Z is initialized to the identity // * matrix. // * // * N (input) INTEGER // * The order of the matrix. N >= 0. // * // * D (input/output) DOUBLE PRECISION array, dimension (N) // * On entry, the diagonal elements of the tridiagonal matrix. // * On exit, if INFO = 0, the eigenvalues in ascending order. // * // * E (input/output) DOUBLE PRECISION array, dimension (N-1) // * On entry, the (n-1) subdiagonal elements of the tridiagonal // * matrix. // * On exit, E has been destroyed. // * // * Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) // * On entry, if COMPZ = 'V', then Z contains the orthogonal // * matrix used in the reduction to tridiagonal form. // * On exit, if INFO = 0, then if COMPZ = 'V', Z contains the // * orthonormal eigenvectors of the original symmetric matrix, // * and if COMPZ = 'I', Z contains the orthonormal eigenvectors // * of the symmetric tridiagonal matrix. // * If COMPZ = 'N', then Z is not referenced. // * // * LDZ (input) INTEGER // * The leading dimension of the array Z. LDZ >= 1, and if // * eigenvectors are desired, then LDZ >= max(1,N). // * // * WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2)) // * If COMPZ = 'N', then WORK is not referenced. // * // * INFO (output) INTEGER // * = 0: successful exit // * < 0: if INFO = -i, the i-th argument had an illegal value // * > 0: the algorithm has failed to find all the eigenvalues in // * a total of 30*N iterations; if INFO = i, then i // * elements of E have not converged to zero; on exit, D // * and E contain the elements of a symmetric tridiagonal // * matrix which is orthogonally similar to the original // * matrix. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, MAX, SIGN, SQRT; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * if (this._lsame.Run(COMPZ, "N")) { ICOMPZ = 0; } else { if (this._lsame.Run(COMPZ, "V")) { ICOMPZ = 1; } else { if (this._lsame.Run(COMPZ, "I")) { ICOMPZ = 2; } else { ICOMPZ = -1; } } } if (ICOMPZ < 0) { INFO = -1; } else { if (N < 0) { INFO = -2; } else { if ((LDZ < 1) || (ICOMPZ > 0 && LDZ < Math.Max(1, N))) { INFO = -6; } } } if (INFO != 0) { this._xerbla.Run("DSTEQR", -INFO); return; } // * // * Quick return if possible // * if (N == 0) { return; } // * if (N == 1) { if (ICOMPZ == 2) { Z[1 + 1 * LDZ + o_z] = ONE; } return; } // * // * Determine the unit roundoff and over/underflow thresholds. // * EPS = this._dlamch.Run("E"); EPS2 = Math.Pow(EPS, 2); SAFMIN = this._dlamch.Run("S"); SAFMAX = ONE / SAFMIN; SSFMAX = Math.Sqrt(SAFMAX) / THREE; SSFMIN = Math.Sqrt(SAFMIN) / EPS2; // * // * Compute the eigenvalues and eigenvectors of the tridiagonal // * matrix. // * if (ICOMPZ == 2) { this._dlaset.Run("Full", N, N, ZERO, ONE, ref Z, offset_z , LDZ); } // * NMAXIT = N * MAXIT; JTOT = 0; // * // * Determine where the matrix splits and choose QL or QR iteration // * for each block, according to whether top or bottom diagonal // * element is smaller. // * L1 = 1; NM1 = N - 1; // * LABEL10 :; if (L1 > N) { goto LABEL160; } if (L1 > 1) { E[L1 - 1 + o_e] = ZERO; } if (L1 <= NM1) { for (M = L1; M <= NM1; M++) { TST = Math.Abs(E[M + o_e]); if (TST == ZERO) { goto LABEL30; } if (TST <= (Math.Sqrt(Math.Abs(D[M + o_d])) * Math.Sqrt(Math.Abs(D[M + 1 + o_d]))) * EPS) { E[M + o_e] = ZERO; goto LABEL30; } } } M = N; // * LABEL30 :; L = L1; LSV = L; LEND = M; LENDSV = LEND; L1 = M + 1; if (LEND == L) { goto LABEL10; } // * // * Scale submatrix in rows and columns L to LEND // * ANORM = this._dlanst.Run("I", LEND - L + 1, D, L + o_d, E, L + o_e); ISCALE = 0; if (ANORM == ZERO) { goto LABEL10; } if (ANORM > SSFMAX) { ISCALE = 1; this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L + 1 , 1, ref D, L + o_d, N, ref INFO); this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L , 1, ref E, L + o_e, N, ref INFO); } else { if (ANORM < SSFMIN) { ISCALE = 2; this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L + 1 , 1, ref D, L + o_d, N, ref INFO); this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L , 1, ref E, L + o_e, N, ref INFO); } } // * // * Choose between QL and QR iteration // * if (Math.Abs(D[LEND + o_d]) < Math.Abs(D[L + o_d])) { LEND = LSV; L = LENDSV; } // * if (LEND > L) { // * // * QL Iteration // * // * Look for small subdiagonal element. // * LABEL40 :; if (L != LEND) { LENDM1 = LEND - 1; for (M = L; M <= LENDM1; M++) { TST = Math.Pow(Math.Abs(E[M + o_e]), 2); if (TST <= (EPS2 * Math.Abs(D[M + o_d])) * Math.Abs(D[M + 1 + o_d]) + SAFMIN) { goto LABEL60; } } } // * M = LEND; // * LABEL60 :; if (M < LEND) { E[M + o_e] = ZERO; } P = D[L + o_d]; if (M == L) { goto LABEL80; } // * // * If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 // * to compute its eigensystem. // * if (M == L + 1) { if (ICOMPZ > 0) { this._dlaev2.Run(D[L + o_d], E[L + o_e], D[L + 1 + o_d], ref RT1, ref RT2, ref C , ref S); WORK[L + o_work] = C; WORK[N - 1 + L + o_work] = S; this._dlasr.Run("R", "V", "B", N, 2, WORK, L + o_work , WORK, N - 1 + L + o_work, ref Z, 1 + L * LDZ + o_z, LDZ); } else { this._dlae2.Run(D[L + o_d], E[L + o_e], D[L + 1 + o_d], ref RT1, ref RT2); } D[L + o_d] = RT1; D[L + 1 + o_d] = RT2; E[L + o_e] = ZERO; L += 2; if (L <= LEND) { goto LABEL40; } goto LABEL140; } // * if (JTOT == NMAXIT) { goto LABEL140; } JTOT += 1; // * // * Form shift. // * G = (D[L + 1 + o_d] - P) / (TWO * E[L + o_e]); R = this._dlapy2.Run(G, ONE); G = D[M + o_d] - P + (E[L + o_e] / (G + FortranLib.Sign(R, G))); // * S = ONE; C = ONE; P = ZERO; // * // * Inner loop // * MM1 = M - 1; for (I = MM1; I >= L; I += -1) { F = S * E[I + o_e]; B = C * E[I + o_e]; this._dlartg.Run(G, F, ref C, ref S, ref R); if (I != M - 1) { E[I + 1 + o_e] = R; } G = D[I + 1 + o_d] - P; R = (D[I + o_d] - G) * S + TWO * C * B; P = S * R; D[I + 1 + o_d] = G + P; G = C * R - B; // * // * If eigenvectors are desired, then save rotations. // * if (ICOMPZ > 0) { WORK[I + o_work] = C; WORK[N - 1 + I + o_work] = -S; } // * } // * // * If eigenvectors are desired, then apply saved rotations. // * if (ICOMPZ > 0) { MM = M - L + 1; this._dlasr.Run("R", "V", "B", N, MM, WORK, L + o_work , WORK, N - 1 + L + o_work, ref Z, 1 + L * LDZ + o_z, LDZ); } // * D[L + o_d] -= P; E[L + o_e] = G; goto LABEL40; // * // * Eigenvalue found. // * LABEL80 :; D[L + o_d] = P; // * L += 1; if (L <= LEND) { goto LABEL40; } goto LABEL140; // * } else { // * // * QR Iteration // * // * Look for small superdiagonal element. // * LABEL90 :; if (L != LEND) { LENDP1 = LEND + 1; for (M = L; M >= LENDP1; M += -1) { TST = Math.Pow(Math.Abs(E[M - 1 + o_e]), 2); if (TST <= (EPS2 * Math.Abs(D[M + o_d])) * Math.Abs(D[M - 1 + o_d]) + SAFMIN) { goto LABEL110; } } } // * M = LEND; // * LABEL110 :; if (M > LEND) { E[M - 1 + o_e] = ZERO; } P = D[L + o_d]; if (M == L) { goto LABEL130; } // * // * If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 // * to compute its eigensystem. // * if (M == L - 1) { if (ICOMPZ > 0) { this._dlaev2.Run(D[L - 1 + o_d], E[L - 1 + o_e], D[L + o_d], ref RT1, ref RT2, ref C , ref S); WORK[M + o_work] = C; WORK[N - 1 + M + o_work] = S; this._dlasr.Run("R", "V", "F", N, 2, WORK, M + o_work , WORK, N - 1 + M + o_work, ref Z, 1 + (L - 1) * LDZ + o_z, LDZ); } else { this._dlae2.Run(D[L - 1 + o_d], E[L - 1 + o_e], D[L + o_d], ref RT1, ref RT2); } D[L - 1 + o_d] = RT1; D[L + o_d] = RT2; E[L - 1 + o_e] = ZERO; L -= 2; if (L >= LEND) { goto LABEL90; } goto LABEL140; } // * if (JTOT == NMAXIT) { goto LABEL140; } JTOT += 1; // * // * Form shift. // * G = (D[L - 1 + o_d] - P) / (TWO * E[L - 1 + o_e]); R = this._dlapy2.Run(G, ONE); G = D[M + o_d] - P + (E[L - 1 + o_e] / (G + FortranLib.Sign(R, G))); // * S = ONE; C = ONE; P = ZERO; // * // * Inner loop // * LM1 = L - 1; for (I = M; I <= LM1; I++) { F = S * E[I + o_e]; B = C * E[I + o_e]; this._dlartg.Run(G, F, ref C, ref S, ref R); if (I != M) { E[I - 1 + o_e] = R; } G = D[I + o_d] - P; R = (D[I + 1 + o_d] - G) * S + TWO * C * B; P = S * R; D[I + o_d] = G + P; G = C * R - B; // * // * If eigenvectors are desired, then save rotations. // * if (ICOMPZ > 0) { WORK[I + o_work] = C; WORK[N - 1 + I + o_work] = S; } // * } // * // * If eigenvectors are desired, then apply saved rotations. // * if (ICOMPZ > 0) { MM = L - M + 1; this._dlasr.Run("R", "V", "F", N, MM, WORK, M + o_work , WORK, N - 1 + M + o_work, ref Z, 1 + M * LDZ + o_z, LDZ); } // * D[L + o_d] -= P; E[LM1 + o_e] = G; goto LABEL90; // * // * Eigenvalue found. // * LABEL130 :; D[L + o_d] = P; // * L -= 1; if (L >= LEND) { goto LABEL90; } goto LABEL140; // * } // * // * Undo scaling if necessary // * LABEL140 :; if (ISCALE == 1) { this._dlascl.Run("G", 0, 0, SSFMAX, ANORM, LENDSV - LSV + 1 , 1, ref D, LSV + o_d, N, ref INFO); this._dlascl.Run("G", 0, 0, SSFMAX, ANORM, LENDSV - LSV , 1, ref E, LSV + o_e, N, ref INFO); } else { if (ISCALE == 2) { this._dlascl.Run("G", 0, 0, SSFMIN, ANORM, LENDSV - LSV + 1 , 1, ref D, LSV + o_d, N, ref INFO); this._dlascl.Run("G", 0, 0, SSFMIN, ANORM, LENDSV - LSV , 1, ref E, LSV + o_e, N, ref INFO); } } // * // * Check for no convergence to an eigenvalue after a total // * of N*MAXIT iterations. // * if (JTOT < NMAXIT) { goto LABEL10; } for (I = 1; I <= N - 1; I++) { if (E[I + o_e] != ZERO) { INFO += 1; } } goto LABEL190; // * // * Order eigenvalues and eigenvectors. // * LABEL160 :; if (ICOMPZ == 0) { // * // * Use Quick Sort // * this._dlasrt.Run("I", N, ref D, offset_d, ref INFO); // * } else { // * // * Use Selection Sort to minimize swaps of eigenvectors // * for (II = 2; II <= N; II++) { I = II - 1; K = I; P = D[I + o_d]; for (J = II; J <= N; J++) { if (D[J + o_d] < P) { K = J; P = D[J + o_d]; } } if (K != I) { D[K + o_d] = D[I + o_d]; D[I + o_d] = P; this._dswap.Run(N, ref Z, 1 + I * LDZ + o_z, 1, ref Z, 1 + K * LDZ + o_z, 1); } } } // * LABEL190 :; return; // * // * End of DSTEQR // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DSTERF computes all eigenvalues of a symmetric tridiagonal matrix /// using the Pal-Walker-Kahan variant of the QL or QR algorithm. /// ///</summary> /// <param name="N"> /// (input) INTEGER /// The order of the matrix. N .GE. 0. ///</param> /// <param name="D"> /// (input/output) DOUBLE PRECISION array, dimension (N) /// On entry, the n diagonal elements of the tridiagonal matrix. /// On exit, if INFO = 0, the eigenvalues in ascending order. ///</param> /// <param name="E"> /// (input/output) DOUBLE PRECISION array, dimension (N-1) /// On entry, the (n-1) subdiagonal elements of the tridiagonal /// matrix. /// On exit, E has been destroyed. ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit /// .LT. 0: if INFO = -i, the i-th argument had an illegal value /// .GT. 0: the algorithm failed to find all of the eigenvalues in /// a total of 30*N iterations; if INFO = i, then i /// elements of E have not converged to zero. ///</param> public void Run(int N, ref double[] D, int offset_d, ref double[] E, int offset_e, ref int INFO) { #region Variables int I = 0; int ISCALE = 0; int JTOT = 0; int L = 0; int L1 = 0; int LEND = 0; int LENDSV = 0; int LSV = 0; int M = 0; int NMAXIT = 0; double ALPHA = 0; double ANORM = 0; double BB = 0; double C = 0; double EPS = 0; double EPS2 = 0; double GAMMA = 0; double OLDC = 0; double OLDGAM = 0; double P = 0; double R = 0; double RT1 = 0; double RT2 = 0; double RTE = 0; double S = 0; double SAFMAX = 0; double SAFMIN = 0; double SIGMA = 0; double SSFMAX = 0; double SSFMIN = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_e = -1 + offset_e; #endregion #region Prolog // * // * -- LAPACK routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DSTERF computes all eigenvalues of a symmetric tridiagonal matrix // * using the Pal-Walker-Kahan variant of the QL or QR algorithm. // * // * Arguments // * ========= // * // * N (input) INTEGER // * The order of the matrix. N >= 0. // * // * D (input/output) DOUBLE PRECISION array, dimension (N) // * On entry, the n diagonal elements of the tridiagonal matrix. // * On exit, if INFO = 0, the eigenvalues in ascending order. // * // * E (input/output) DOUBLE PRECISION array, dimension (N-1) // * On entry, the (n-1) subdiagonal elements of the tridiagonal // * matrix. // * On exit, E has been destroyed. // * // * INFO (output) INTEGER // * = 0: successful exit // * < 0: if INFO = -i, the i-th argument had an illegal value // * > 0: the algorithm failed to find all of the eigenvalues in // * a total of 30*N iterations; if INFO = i, then i // * elements of E have not converged to zero. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, SIGN, SQRT; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * // * Quick return if possible // * if (N < 0) { INFO = -1; this._xerbla.Run("DSTERF", -INFO); return; } if (N <= 1) { return; } // * // * Determine the unit roundoff for this environment. // * EPS = this._dlamch.Run("E"); EPS2 = Math.Pow(EPS, 2); SAFMIN = this._dlamch.Run("S"); SAFMAX = ONE / SAFMIN; SSFMAX = Math.Sqrt(SAFMAX) / THREE; SSFMIN = Math.Sqrt(SAFMIN) / EPS2; // * // * Compute the eigenvalues of the tridiagonal matrix. // * NMAXIT = N * MAXIT; SIGMA = ZERO; JTOT = 0; // * // * Determine where the matrix splits and choose QL or QR iteration // * for each block, according to whether top or bottom diagonal // * element is smaller. // * L1 = 1; // * LABEL10 :; if (L1 > N) { goto LABEL170; } if (L1 > 1) { E[L1 - 1 + o_e] = ZERO; } for (M = L1; M <= N - 1; M++) { if (Math.Abs(E[M + o_e]) <= (Math.Sqrt(Math.Abs(D[M + o_d])) * Math.Sqrt(Math.Abs(D[M + 1 + o_d]))) * EPS) { E[M + o_e] = ZERO; goto LABEL30; } } M = N; // * LABEL30 :; L = L1; LSV = L; LEND = M; LENDSV = LEND; L1 = M + 1; if (LEND == L) { goto LABEL10; } // * // * Scale submatrix in rows and columns L to LEND // * ANORM = this._dlanst.Run("I", LEND - L + 1, D, L + o_d, E, L + o_e); ISCALE = 0; if (ANORM > SSFMAX) { ISCALE = 1; this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L + 1 , 1, ref D, L + o_d, N, ref INFO); this._dlascl.Run("G", 0, 0, ANORM, SSFMAX, LEND - L , 1, ref E, L + o_e, N, ref INFO); } else { if (ANORM < SSFMIN) { ISCALE = 2; this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L + 1 , 1, ref D, L + o_d, N, ref INFO); this._dlascl.Run("G", 0, 0, ANORM, SSFMIN, LEND - L , 1, ref E, L + o_e, N, ref INFO); } } // * for (I = L; I <= LEND - 1; I++) { E[I + o_e] = Math.Pow(E[I + o_e], 2); } // * // * Choose between QL and QR iteration // * if (Math.Abs(D[LEND + o_d]) < Math.Abs(D[L + o_d])) { LEND = LSV; L = LENDSV; } // * if (LEND >= L) { // * // * QL Iteration // * // * Look for small subdiagonal element. // * LABEL50 :; if (L != LEND) { for (M = L; M <= LEND - 1; M++) { if (Math.Abs(E[M + o_e]) <= EPS2 * Math.Abs(D[M + o_d] * D[M + 1 + o_d])) { goto LABEL70; } } } M = LEND; // * LABEL70 :; if (M < LEND) { E[M + o_e] = ZERO; } P = D[L + o_d]; if (M == L) { goto LABEL90; } // * // * If remaining matrix is 2 by 2, use DLAE2 to compute its // * eigenvalues. // * if (M == L + 1) { RTE = Math.Sqrt(E[L + o_e]); this._dlae2.Run(D[L + o_d], RTE, D[L + 1 + o_d], ref RT1, ref RT2); D[L + o_d] = RT1; D[L + 1 + o_d] = RT2; E[L + o_e] = ZERO; L += 2; if (L <= LEND) { goto LABEL50; } goto LABEL150; } // * if (JTOT == NMAXIT) { goto LABEL150; } JTOT += 1; // * // * Form shift. // * RTE = Math.Sqrt(E[L + o_e]); SIGMA = (D[L + 1 + o_d] - P) / (TWO * RTE); R = this._dlapy2.Run(SIGMA, ONE); SIGMA = P - (RTE / (SIGMA + FortranLib.Sign(R, SIGMA))); // * C = ONE; S = ZERO; GAMMA = D[M + o_d] - SIGMA; P = GAMMA * GAMMA; // * // * Inner loop // * for (I = M - 1; I >= L; I += -1) { BB = E[I + o_e]; R = P + BB; if (I != M - 1) { E[I + 1 + o_e] = S * R; } OLDC = C; C = P / R; S = BB / R; OLDGAM = GAMMA; ALPHA = D[I + o_d]; GAMMA = C * (ALPHA - SIGMA) - S * OLDGAM; D[I + 1 + o_d] = OLDGAM + (ALPHA - GAMMA); if (C != ZERO) { P = (GAMMA * GAMMA) / C; } else { P = OLDC * BB; } } // * E[L + o_e] = S * P; D[L + o_d] = SIGMA + GAMMA; goto LABEL50; // * // * Eigenvalue found. // * LABEL90 :; D[L + o_d] = P; // * L += 1; if (L <= LEND) { goto LABEL50; } goto LABEL150; // * } else { // * // * QR Iteration // * // * Look for small superdiagonal element. // * LABEL100 :; for (M = L; M >= LEND + 1; M += -1) { if (Math.Abs(E[M - 1 + o_e]) <= EPS2 * Math.Abs(D[M + o_d] * D[M - 1 + o_d])) { goto LABEL120; } } M = LEND; // * LABEL120 :; if (M > LEND) { E[M - 1 + o_e] = ZERO; } P = D[L + o_d]; if (M == L) { goto LABEL140; } // * // * If remaining matrix is 2 by 2, use DLAE2 to compute its // * eigenvalues. // * if (M == L - 1) { RTE = Math.Sqrt(E[L - 1 + o_e]); this._dlae2.Run(D[L + o_d], RTE, D[L - 1 + o_d], ref RT1, ref RT2); D[L + o_d] = RT1; D[L - 1 + o_d] = RT2; E[L - 1 + o_e] = ZERO; L -= 2; if (L >= LEND) { goto LABEL100; } goto LABEL150; } // * if (JTOT == NMAXIT) { goto LABEL150; } JTOT += 1; // * // * Form shift. // * RTE = Math.Sqrt(E[L - 1 + o_e]); SIGMA = (D[L - 1 + o_d] - P) / (TWO * RTE); R = this._dlapy2.Run(SIGMA, ONE); SIGMA = P - (RTE / (SIGMA + FortranLib.Sign(R, SIGMA))); // * C = ONE; S = ZERO; GAMMA = D[M + o_d] - SIGMA; P = GAMMA * GAMMA; // * // * Inner loop // * for (I = M; I <= L - 1; I++) { BB = E[I + o_e]; R = P + BB; if (I != M) { E[I - 1 + o_e] = S * R; } OLDC = C; C = P / R; S = BB / R; OLDGAM = GAMMA; ALPHA = D[I + 1 + o_d]; GAMMA = C * (ALPHA - SIGMA) - S * OLDGAM; D[I + o_d] = OLDGAM + (ALPHA - GAMMA); if (C != ZERO) { P = (GAMMA * GAMMA) / C; } else { P = OLDC * BB; } } // * E[L - 1 + o_e] = S * P; D[L + o_d] = SIGMA + GAMMA; goto LABEL100; // * // * Eigenvalue found. // * LABEL140 :; D[L + o_d] = P; // * L -= 1; if (L >= LEND) { goto LABEL100; } goto LABEL150; // * } // * // * Undo scaling if necessary // * LABEL150 :; if (ISCALE == 1) { this._dlascl.Run("G", 0, 0, SSFMAX, ANORM, LENDSV - LSV + 1 , 1, ref D, LSV + o_d, N, ref INFO); } if (ISCALE == 2) { this._dlascl.Run("G", 0, 0, SSFMIN, ANORM, LENDSV - LSV + 1 , 1, ref D, LSV + o_d, N, ref INFO); } // * // * Check for no convergence to an eigenvalue after a total // * of N*MAXIT iterations. // * if (JTOT < NMAXIT) { goto LABEL10; } for (I = 1; I <= N - 1; I++) { if (E[I + o_e] != ZERO) { INFO += 1; } } goto LABEL180; // * // * Sort eigenvalues in increasing order. // * LABEL170 :; this._dlasrt.Run("I", N, ref D, offset_d, ref INFO); // * LABEL180 :; return; // * // * End of DSTERF // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DLAED9 finds the roots of the secular equation, as defined by the /// values in D, Z, and RHO, between KSTART and KSTOP. It makes the /// appropriate calls to DLAED4 and then stores the new matrix of /// eigenvectors for use in calculating the next level of Z vectors. /// ///</summary> /// <param name="K"> /// (input) INTEGER /// The number of terms in the rational function to be solved by /// DLAED4. K .GE. 0. ///</param> /// <param name="KSTART"> /// (input) INTEGER ///</param> /// <param name="KSTOP"> /// (input) INTEGER /// The updated eigenvalues Lambda(I), KSTART .LE. I .LE. KSTOP /// are to be computed. 1 .LE. KSTART .LE. KSTOP .LE. K. ///</param> /// <param name="N"> /// (input) INTEGER /// The number of rows and columns in the Q matrix. /// N .GE. K (delation may result in N .GT. K). ///</param> /// <param name="D"> /// (output) DOUBLE PRECISION array, dimension (N) /// D(I) contains the updated eigenvalues /// for KSTART .LE. I .LE. KSTOP. ///</param> /// <param name="Q"> /// (workspace) DOUBLE PRECISION array, dimension (LDQ,N) ///</param> /// <param name="LDQ"> /// (input) INTEGER /// The leading dimension of the array Q. LDQ .GE. max( 1, N ). ///</param> /// <param name="RHO"> /// (input) DOUBLE PRECISION /// The value of the parameter in the rank one update equation. /// RHO .GE. 0 required. ///</param> /// <param name="DLAMDA"> /// (input) DOUBLE PRECISION array, dimension (K) /// The first K elements of this array contain the old roots /// of the deflated updating problem. These are the poles /// of the secular equation. ///</param> /// <param name="W"> /// (input) DOUBLE PRECISION array, dimension (K) /// The first K elements of this array contain the components /// of the deflation-adjusted updating vector. ///</param> /// <param name="S"> /// (output) DOUBLE PRECISION array, dimension (LDS, K) /// Will contain the eigenvectors of the repaired matrix which /// will be stored for subsequent Z vector calculation and /// multiplied by the previously accumulated eigenvectors /// to update the system. ///</param> /// <param name="LDS"> /// (input) INTEGER /// The leading dimension of S. LDS .GE. max( 1, K ). ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit. /// .LT. 0: if INFO = -i, the i-th argument had an illegal value. /// .GT. 0: if INFO = 1, an eigenvalue did not converge ///</param> public void Run(int K, int KSTART, int KSTOP, int N, ref double[] D, int offset_d, ref double[] Q, int offset_q , int LDQ, double RHO, ref double[] DLAMDA, int offset_dlamda, ref double[] W, int offset_w, ref double[] S, int offset_s, int LDS , ref int INFO) { #region Variables int I = 0; int J = 0; double TEMP = 0; #endregion #region Implicit Variables int S_I = 0; int Q_I = 0; int Q_J = 0; int S_J = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_q = -1 - LDQ + offset_q; int o_dlamda = -1 + offset_dlamda; int o_w = -1 + offset_w; int o_s = -1 - LDS + offset_s; #endregion #region Prolog // * // * -- LAPACK routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLAED9 finds the roots of the secular equation, as defined by the // * values in D, Z, and RHO, between KSTART and KSTOP. It makes the // * appropriate calls to DLAED4 and then stores the new matrix of // * eigenvectors for use in calculating the next level of Z vectors. // * // * Arguments // * ========= // * // * K (input) INTEGER // * The number of terms in the rational function to be solved by // * DLAED4. K >= 0. // * // * KSTART (input) INTEGER // * KSTOP (input) INTEGER // * The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP // * are to be computed. 1 <= KSTART <= KSTOP <= K. // * // * N (input) INTEGER // * The number of rows and columns in the Q matrix. // * N >= K (delation may result in N > K). // * // * D (output) DOUBLE PRECISION array, dimension (N) // * D(I) contains the updated eigenvalues // * for KSTART <= I <= KSTOP. // * // * Q (workspace) DOUBLE PRECISION array, dimension (LDQ,N) // * // * LDQ (input) INTEGER // * The leading dimension of the array Q. LDQ >= max( 1, N ). // * // * RHO (input) DOUBLE PRECISION // * The value of the parameter in the rank one update equation. // * RHO >= 0 required. // * // * DLAMDA (input) DOUBLE PRECISION array, dimension (K) // * The first K elements of this array contain the old roots // * of the deflated updating problem. These are the poles // * of the secular equation. // * // * W (input) DOUBLE PRECISION array, dimension (K) // * The first K elements of this array contain the components // * of the deflation-adjusted updating vector. // * // * S (output) DOUBLE PRECISION array, dimension (LDS, K) // * Will contain the eigenvectors of the repaired matrix which // * will be stored for subsequent Z vector calculation and // * multiplied by the previously accumulated eigenvectors // * to update the system. // * // * LDS (input) INTEGER // * The leading dimension of S. LDS >= max( 1, K ). // * // * INFO (output) INTEGER // * = 0: successful exit. // * < 0: if INFO = -i, the i-th argument had an illegal value. // * > 0: if INFO = 1, an eigenvalue did not converge // * // * Further Details // * =============== // * // * Based on contributions by // * Jeff Rutter, Computer Science Division, University of California // * at Berkeley, USA // * // * ===================================================================== // * // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC MAX, SIGN, SQRT; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * if (K < 0) { INFO = -1; } else { if (KSTART < 1 || KSTART > Math.Max(1, K)) { INFO = -2; } else { if (Math.Max(1, KSTOP) < KSTART || KSTOP > Math.Max(1, K)) { INFO = -3; } else { if (N < K) { INFO = -4; } else { if (LDQ < Math.Max(1, K)) { INFO = -7; } else { if (LDS < Math.Max(1, K)) { INFO = -12; } } } } } } if (INFO != 0) { this._xerbla.Run("DLAED9", -INFO); return; } // * // * Quick return if possible // * if (K == 0) { return; } // * // * Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can // * be computed with high relative accuracy (barring over/underflow). // * This is a problem on machines without a guard digit in // * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). // * The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), // * which on any of these machines zeros out the bottommost // * bit of DLAMDA(I) if it is 1; this makes the subsequent // * subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation // * occurs. On binary machines with a guard digit (almost all // * machines) it does not change DLAMDA(I) at all. On hexadecimal // * and decimal machines with a guard digit, it slightly // * changes the bottommost bits of DLAMDA(I). It does not account // * for hexadecimal or decimal machines without guard digits // * (we know of none). We use a subroutine call to compute // * 2*DLAMBDA(I) to prevent optimizing compilers from eliminating // * this code. // * for (I = 1; I <= N; I++) { DLAMDA[I + o_dlamda] = this._dlamc3.Run(DLAMDA[I + o_dlamda], DLAMDA[I + o_dlamda]) - DLAMDA[I + o_dlamda]; } // * for (J = KSTART; J <= KSTOP; J++) { this._dlaed4.Run(K, J, DLAMDA, offset_dlamda, W, offset_w, ref Q, 1 + J * LDQ + o_q, RHO , ref D[J + o_d], ref INFO); // * // * If the zero finder fails, the computation is terminated. // * if (INFO != 0) { goto LABEL120; } } // * if (K == 1 || K == 2) { for (I = 1; I <= K; I++) { S_I = I * LDS + o_s; Q_I = I * LDQ + o_q; for (J = 1; J <= K; J++) { S[J + S_I] = Q[J + Q_I]; } } goto LABEL120; } // * // * Compute updated W. // * this._dcopy.Run(K, W, offset_w, 1, ref S, offset_s, 1); // * // * Initialize W(I) = Q(I,I) // * this._dcopy.Run(K, Q, offset_q, LDQ + 1, ref W, offset_w, 1); for (J = 1; J <= K; J++) { Q_J = J * LDQ + o_q; for (I = 1; I <= J - 1; I++) { W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda])); } Q_J = J * LDQ + o_q; for (I = J + 1; I <= K; I++) { W[I + o_w] = W[I + o_w] * (Q[I + Q_J] / (DLAMDA[I + o_dlamda] - DLAMDA[J + o_dlamda])); } } for (I = 1; I <= K; I++) { W[I + o_w] = FortranLib.Sign(Math.Sqrt(-W[I + o_w]), S[I + 1 * LDS + o_s]); } // * // * Compute eigenvectors of the modified rank-1 modification. // * for (J = 1; J <= K; J++) { Q_J = J * LDQ + o_q; for (I = 1; I <= K; I++) { Q[I + Q_J] = W[I + o_w] / Q[I + Q_J]; } TEMP = this._dnrm2.Run(K, Q, 1 + J * LDQ + o_q, 1); S_J = J * LDS + o_s; Q_J = J * LDQ + o_q; for (I = 1; I <= K; I++) { S[I + S_J] = Q[I + Q_J] / TEMP; } } // * LABEL120 :; return; // * // * End of DLAED9 // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric /// matrix in standard form: /// /// [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] /// [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] /// /// where either /// 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or /// 2) AA = DD and BB*CC .LT. 0, so that AA + or - sqrt(BB*CC) are complex /// conjugate eigenvalues. /// ///</summary> /// <param name="A"> /// (input/output) DOUBLE PRECISION ///</param> /// <param name="B"> /// (input/output) DOUBLE PRECISION ///</param> /// <param name="C"> /// (input/output) DOUBLE PRECISION ///</param> /// <param name="D"> /// (input/output) DOUBLE PRECISION /// On entry, the elements of the input matrix. /// On exit, they are overwritten by the elements of the /// standardised Schur form. ///</param> /// <param name="RT1R"> /// (output) DOUBLE PRECISION ///</param> /// <param name="RT1I"> /// (output) DOUBLE PRECISION ///</param> /// <param name="RT2R"> /// (output) DOUBLE PRECISION ///</param> /// <param name="RT2I"> /// (output) DOUBLE PRECISION /// The real and imaginary parts of the eigenvalues. If the /// eigenvalues are a complex conjugate pair, RT1I .GT. 0. ///</param> /// <param name="CS"> /// (output) DOUBLE PRECISION ///</param> /// <param name="SN"> /// (output) DOUBLE PRECISION /// Parameters of the rotation matrix. ///</param> public void Run(ref double A, ref double B, ref double C, ref double D, ref double RT1R, ref double RT1I , ref double RT2R, ref double RT2I, ref double CS, ref double SN) { #region Variables double AA = 0; double BB = 0; double BCMAX = 0; double BCMIS = 0; double CC = 0; double CS1 = 0; double DD = 0; double EPS = 0; double P = 0; double SAB = 0; double SAC = 0; double SCALE = 0; double SIGMA = 0; double SN1 = 0; double TAU = 0; double TEMP = 0; double Z = 0; #endregion #region Prolog // * // * -- LAPACK driver routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * // * Purpose // * ======= // * // * DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric // * matrix in standard form: // * // * [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] // * [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] // * // * where either // * 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or // * 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex // * conjugate eigenvalues. // * // * Arguments // * ========= // * // * A (input/output) DOUBLE PRECISION // * B (input/output) DOUBLE PRECISION // * C (input/output) DOUBLE PRECISION // * D (input/output) DOUBLE PRECISION // * On entry, the elements of the input matrix. // * On exit, they are overwritten by the elements of the // * standardised Schur form. // * // * RT1R (output) DOUBLE PRECISION // * RT1I (output) DOUBLE PRECISION // * RT2R (output) DOUBLE PRECISION // * RT2I (output) DOUBLE PRECISION // * The real and imaginary parts of the eigenvalues. If the // * eigenvalues are a complex conjugate pair, RT1I > 0. // * // * CS (output) DOUBLE PRECISION // * SN (output) DOUBLE PRECISION // * Parameters of the rotation matrix. // * // * Further Details // * =============== // * // * Modified by V. Sima, Research Institute for Informatics, Bucharest, // * Romania, to reduce the risk of cancellation errors, // * when computing real eigenvalues, and to ensure, if possible, that // * abs(RT1R) >= abs(RT2R). // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, MAX, MIN, SIGN, SQRT; // * .. // * .. Executable Statements .. // * #endregion #region Body EPS = this._dlamch.Run("P"); if (C == ZERO) { CS = ONE; SN = ZERO; goto LABEL10; // * } else { if (B == ZERO) { // * // * Swap rows and columns // * CS = ZERO; SN = ONE; TEMP = D; D = A; A = TEMP; B = -C; C = ZERO; goto LABEL10; } else { if ((A - D) == ZERO && FortranLib.Sign(ONE, B) != FortranLib.Sign(ONE, C)) { CS = ONE; SN = ZERO; goto LABEL10; } else { // * TEMP = A - D; P = HALF * TEMP; BCMAX = Math.Max(Math.Abs(B), Math.Abs(C)); BCMIS = Math.Min(Math.Abs(B), Math.Abs(C)) * FortranLib.Sign(ONE, B) * FortranLib.Sign(ONE, C); SCALE = Math.Max(Math.Abs(P), BCMAX); Z = (P / SCALE) * P + (BCMAX / SCALE) * BCMIS; // * // * If Z is of the order of the machine accuracy, postpone the // * decision on the nature of eigenvalues // * if (Z >= MULTPL * EPS) { // * // * Real eigenvalues. Compute A and D. // * Z = P + FortranLib.Sign(Math.Sqrt(SCALE) * Math.Sqrt(Z), P); A = D + Z; D += -(BCMAX / Z) * BCMIS; // * // * Compute B and the rotation matrix // * TAU = this._dlapy2.Run(C, Z); CS = Z / TAU; SN = C / TAU; B -= C; C = ZERO; } else { // * // * Complex eigenvalues, or real (almost) equal eigenvalues. // * Make diagonal elements equal. // * SIGMA = B + C; TAU = this._dlapy2.Run(SIGMA, TEMP); CS = Math.Sqrt(HALF * (ONE + Math.Abs(SIGMA) / TAU)); SN = -(P / (TAU * CS)) * FortranLib.Sign(ONE, SIGMA); // * // * Compute [ AA BB ] = [ A B ] [ CS -SN ] // * [ CC DD ] [ C D ] [ SN CS ] // * AA = A * CS + B * SN; BB = -A * SN + B * CS; CC = C * CS + D * SN; DD = -C * SN + D * CS; // * // * Compute [ A B ] = [ CS SN ] [ AA BB ] // * [ C D ] [-SN CS ] [ CC DD ] // * A = AA * CS + CC * SN; B = BB * CS + DD * SN; C = -AA * SN + CC * CS; D = -BB * SN + DD * CS; // * TEMP = HALF * (A + D); A = TEMP; D = TEMP; // * if (C != ZERO) { if (B != ZERO) { if (FortranLib.Sign(ONE, B) == FortranLib.Sign(ONE, C)) { // * // * Real eigenvalues: reduce to upper triangular form // * SAB = Math.Sqrt(Math.Abs(B)); SAC = Math.Sqrt(Math.Abs(C)); P = FortranLib.Sign(SAB * SAC, C); TAU = ONE / Math.Sqrt(Math.Abs(B + C)); A = TEMP + P; D = TEMP - P; B -= C; C = ZERO; CS1 = SAB * TAU; SN1 = SAC * TAU; TEMP = CS * CS1 - SN * SN1; SN = CS * SN1 + SN * CS1; CS = TEMP; } } else { B = -C; C = ZERO; TEMP = CS; CS = -SN; SN = TEMP; } } } // * } } } // * LABEL10 :; // * // * Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). // * RT1R = A; RT2R = D; if (C == ZERO) { RT1I = ZERO; RT2I = ZERO; } else { RT1I = Math.Sqrt(Math.Abs(B)) * Math.Sqrt(Math.Abs(C)); RT2I = -RT1I; } return; // * // * End of DLANV2 // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DBDSDC computes the singular value decomposition (SVD) of a real /// N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, /// using a divide and conquer method, where S is a diagonal matrix /// with non-negative diagonal elements (the singular values of B), and /// U and VT are orthogonal matrices of left and right singular vectors, /// respectively. DBDSDC can be used to compute all singular values, /// and optionally, singular vectors or singular vectors in compact form. /// /// This code makes very mild assumptions about floating point /// arithmetic. It will work on machines with a guard digit in /// add/subtract, or on those binary machines without guard digits /// which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. /// It could conceivably fail on hexadecimal or decimal machines /// without guard digits, but we know of none. See DLASD3 for details. /// /// The code currently calls DLASDQ if singular values only are desired. /// However, it can be slightly modified to compute singular values /// using the divide and conquer method. /// ///</summary> /// <param name="UPLO"> /// (input) CHARACTER*1 /// = 'U': B is upper bidiagonal. /// = 'L': B is lower bidiagonal. ///</param> /// <param name="COMPQ"> /// (input) CHARACTER*1 /// Specifies whether singular vectors are to be computed /// as follows: /// = 'N': Compute singular values only; /// = 'P': Compute singular values and compute singular /// vectors in compact form; /// = 'I': Compute singular values and singular vectors. ///</param> /// <param name="N"> /// (input) INTEGER /// The order of the matrix B. N .GE. 0. ///</param> /// <param name="D"> /// (input/output) DOUBLE PRECISION array, dimension (N) /// On entry, the n diagonal elements of the bidiagonal matrix B. /// On exit, if INFO=0, the singular values of B. ///</param> /// <param name="E"> /// (input/output) DOUBLE PRECISION array, dimension (N-1) /// On entry, the elements of E contain the offdiagonal /// elements of the bidiagonal matrix whose SVD is desired. /// On exit, E has been destroyed. ///</param> /// <param name="U"> /// (output) DOUBLE PRECISION array, dimension (LDU,N) /// If COMPQ = 'I', then: /// On exit, if INFO = 0, U contains the left singular vectors /// of the bidiagonal matrix. /// For other values of COMPQ, U is not referenced. ///</param> /// <param name="LDU"> /// (input) INTEGER /// The leading dimension of the array U. LDU .GE. 1. /// If singular vectors are desired, then LDU .GE. max( 1, N ). ///</param> /// <param name="VT"> /// (output) DOUBLE PRECISION array, dimension (LDVT,N) /// If COMPQ = 'I', then: /// On exit, if INFO = 0, VT' contains the right singular /// vectors of the bidiagonal matrix. /// For other values of COMPQ, VT is not referenced. ///</param> /// <param name="LDVT"> /// (input) INTEGER /// The leading dimension of the array VT. LDVT .GE. 1. /// If singular vectors are desired, then LDVT .GE. max( 1, N ). ///</param> /// <param name="Q"> /// (output) DOUBLE PRECISION array, dimension (LDQ) /// If COMPQ = 'P', then: /// On exit, if INFO = 0, Q and IQ contain the left /// and right singular vectors in a compact form, /// requiring O(N log N) space instead of 2*N**2. /// In particular, Q contains all the DOUBLE PRECISION data in /// LDQ .GE. N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) /// words of memory, where SMLSIZ is returned by ILAENV and /// is equal to the maximum size of the subproblems at the /// bottom of the computation tree (usually about 25). /// For other values of COMPQ, Q is not referenced. ///</param> /// <param name="IQ"> /// (output) INTEGER array, dimension (LDIQ) /// If COMPQ = 'P', then: /// On exit, if INFO = 0, Q and IQ contain the left /// and right singular vectors in a compact form, /// requiring O(N log N) space instead of 2*N**2. /// In particular, IQ contains all INTEGER data in /// LDIQ .GE. N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) /// words of memory, where SMLSIZ is returned by ILAENV and /// is equal to the maximum size of the subproblems at the /// bottom of the computation tree (usually about 25). /// For other values of COMPQ, IQ is not referenced. ///</param> /// <param name="WORK"> /// (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) /// If COMPQ = 'N' then LWORK .GE. (4 * N). /// If COMPQ = 'P' then LWORK .GE. (6 * N). /// If COMPQ = 'I' then LWORK .GE. (3 * N**2 + 4 * N). ///</param> /// <param name="IWORK"> /// (workspace) INTEGER array, dimension (8*N) ///</param> /// <param name="INFO"> /// (output) INTEGER /// = 0: successful exit. /// .LT. 0: if INFO = -i, the i-th argument had an illegal value. /// .GT. 0: The algorithm failed to compute an singular value. /// The update process of divide and conquer failed. ///</param> public void Run(string UPLO, string COMPQ, int N, ref double[] D, int offset_d, ref double[] E, int offset_e, ref double[] U, int offset_u , int LDU, ref double[] VT, int offset_vt, int LDVT, ref double[] Q, int offset_q, ref int[] IQ, int offset_iq, ref double[] WORK, int offset_work , ref int[] IWORK, int offset_iwork, ref int INFO) { #region Variables int DIFL = 0; int DIFR = 0; int GIVCOL = 0; int GIVNUM = 0; int GIVPTR = 0; int I = 0; int IC = 0; int ICOMPQ = 0; int IERR = 0; int II = 0; int IS = 0; int IU = 0; int IUPLO = 0; int IVT = 0; int J = 0; int K = 0; int KK = 0; int MLVL = 0; int NM1 = 0; int NSIZE = 0; int PERM = 0; int POLES = 0; int QSTART = 0; int SMLSIZ = 0; int SMLSZP = 0; int SQRE = 0; int START = 0; int WSTART = 0; int Z = 0; double CS = 0; double EPS = 0; double ORGNRM = 0; double P = 0; double R = 0; double SN = 0; #endregion #region Array Index Correction int o_d = -1 + offset_d; int o_e = -1 + offset_e; int o_u = -1 - LDU + offset_u; int o_vt = -1 - LDVT + offset_vt; int o_q = -1 + offset_q; int o_iq = -1 + offset_iq; int o_work = -1 + offset_work; int o_iwork = -1 + offset_iwork; #endregion #region Strings UPLO = UPLO.Substring(0, 1); COMPQ = COMPQ.Substring(0, 1); #endregion #region Prolog // * // * -- LAPACK routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DBDSDC computes the singular value decomposition (SVD) of a real // * N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, // * using a divide and conquer method, where S is a diagonal matrix // * with non-negative diagonal elements (the singular values of B), and // * U and VT are orthogonal matrices of left and right singular vectors, // * respectively. DBDSDC can be used to compute all singular values, // * and optionally, singular vectors or singular vectors in compact form. // * // * This code makes very mild assumptions about floating point // * arithmetic. It will work on machines with a guard digit in // * add/subtract, or on those binary machines without guard digits // * which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. // * It could conceivably fail on hexadecimal or decimal machines // * without guard digits, but we know of none. See DLASD3 for details. // * // * The code currently calls DLASDQ if singular values only are desired. // * However, it can be slightly modified to compute singular values // * using the divide and conquer method. // * // * Arguments // * ========= // * // * UPLO (input) CHARACTER*1 // * = 'U': B is upper bidiagonal. // * = 'L': B is lower bidiagonal. // * // * COMPQ (input) CHARACTER*1 // * Specifies whether singular vectors are to be computed // * as follows: // * = 'N': Compute singular values only; // * = 'P': Compute singular values and compute singular // * vectors in compact form; // * = 'I': Compute singular values and singular vectors. // * // * N (input) INTEGER // * The order of the matrix B. N >= 0. // * // * D (input/output) DOUBLE PRECISION array, dimension (N) // * On entry, the n diagonal elements of the bidiagonal matrix B. // * On exit, if INFO=0, the singular values of B. // * // * E (input/output) DOUBLE PRECISION array, dimension (N-1) // * On entry, the elements of E contain the offdiagonal // * elements of the bidiagonal matrix whose SVD is desired. // * On exit, E has been destroyed. // * // * U (output) DOUBLE PRECISION array, dimension (LDU,N) // * If COMPQ = 'I', then: // * On exit, if INFO = 0, U contains the left singular vectors // * of the bidiagonal matrix. // * For other values of COMPQ, U is not referenced. // * // * LDU (input) INTEGER // * The leading dimension of the array U. LDU >= 1. // * If singular vectors are desired, then LDU >= max( 1, N ). // * // * VT (output) DOUBLE PRECISION array, dimension (LDVT,N) // * If COMPQ = 'I', then: // * On exit, if INFO = 0, VT' contains the right singular // * vectors of the bidiagonal matrix. // * For other values of COMPQ, VT is not referenced. // * // * LDVT (input) INTEGER // * The leading dimension of the array VT. LDVT >= 1. // * If singular vectors are desired, then LDVT >= max( 1, N ). // * // * Q (output) DOUBLE PRECISION array, dimension (LDQ) // * If COMPQ = 'P', then: // * On exit, if INFO = 0, Q and IQ contain the left // * and right singular vectors in a compact form, // * requiring O(N log N) space instead of 2*N**2. // * In particular, Q contains all the DOUBLE PRECISION data in // * LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) // * words of memory, where SMLSIZ is returned by ILAENV and // * is equal to the maximum size of the subproblems at the // * bottom of the computation tree (usually about 25). // * For other values of COMPQ, Q is not referenced. // * // * IQ (output) INTEGER array, dimension (LDIQ) // * If COMPQ = 'P', then: // * On exit, if INFO = 0, Q and IQ contain the left // * and right singular vectors in a compact form, // * requiring O(N log N) space instead of 2*N**2. // * In particular, IQ contains all INTEGER data in // * LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) // * words of memory, where SMLSIZ is returned by ILAENV and // * is equal to the maximum size of the subproblems at the // * bottom of the computation tree (usually about 25). // * For other values of COMPQ, IQ is not referenced. // * // * WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) // * If COMPQ = 'N' then LWORK >= (4 * N). // * If COMPQ = 'P' then LWORK >= (6 * N). // * If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). // * // * IWORK (workspace) INTEGER array, dimension (8*N) // * // * INFO (output) INTEGER // * = 0: successful exit. // * < 0: if INFO = -i, the i-th argument had an illegal value. // * > 0: The algorithm failed to compute an singular value. // * The update process of divide and conquer failed. // * // * Further Details // * =============== // * // * Based on contributions by // * Ming Gu and Huan Ren, Computer Science Division, University of // * California at Berkeley, USA // * // * ===================================================================== // * Changed dimension statement in comment describing E from (N) to // * (N-1). Sven, 17 Feb 05. // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. External Subroutines .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, DBLE, INT, LOG, SIGN; // * .. // * .. Executable Statements .. // * // * Test the input parameters. // * #endregion #region Body INFO = 0; // * IUPLO = 0; if (this._lsame.Run(UPLO, "U")) { IUPLO = 1; } if (this._lsame.Run(UPLO, "L")) { IUPLO = 2; } if (this._lsame.Run(COMPQ, "N")) { ICOMPQ = 0; } else { if (this._lsame.Run(COMPQ, "P")) { ICOMPQ = 1; } else { if (this._lsame.Run(COMPQ, "I")) { ICOMPQ = 2; } else { ICOMPQ = -1; } } } if (IUPLO == 0) { INFO = -1; } else { if (ICOMPQ < 0) { INFO = -2; } else { if (N < 0) { INFO = -3; } else { if ((LDU < 1) || ((ICOMPQ == 2) && (LDU < N))) { INFO = -7; } else { if ((LDVT < 1) || ((ICOMPQ == 2) && (LDVT < N))) { INFO = -9; } } } } } if (INFO != 0) { this._xerbla.Run("DBDSDC", -INFO); return; } // * // * Quick return if possible // * if (N == 0) { return; } SMLSIZ = this._ilaenv.Run(9, "DBDSDC", " ", 0, 0, 0, 0); if (N == 1) { if (ICOMPQ == 1) { Q[1 + o_q] = FortranLib.Sign(ONE, D[1 + o_d]); Q[1 + SMLSIZ * N + o_q] = ONE; } else { if (ICOMPQ == 2) { U[1 + 1 * LDU + o_u] = FortranLib.Sign(ONE, D[1 + o_d]); VT[1 + 1 * LDVT + o_vt] = ONE; } } D[1 + o_d] = Math.Abs(D[1 + o_d]); return; } NM1 = N - 1; // * // * If matrix lower bidiagonal, rotate to be upper bidiagonal // * by applying Givens rotations on the left // * WSTART = 1; QSTART = 3; if (ICOMPQ == 1) { this._dcopy.Run(N, D, offset_d, 1, ref Q, 1 + o_q, 1); this._dcopy.Run(N - 1, E, offset_e, 1, ref Q, N + 1 + o_q, 1); } if (IUPLO == 2) { QSTART = 5; WSTART = 2 * N - 1; for (I = 1; I <= N - 1; I++) { this._dlartg.Run(D[I + o_d], E[I + o_e], ref CS, ref SN, ref R); D[I + o_d] = R; E[I + o_e] = SN * D[I + 1 + o_d]; D[I + 1 + o_d] *= CS; if (ICOMPQ == 1) { Q[I + 2 * N + o_q] = CS; Q[I + 3 * N + o_q] = SN; } else { if (ICOMPQ == 2) { WORK[I + o_work] = CS; WORK[NM1 + I + o_work] = -SN; } } } } // * // * If ICOMPQ = 0, use DLASDQ to compute the singular values. // * if (ICOMPQ == 0) { this._dlasdq.Run("U", 0, N, 0, 0, 0 , ref D, offset_d, ref E, offset_e, ref VT, offset_vt, LDVT, ref U, offset_u, LDU , ref U, offset_u, LDU, ref WORK, WSTART + o_work, ref INFO); goto LABEL40; } // * // * If N is smaller than the minimum divide size SMLSIZ, then solve // * the problem with another solver. // * if (N <= SMLSIZ) { if (ICOMPQ == 2) { this._dlaset.Run("A", N, N, ZERO, ONE, ref U, offset_u , LDU); this._dlaset.Run("A", N, N, ZERO, ONE, ref VT, offset_vt , LDVT); this._dlasdq.Run("U", 0, N, N, N, 0 , ref D, offset_d, ref E, offset_e, ref VT, offset_vt, LDVT, ref U, offset_u, LDU , ref U, offset_u, LDU, ref WORK, WSTART + o_work, ref INFO); } else { if (ICOMPQ == 1) { IU = 1; IVT = IU + N; this._dlaset.Run("A", N, N, ZERO, ONE, ref Q, IU + (QSTART - 1) * N + o_q , N); this._dlaset.Run("A", N, N, ZERO, ONE, ref Q, IVT + (QSTART - 1) * N + o_q , N); this._dlasdq.Run("U", 0, N, N, N, 0 , ref D, offset_d, ref E, offset_e, ref Q, IVT + (QSTART - 1) * N + o_q, N, ref Q, IU + (QSTART - 1) * N + o_q, N , ref Q, IU + (QSTART - 1) * N + o_q, N, ref WORK, WSTART + o_work, ref INFO); } } goto LABEL40; } // * if (ICOMPQ == 2) { this._dlaset.Run("A", N, N, ZERO, ONE, ref U, offset_u , LDU); this._dlaset.Run("A", N, N, ZERO, ONE, ref VT, offset_vt , LDVT); } // * // * Scale. // * ORGNRM = this._dlanst.Run("M", N, D, offset_d, E, offset_e); if (ORGNRM == ZERO) { return; } this._dlascl.Run("G", 0, 0, ORGNRM, ONE, N , 1, ref D, offset_d, N, ref IERR); this._dlascl.Run("G", 0, 0, ORGNRM, ONE, NM1 , 1, ref E, offset_e, NM1, ref IERR); // * EPS = this._dlamch.Run("Epsilon"); // * MLVL = Convert.ToInt32(Math.Truncate(Math.Log(Convert.ToDouble(N) / Convert.ToDouble(SMLSIZ + 1)) / Math.Log(TWO))) + 1; SMLSZP = SMLSIZ + 1; // * if (ICOMPQ == 1) { IU = 1; IVT = 1 + SMLSIZ; DIFL = IVT + SMLSZP; DIFR = DIFL + MLVL; Z = DIFR + MLVL * 2; IC = Z + MLVL; IS = IC + 1; POLES = IS + 1; GIVNUM = POLES + 2 * MLVL; // * K = 1; GIVPTR = 2; PERM = 3; GIVCOL = PERM + MLVL; } // * for (I = 1; I <= N; I++) { if (Math.Abs(D[I + o_d]) < EPS) { D[I + o_d] = FortranLib.Sign(EPS, D[I + o_d]); } } // * START = 1; SQRE = 0; // * for (I = 1; I <= NM1; I++) { if ((Math.Abs(E[I + o_e]) < EPS) || (I == NM1)) { // * // * Subproblem found. First determine its size and then // * apply divide and conquer on it. // * if (I < NM1) { // * // * A subproblem with E(I) small for I < NM1. // * NSIZE = I - START + 1; } else { if (Math.Abs(E[I + o_e]) >= EPS) { // * // * A subproblem with E(NM1) not too small but I = NM1. // * NSIZE = N - START + 1; } else { // * // * A subproblem with E(NM1) small. This implies an // * 1-by-1 subproblem at D(N). Solve this 1-by-1 problem // * first. // * NSIZE = I - START + 1; if (ICOMPQ == 2) { U[N + N * LDU + o_u] = FortranLib.Sign(ONE, D[N + o_d]); VT[N + N * LDVT + o_vt] = ONE; } else { if (ICOMPQ == 1) { Q[N + (QSTART - 1) * N + o_q] = FortranLib.Sign(ONE, D[N + o_d]); Q[N + (SMLSIZ + QSTART - 1) * N + o_q] = ONE; } } D[N + o_d] = Math.Abs(D[N + o_d]); } } if (ICOMPQ == 2) { this._dlasd0.Run(NSIZE, SQRE, ref D, START + o_d, ref E, START + o_e, ref U, START + START * LDU + o_u, LDU , ref VT, START + START * LDVT + o_vt, LDVT, SMLSIZ, ref IWORK, offset_iwork, ref WORK, WSTART + o_work, ref INFO); } else { this._dlasda.Run(ICOMPQ, SMLSIZ, NSIZE, SQRE, ref D, START + o_d, ref E, START + o_e , ref Q, START + (IU + QSTART - 2) * N + o_q, N, ref Q, START + (IVT + QSTART - 2) * N + o_q, ref IQ, START + K * N + o_iq, ref Q, START + (DIFL + QSTART - 2) * N + o_q, ref Q, START + (DIFR + QSTART - 2) * N + o_q , ref Q, START + (Z + QSTART - 2) * N + o_q, ref Q, START + (POLES + QSTART - 2) * N + o_q, ref IQ, START + GIVPTR * N + o_iq, ref IQ, START + GIVCOL * N + o_iq, N, ref IQ, START + PERM * N + o_iq , ref Q, START + (GIVNUM + QSTART - 2) * N + o_q, ref Q, START + (IC + QSTART - 2) * N + o_q, ref Q, START + (IS + QSTART - 2) * N + o_q, ref WORK, WSTART + o_work, ref IWORK, offset_iwork, ref INFO); if (INFO != 0) { return; } } START = I + 1; } } // * // * Unscale // * this._dlascl.Run("G", 0, 0, ONE, ORGNRM, N , 1, ref D, offset_d, N, ref IERR); LABEL40 :; // * // * Use Selection Sort to minimize swaps of singular vectors // * for (II = 2; II <= N; II++) { I = II - 1; KK = I; P = D[I + o_d]; for (J = II; J <= N; J++) { if (D[J + o_d] > P) { KK = J; P = D[J + o_d]; } } if (KK != I) { D[KK + o_d] = D[I + o_d]; D[I + o_d] = P; if (ICOMPQ == 1) { IQ[I + o_iq] = KK; } else { if (ICOMPQ == 2) { this._dswap.Run(N, ref U, 1 + I * LDU + o_u, 1, ref U, 1 + KK * LDU + o_u, 1); this._dswap.Run(N, ref VT, I + 1 * LDVT + o_vt, LDVT, ref VT, KK + 1 * LDVT + o_vt, LDVT); } } } else { if (ICOMPQ == 1) { IQ[I + o_iq] = I; } } } // * // * If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO // * if (ICOMPQ == 1) { if (IUPLO == 1) { IQ[N + o_iq] = 1; } else { IQ[N + o_iq] = 0; } } // * // * If B is lower bidiagonal, update U by those Givens rotations // * which rotated B to be upper bidiagonal // * if ((IUPLO == 2) && (ICOMPQ == 2)) { this._dlasr.Run("L", "V", "B", N, N, WORK, 1 + o_work , WORK, N + o_work, ref U, offset_u, LDU); } // * return; // * // * End of DBDSDC // * #endregion }
/// <summary> /// Purpose /// ======= /// /// DLARFG generates a real elementary reflector H of order n, such /// that /// /// H * ( alpha ) = ( beta ), H' * H = I. /// ( x ) ( 0 ) /// /// where alpha and beta are scalars, and x is an (n-1)-element real /// vector. H is represented in the form /// /// H = I - tau * ( 1 ) * ( 1 v' ) , /// ( v ) /// /// where tau is a real scalar and v is a real (n-1)-element /// vector. /// /// If the elements of x are all zero, then tau = 0 and H is taken to be /// the unit matrix. /// /// Otherwise 1 .LE. tau .LE. 2. /// ///</summary> /// <param name="N"> /// (input) INTEGER /// The order of the elementary reflector. ///</param> /// <param name="ALPHA"> /// (input/output) DOUBLE PRECISION /// On entry, the value alpha. /// On exit, it is overwritten with the value beta. ///</param> /// <param name="X"> /// (input/output) DOUBLE PRECISION array, dimension /// (1+(N-2)*abs(INCX)) /// On entry, the vector x. /// On exit, it is overwritten with the vector v. ///</param> /// <param name="INCX"> /// (input) INTEGER /// The increment between elements of X. INCX .GT. 0. ///</param> /// <param name="TAU"> /// (output) DOUBLE PRECISION /// The value tau. ///</param> public void Run(int N, ref double ALPHA, ref double[] X, int offset_x, int INCX, ref double TAU) { #region Variables int J = 0; int KNT = 0; double BETA = 0; double RSAFMN = 0; double SAFMIN = 0; double XNORM = 0; #endregion #region Array Index Correction int o_x = -1 + offset_x; #endregion #region Prolog // * // * -- LAPACK auxiliary routine (version 3.1) -- // * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. // * November 2006 // * // * .. Scalar Arguments .. // * .. // * .. Array Arguments .. // * .. // * // * Purpose // * ======= // * // * DLARFG generates a real elementary reflector H of order n, such // * that // * // * H * ( alpha ) = ( beta ), H' * H = I. // * ( x ) ( 0 ) // * // * where alpha and beta are scalars, and x is an (n-1)-element real // * vector. H is represented in the form // * // * H = I - tau * ( 1 ) * ( 1 v' ) , // * ( v ) // * // * where tau is a real scalar and v is a real (n-1)-element // * vector. // * // * If the elements of x are all zero, then tau = 0 and H is taken to be // * the unit matrix. // * // * Otherwise 1 <= tau <= 2. // * // * Arguments // * ========= // * // * N (input) INTEGER // * The order of the elementary reflector. // * // * ALPHA (input/output) DOUBLE PRECISION // * On entry, the value alpha. // * On exit, it is overwritten with the value beta. // * // * X (input/output) DOUBLE PRECISION array, dimension // * (1+(N-2)*abs(INCX)) // * On entry, the vector x. // * On exit, it is overwritten with the vector v. // * // * INCX (input) INTEGER // * The increment between elements of X. INCX > 0. // * // * TAU (output) DOUBLE PRECISION // * The value tau. // * // * ===================================================================== // * // * .. Parameters .. // * .. // * .. Local Scalars .. // * .. // * .. External Functions .. // * .. // * .. Intrinsic Functions .. // INTRINSIC ABS, SIGN; // * .. // * .. External Subroutines .. // * .. // * .. Executable Statements .. // * #endregion #region Body if (N <= 1) { TAU = ZERO; return; } // * XNORM = this._dnrm2.Run(N - 1, X, offset_x, INCX); // * if (XNORM == ZERO) { // * // * H = I // * TAU = ZERO; } else { // * // * general case // * BETA = -FortranLib.Sign(this._dlapy2.Run(ALPHA, XNORM), ALPHA); SAFMIN = this._dlamch.Run("S") / this._dlamch.Run("E"); if (Math.Abs(BETA) < SAFMIN) { // * // * XNORM, BETA may be inaccurate; scale X and recompute them // * RSAFMN = ONE / SAFMIN; KNT = 0; LABEL10 :; KNT += 1; this._dscal.Run(N - 1, RSAFMN, ref X, offset_x, INCX); BETA *= RSAFMN; ALPHA *= RSAFMN; if (Math.Abs(BETA) < SAFMIN) { goto LABEL10; } // * // * New BETA is at most 1, at least SAFMIN // * XNORM = this._dnrm2.Run(N - 1, X, offset_x, INCX); BETA = -FortranLib.Sign(this._dlapy2.Run(ALPHA, XNORM), ALPHA); TAU = (BETA - ALPHA) / BETA; this._dscal.Run(N - 1, ONE / (ALPHA - BETA), ref X, offset_x, INCX); // * // * If ALPHA is subnormal, it may lose relative accuracy // * ALPHA = BETA; for (J = 1; J <= KNT; J++) { ALPHA *= SAFMIN; } } else { TAU = (BETA - ALPHA) / BETA; this._dscal.Run(N - 1, ONE / (ALPHA - BETA), ref X, offset_x, INCX); ALPHA = BETA; } } // * return; // * // * End of DLARFG // * #endregion }