public void StartTrainingArgumentValidation() { FormTrainingClient client = CreateInstrumentedClient(); Assert.ThrowsAsync <UriFormatException>(() => client.StartTrainingAsync(new Uri(string.Empty), useTrainingLabels: false)); Assert.ThrowsAsync <ArgumentNullException>(() => client.StartTrainingAsync((Uri)null, useTrainingLabels: false)); }
private static async Task <string> TrainModelWithLabelsAsync( FormTrainingClient trainingClient, string trainingFileUrl) { CustomFormModel model = await trainingClient .StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : true).WaitForCompletionAsync(); Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Requested on: {model.TrainingStartedOn}"); Console.WriteLine($" Completed on: {model.TrainingCompletedOn}"); foreach (CustomFormSubmodel submodel in model.Submodels) { Console.WriteLine($"Submodel Form Type: {submodel.FormType}"); foreach (CustomFormModelField field in submodel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Accuracy != null) { Console.Write($", Accuracy: {field.Accuracy}"); } Console.WriteLine(""); } } return(model.ModelId); }
public async Task OutputModelsTrainedWithoutLabels() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; string formFilePath = FormRecognizerTestEnvironment.CreatePath("Form_1.jpg"); FormRecognizerClient client = new FormRecognizerClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); FormTrainingClient trainingClient = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); // Model trained without labels CustomFormModel modelTrainedWithoutLabels = await trainingClient.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : false).WaitForCompletionAsync(); using (FileStream stream = new FileStream(formFilePath, FileMode.Open)) { RecognizedFormCollection forms = await client.StartRecognizeCustomFormsAsync(modelTrainedWithoutLabels.ModelId, stream).WaitForCompletionAsync(); // With a form recognized by a model trained without labels, the 'field.Name' property will be denoted // by a numeric index. To look for the labels identified during the training step, // use the `field.LabelText` property. Console.WriteLine("---------Recognizing forms using models trained without labels---------"); foreach (RecognizedForm form in forms) { Console.WriteLine($"Form of type: {form.FormType}"); foreach (FormField field in form.Fields.Values) { Console.WriteLine($"Field {field.Name}: "); if (field.LabelData != null) { Console.WriteLine($" Label: '{field.LabelData.Text}"); } Console.WriteLine($" Value: '{field.ValueData.Text}"); Console.WriteLine($" Confidence: '{field.Confidence}"); } } // Find the value of unlabeled fields. foreach (RecognizedForm form in forms) { // Find the value of a specific unlabeled field. Console.WriteLine("Find the value for a specific unlabeled field:"); foreach (FormField field in form.Fields.Values) { if (field.LabelData != null && field.LabelData.Text == "Vendor Name:") { Console.WriteLine($"The Vendor Name is {field.ValueData.Text}"); } } // Find the value of unlabeled fields with specific words Console.WriteLine("Find the value for labeled field with specific words:"); form.Fields.Values.Where(field => field.LabelData.Text.StartsWith("Ven")) .ToList().ForEach(v => Console.WriteLine($"{v.LabelData.Text} is {v.ValueData.Text}")); form.Fields.Values.Where(field => field.LabelData.Text.Contains("Name")) .ToList().ForEach(v => Console.WriteLine($"{v.LabelData.Text} is {v.ValueData.Text}")); } } }
public async Task ManageCustomModelsAsync() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; #region Snippet:FormRecognizerSampleManageCustomModelsAsync FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); // Check number of models in the FormRecognizer account, and the maximum number of models that can be stored. AccountProperties accountProperties = await client.GetAccountPropertiesAsync(); Console.WriteLine($"Account has {accountProperties.CustomModelCount} models."); Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models."); // List the models currently stored in the account. AsyncPageable <CustomFormModelInfo> models = client.GetCustomModelsAsync(); await foreach (CustomFormModelInfo modelInfo in models) { Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {modelInfo.ModelId}"); Console.WriteLine($" Model name: {modelInfo.ModelName}"); Console.WriteLine($" Is composed model: {modelInfo.Properties.IsComposedModel}"); Console.WriteLine($" Model Status: {modelInfo.Status}"); Console.WriteLine($" Training model started on: {modelInfo.TrainingStartedOn}"); Console.WriteLine($" Training model completed on: : {modelInfo.TrainingCompletedOn}"); } // Create a new model to store in the account CustomFormModel model = await client.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : false, new TrainingOptions() { ModelName = "My new model" }).WaitForCompletionAsync(); // Get the model that was just created CustomFormModel modelCopy = await client.GetCustomModelAsync(model.ModelId); Console.WriteLine($"Custom Model with Id {modelCopy.ModelId} and name {modelCopy.ModelName} recognizes the following form types:"); foreach (CustomFormSubmodel submodel in modelCopy.Submodels) { Console.WriteLine($"Submodel Form Type: {submodel.FormType}"); foreach (CustomFormModelField field in submodel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Label != null) { Console.Write($", FieldLabel: {field.Label}"); } Console.WriteLine(""); } } // Delete the model from the account. await client.DeleteModelAsync(model.ModelId); #endregion }
static async Task Main(string[] args) { try { // Get configuration settings IConfigurationBuilder builder = new ConfigurationBuilder().AddJsonFile("appsettings.json"); IConfigurationRoot configuration = builder.Build(); string formEndpoint = configuration["FormEndpoint"]; string formKey = configuration["FormKey"]; string trainingStorageUri = configuration["StorageUri"]; // Authenticate Form Training Client var credential = new AzureKeyCredential(formKey); var trainingClient = new FormTrainingClient(new Uri(formEndpoint), credential); // Train model CustomFormModel model = await trainingClient .StartTrainingAsync(new Uri(trainingStorageUri), useTrainingLabels : false) .WaitForCompletionAsync(); // Get model info Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Training model started on: {model.TrainingStartedOn}"); Console.WriteLine($" Training model completed on: {model.TrainingCompletedOn}"); } catch (Exception ex) { Console.WriteLine(ex.Message); } }
// </snippet_receipt_print> // <snippet_train> private static async Task <String> TrainModel( FormTrainingClient trainingClient, string trainingDataUrl) { CustomFormModel model = await trainingClient .StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels : false) .WaitForCompletionAsync(); Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Training model started on: {model.TrainingStartedOn}"); Console.WriteLine($" Training model completed on: {model.TrainingCompletedOn}"); // </snippet_train> // <snippet_train_response> foreach (CustomFormSubmodel submodel in model.Submodels) { Console.WriteLine($"Submodel Form Type: {submodel.FormType}"); foreach (CustomFormModelField field in submodel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Label != null) { Console.Write($", FieldLabel: {field.Label}"); } Console.WriteLine(""); } } // </snippet_train_response> // <snippet_train_return> return(model.ModelId); }
public async Task RecognizeCustomFormsFromUri() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; // Firstly, create a trained model we can use to recognize the custom form. Please note that // models can also be trained using a graphical user interface such as the Form Recognizer // Labeling Tool found here: // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/quickstarts/label-tool FormTrainingClient trainingClient = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : false, "My Model").WaitForCompletionAsync(); // Proceed with the custom form recognition. FormRecognizerClient client = new FormRecognizerClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); #region Snippet:FormRecognizerSampleRecognizeCustomFormsFromUri #if SNIPPET string modelId = "<modelId>"; Uri formUri = < formUri >; #else Uri formUri = FormRecognizerTestEnvironment.CreateUri("Form_1.jpg"); string modelId = model.ModelId; #endif RecognizeCustomFormsOperation operation = await client.StartRecognizeCustomFormsFromUriAsync(modelId, formUri); Response <RecognizedFormCollection> operationResponse = await operation.WaitForCompletionAsync(); RecognizedFormCollection forms = operationResponse.Value; foreach (RecognizedForm form in forms) { Console.WriteLine($"Form of type: {form.FormType}"); if (form.FormTypeConfidence.HasValue) { Console.WriteLine($"Form type confidence: {form.FormTypeConfidence.Value}"); } Console.WriteLine($"Form was analyzed with model with ID: {form.ModelId}"); foreach (FormField field in form.Fields.Values) { Console.WriteLine($"Field '{field.Name}': "); if (field.LabelData != null) { Console.WriteLine($" Label: '{field.LabelData.Text}'"); } Console.WriteLine($" Value: '{field.ValueData.Text}'"); Console.WriteLine($" Confidence: '{field.Confidence}'"); } } #endregion // Delete the model on completion to clean environment. await trainingClient.DeleteModelAsync(model.ModelId); }
public async Task TrainModelWithFormsAndLabels() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; #region Snippet:FormRecognizerSampleTrainModelWithFormsAndLabels // For this sample, you can use the training forms found in the `trainingFiles` folder. // Upload the forms to your storage container and then generate a container SAS URL. Note // that a container URI without SAS is accepted only when the container is public or has a // managed identity configured. // // For instructions to set up forms for training in an Azure Blob Storage Container, please see: // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/build-training-data-set#upload-your-training-data // For instructions to create a label file for your training forms, please see: // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/label-tool?tabs=v2-1 #if SNIPPET Uri trainingFileUri = new Uri("<trainingFileUri>"); #else Uri trainingFileUri = new Uri(TestEnvironment.BlobContainerSasUrlV2); #endif string modelName = "My Model with labels"; FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); TrainingOperation operation = await client.StartTrainingAsync(trainingFileUri, useTrainingLabels : true, modelName); Response <CustomFormModel> operationResponse = await operation.WaitForCompletionAsync(); CustomFormModel model = operationResponse.Value; Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model name: {model.ModelName}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Is composed model: {model.Properties.IsComposedModel}"); Console.WriteLine($" Training model started on: {model.TrainingStartedOn}"); Console.WriteLine($" Training model completed on: {model.TrainingCompletedOn}"); foreach (CustomFormSubmodel submodel in model.Submodels) { Console.WriteLine($"Submodel Form Type: {submodel.FormType}"); foreach (CustomFormModelField field in submodel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Accuracy != null) { Console.Write($", Accuracy: {field.Accuracy}"); } Console.WriteLine(""); } } #endregion // Delete the model on completion to clean environment. await client.DeleteModelAsync(model.ModelId); }
public async Task OutputModelsTrainedWithLabels() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; string formFilePath = FormRecognizerTestEnvironment.CreatePath("Form_1.jpg"); FormRecognizerClient client = new FormRecognizerClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); FormTrainingClient trainingClient = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); // Model trained with labels CustomFormModel modelTrainedWithLabels = await trainingClient.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : true, new TrainingOptions() { ModelDisplayName = "My Model with labels" }).WaitForCompletionAsync(); using (FileStream stream = new FileStream(formFilePath, FileMode.Open)) { RecognizedFormCollection forms = await client.StartRecognizeCustomFormsAsync(modelTrainedWithLabels.ModelId, stream).WaitForCompletionAsync(); // With a form recognized by a model trained with labels, the 'field.Name' key will be the label // that you gave it at training time. // Note that Label data is not returned for model trained with labels, as the trained model // contains this information and therefore the service returns the value of the recognized label. Console.WriteLine("---------Recognizing forms using models trained with labels---------"); foreach (RecognizedForm form in forms) { Console.WriteLine($"Form of type: {form.FormType}"); Console.WriteLine($"Form has form type confidence: {form.FormTypeConfidence.Value}"); Console.WriteLine($"Form was analyzed with model with ID: {form.ModelId}"); foreach (FormField field in form.Fields.Values) { Console.WriteLine($"Field {field.Name}: "); Console.WriteLine($" Value: '{field.ValueData.Text}"); Console.WriteLine($" Confidence: '{field.Confidence}"); } } // Find labeled field. foreach (RecognizedForm form in forms) { // Find the specific labeled field. Console.WriteLine("Find the value for a specific labeled field:"); if (form.Fields.TryGetValue("VendorName", out FormField field)) { Console.WriteLine($"VendorName is {field.ValueData.Text}"); } // Find labeled fields with specific words Console.WriteLine("Find the value for labeled field with specific words:"); form.Fields.Where(kv => kv.Key.StartsWith("Ven")) .ToList().ForEach(v => Console.WriteLine($"{v.Key} is {v.Value.ValueData.Text}")); form.Fields.Where(kv => kv.Key.Contains("Name")) .ToList().ForEach(v => Console.WriteLine($"{v.Key} is {v.Value.ValueData.Text}")); } } }
public override async Task SetupAsync() { var trainingClient = new FormTrainingClient(new Uri(Endpoint), new AzureKeyCredential(ApiKey)); var op = await trainingClient.StartTrainingAsync(new Uri(BlobContainerSasUrl), useTrainingLabels : false); CustomFormModel model = await op.WaitForCompletionAsync(); _modelId = model.ModelId; }
public async Task CopyModel() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; Uri trainingFileUri = new Uri(TestEnvironment.BlobContainerSasUrl); string resourceId = TestEnvironment.TargetResourceId; string resourceRegion = TestEnvironment.TargetResourceRegion; #region Snippet:FormRecognizerSampleCreateCopySourceClient //@@ string endpoint = "<source_endpoint>"; //@@ string apiKey = "<source_apiKey>"; var sourcecredential = new AzureKeyCredential(apiKey); var sourceClient = new FormTrainingClient(new Uri(endpoint), sourcecredential); #endregion // For the purpose of this sample, we are going to create a trained model to copy. Please note that // if you already have a model, this is not necessary. //@@ Uri trainingFileUri = <trainingFileUri>; TrainingOperation operation = await sourceClient.StartTrainingAsync(trainingFileUri, useTrainingLabels : false); Response <CustomFormModel> operationResponse = await operation.WaitForCompletionAsync(); CustomFormModel model = operationResponse.Value; string modelId = model.ModelId; #region Snippet:FormRecognizerSampleCreateCopyTargetClient //@@ string endpoint = "<target_endpoint>"; //@@ string apiKey = "<target_apiKey>"; var targetCredential = new AzureKeyCredential(apiKey); var targetClient = new FormTrainingClient(new Uri(endpoint), targetCredential); #endregion #region Snippet:FormRecognizerSampleGetCopyAuthorization //@@ string resourceId = "<resourceId>"; //@@ string resourceRegion = "<region>"; CopyAuthorization targetAuth = await targetClient.GetCopyAuthorizationAsync(resourceId, resourceRegion); #endregion #region Snippet:FormRecognizerSampleToJson string jsonTargetAuth = targetAuth.ToJson(); #endregion #region Snippet:FormRecognizerSampleFromJson CopyAuthorization targetCopyAuth = CopyAuthorization.FromJson(jsonTargetAuth); #endregion #region Snippet:FormRecognizerSampleCopyModel //@@ string modelId = "<source_modelId>"; CustomFormModelInfo newModel = await sourceClient.StartCopyModelAsync(modelId, targetCopyAuth).WaitForCompletionAsync(); Console.WriteLine($"Original model ID => {modelId}"); Console.WriteLine($"Copied model ID => {newModel.ModelId}"); #endregion }
// </snippet_analyze_response> // <snippet_manage> private static async Task ManageModels( FormTrainingClient trainingClient, string trainingFileUrl) { // </snippet_manage> // <snippet_manage_model_count> // Check number of models in the FormRecognizer account, // and the maximum number of models that can be stored. AccountProperties accountProperties = trainingClient.GetAccountProperties(); Console.WriteLine($"Account has {accountProperties.CustomModelCount} models."); Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models."); // </snippet_manage_model_count> // <snippet_manage_model_list> Pageable <CustomFormModelInfo> models = trainingClient.GetCustomModels(); foreach (CustomFormModelInfo modelInfo in models) { Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {modelInfo.ModelId}"); Console.WriteLine($" Model Status: {modelInfo.Status}"); Console.WriteLine($" Training model started on: {modelInfo.TrainingStartedOn}"); Console.WriteLine($" Training model completed on: {modelInfo.TrainingCompletedOn}"); } // </snippet_manage_model_list> // <snippet_manage_model_get> // Create a new model to store in the account CustomFormModel model = await trainingClient.StartTrainingAsync( new Uri(trainingFileUrl)).WaitForCompletionAsync(); // Get the model that was just created CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId); Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:"); foreach (CustomFormSubmodel submodel in modelCopy.Submodels) { Console.WriteLine($"Submodel Form Type: {submodel.FormType}"); foreach (CustomFormModelField field in submodel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Label != null) { Console.Write($", FieldLabel: {field.Label}"); } Console.WriteLine(""); } } // </snippet_manage_model_get> // <snippet_manage_model_delete> // Delete the model from the account. trainingClient.DeleteModel(model.ModelId); }
public async Task ManageCustomModels() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; #region Snippet:FormRecognizerSample6ManageCustomModels FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); // Check number of models in the FormRecognizer account, and the maximum number of models that can be stored. AccountProperties accountProperties = client.GetAccountProperties(); Console.WriteLine($"Account has {accountProperties.CustomModelCount} models."); Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit} models."); // List the first ten or fewer models currently stored in the account. Pageable <CustomFormModelInfo> models = client.GetCustomModels(); foreach (CustomFormModelInfo modelInfo in models.Take(10)) { Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {modelInfo.ModelId}"); Console.WriteLine($" Model Status: {modelInfo.Status}"); Console.WriteLine($" Created On: {modelInfo.CreatedOn}"); Console.WriteLine($" Last Modified: {modelInfo.LastModified}"); } // Create a new model to store in the account CustomFormModel model = await client.StartTrainingAsync(new Uri(trainingFileUrl)).WaitForCompletionAsync(); // Get the model that was just created CustomFormModel modelCopy = client.GetCustomModel(model.ModelId); Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following form types:"); foreach (CustomFormSubModel subModel in modelCopy.Models) { Console.WriteLine($"SubModel Form Type: {subModel.FormType}"); foreach (CustomFormModelField field in subModel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Label != null) { Console.Write($", FieldLabel: {field.Label}"); } Console.WriteLine(""); } } // Delete the model from the account. client.DeleteModel(model.ModelId); #endregion }
/// <summary> /// For testing purposes, we are training our models using the client library functionalities. /// Please note that models can also be trained using a graphical user interface /// such as the Form Recognizer Labeling Tool found here: /// <a href="https://docs.microsoft.com/azure/cognitive-services/form-recognizer/quickstarts/label-tool"/>. /// </summary> private async Task <string> GetModelIdAsync(bool useLabels = false) { FormTrainingClient trainingClient = InstrumentClient(new FormTrainingClient(_endpoint, _credential)); TrainingOperation trainedModel = await trainingClient.StartTrainingAsync(_containerUri, useLabels); await trainedModel.WaitForCompletionAsync(); Assert.IsTrue(trainedModel.HasValue); return(trainedModel.Value.ModelId); }
/// <summary> /// Trains a model using the specified <see cref="FormTrainingClient"/> and the specified set of training files. A /// <see cref="DisposableTrainedModel"/> instance is returned, from which the model ID can be obtained. Upon disposal, /// the associated model will be deleted. /// </summary> /// <param name="trainingClient">The client to use for training and for deleting the model upon disposal.</param> /// <param name="trainingFilesUri">An externally accessible Azure storage blob container Uri.</param> /// <param name="useTrainingLabels">If <c>true</c>, use a label file created in the <link-to-label-tool-doc> to provide training-time labels for training a model. If <c>false</c>, the model will be trained from forms only.</param> /// <param name="modelName">Optional model name.</param> /// <returns>A <see cref="DisposableTrainedModel"/> instance from which the trained model ID can be obtained.</returns> public static async Task <DisposableTrainedModel> TrainModelAsync(FormTrainingClient trainingClient, Uri trainingFilesUri, bool useTrainingLabels, string modelName = default) { TrainingOperation operation = await trainingClient.StartTrainingAsync(trainingFilesUri, useTrainingLabels, modelName); await operation.WaitForCompletionAsync(); Assert.IsTrue(operation.HasValue); Assert.AreEqual(CustomFormModelStatus.Ready, operation.Value.Status); return(new DisposableTrainedModel(trainingClient, operation.Value.ModelId)); }
private static async Task AnalyzeDynamicCustomForm(FormRecognizerClient recognizerClient, string trainingFileUrl, string formUrl) { RecognizeCustomFormsOptions options = new RecognizeCustomFormsOptions(); //train model FormTrainingClient trainingClient = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : false, $"VIS-Dynamic-Model-{DateTime.Now.ToShortDateString()}-{DateTime.Now.ToLongTimeString()}").WaitForCompletionAsync(); //string modelId = inModelID; string modelId = model.ModelId; //recognize form RecognizeCustomFormsOperation operation = await recognizerClient.StartRecognizeCustomFormsFromUriAsync(modelId, new Uri(formUrl)); Response <RecognizedFormCollection> operationResponse = await operation.WaitForCompletionAsync(); RecognizedFormCollection forms = operationResponse.Value; foreach (RecognizedForm form in forms) { returnString += $"Form of type: {form.FormType}{Environment.NewLine}"; foreach (FormField field in form.Fields.Values) { returnString += $"Field '{field.Name}: "; if (field.LabelData != null) { returnString += $" Label: '{field.LabelData.Text}"; } returnString += $" Value: '{field.ValueData.Text}"; returnString += $" Confidence: '{field.Confidence}{Environment.NewLine}"; } returnString += $"Table data:{Environment.NewLine}"; foreach (FormPage page in form.Pages) { for (int i = 0; i < page.Tables.Count; i++) { FormTable table = page.Tables[i]; //Console.WriteLine($"Table {i} has {table.RowCount} rows and {table.ColumnCount} columns."); foreach (FormTableCell cell in table.Cells) { returnString += $" Cell ({cell.RowIndex}, {cell.ColumnIndex}) contains {(cell.IsHeader ? "header" : "text")}: '{cell.Text}'{Environment.NewLine}"; } } } } // Delete the model on completion to clean environment. await trainingClient.DeleteModelAsync(model.ModelId); }
public async Task RecognizeCustomFormsFromFile() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; // Firstly, create a trained model we can use to recognize the custom form. Please note that // models can also be trained using a graphical user interface such as the Form Recognizer // Labeling Tool found here: // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/quickstarts/label-tool FormTrainingClient trainingClient = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : false, new TrainingOptions() { ModelName = "My Model" }).WaitForCompletionAsync(); // Proceed with the custom form recognition. FormRecognizerClient client = new FormRecognizerClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); string formFilePath = FormRecognizerTestEnvironment.CreatePath("Form_1.jpg"); string modelId = model.ModelId; using (FileStream stream = new FileStream(formFilePath, FileMode.Open)) { RecognizedFormCollection forms = await client.StartRecognizeCustomFormsAsync(modelId, stream).WaitForCompletionAsync(); foreach (RecognizedForm form in forms) { Console.WriteLine($"Form of type: {form.FormType}"); Console.WriteLine($"Form was analyzed with model with ID: {form.ModelId}"); foreach (FormField field in form.Fields.Values) { Console.WriteLine($"Field '{field.Name}: "); if (field.LabelData != null) { Console.WriteLine($" Label: '{field.LabelData.Text}"); } Console.WriteLine($" Value: '{field.ValueData.Text}"); Console.WriteLine($" Confidence: '{field.Confidence}"); } } } // Delete the model on completion to clean environment. await trainingClient.DeleteModelAsync(model.ModelId); }
public async Task TrainModelWithForms() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; #region Snippet:FormRecognizerSampleTrainModelWithForms // For this sample, you can use the training forms found in the `trainingFiles` folder. // Upload the forms to your storage container and then generate a container SAS URL. // For instructions on setting up forms for training in an Azure Storage Blob Container, see // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/build-training-data-set#upload-your-training-data #if SNIPPET Uri trainingFileUri = < trainingFileUri >; #else Uri trainingFileUri = new Uri(TestEnvironment.BlobContainerSasUrlV2); #endif FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); TrainingOperation operation = await client.StartTrainingAsync(trainingFileUri, useTrainingLabels : false, "My Model"); Response <CustomFormModel> operationResponse = await operation.WaitForCompletionAsync(); CustomFormModel model = operationResponse.Value; Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model name: {model.ModelName}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Is composed model: {model.Properties.IsComposedModel}"); Console.WriteLine($" Training model started on: {model.TrainingStartedOn}"); Console.WriteLine($" Training model completed on: {model.TrainingCompletedOn}"); foreach (CustomFormSubmodel submodel in model.Submodels) { Console.WriteLine($"Submodel Form Type: {submodel.FormType}"); foreach (CustomFormModelField field in submodel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Label != null) { Console.Write($", FieldLabel: {field.Label}"); } Console.WriteLine(""); } } #endregion // Delete the model on completion to clean environment. await client.DeleteModelAsync(model.ModelId); }
private static async Task ManageModels( FormTrainingClient trainingClient, string trainingFileUrl) { // Check number of models in the FormRecognizer account, // and the maximum number of models that can be stored. AccountProperties accountProperties = trainingClient.GetAccountProperties(); Console.WriteLine($"Account has {accountProperties.CustomModelCount} models."); Console.WriteLine($"It can have at most {accountProperties.CustomModelLimit}" + $" models."); // List the first ten or fewer models currently stored in the account. Pageable <CustomFormModelInfo> models = trainingClient.GetCustomModels(); foreach (CustomFormModelInfo modelInfo in models.Take(10)) { Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {modelInfo.ModelId}"); Console.WriteLine($" Model Status: {modelInfo.Status}"); Console.WriteLine($" Created On: {modelInfo.TrainingStartedOn}"); Console.WriteLine($" Last Modified: {modelInfo.TrainingCompletedOn}"); } // Create a new model to store in the account CustomFormModel model = await trainingClient.StartTrainingAsync( new Uri(trainingFileUrl), useTrainingLabels : false).WaitForCompletionAsync(); // Get the model that was just created CustomFormModel modelCopy = trainingClient.GetCustomModel(model.ModelId); Console.WriteLine($"Custom Model {modelCopy.ModelId} recognizes the following" + " form types:"); foreach (CustomFormSubmodel subModel in modelCopy.Submodels) { Console.WriteLine($"SubModel Form Type: {subModel.FormType}"); foreach (CustomFormModelField field in subModel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Label != null) { Console.Write($", FieldLabel: {field.Label}"); } Console.WriteLine(""); } } // Delete the model from the account. trainingClient.DeleteModel(model.ModelId); }
public async Task TrainModelWithFormsAndLabels() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; #region Snippet:FormRecognizerSampleTrainModelWithFormsAndLabels // For this sample, you can use the training forms found in the `trainingFiles` folder. // Upload the forms to your storage container and then generate a container SAS URL. // For instructions to set up forms for training in an Azure Storage Blob Container, please see: // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/build-training-data-set#upload-your-training-data // For instructions to create a label file for your training forms, please see: // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/quickstarts/label-tool FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); CustomFormModel model = await client.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : true, new TrainingOptions() { ModelName = "My Model with labels" }).WaitForCompletionAsync(); Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model name: {model.ModelName}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Is composed model: {model.Properties.IsComposedModel}"); Console.WriteLine($" Training model started on: {model.TrainingStartedOn}"); Console.WriteLine($" Training model completed on: {model.TrainingCompletedOn}"); foreach (CustomFormSubmodel submodel in model.Submodels) { Console.WriteLine($"Submodel Form Type: {submodel.FormType}"); foreach (CustomFormModelField field in submodel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Accuracy != null) { Console.Write($", Accuracy: {field.Accuracy}"); } Console.WriteLine(""); } } #endregion // Delete the model on completion to clean environment. await client.DeleteModelAsync(model.ModelId); }
/// <summary> /// For testing purposes, we are training our models using the client library functionalities. /// Please note that models can also be trained using a graphical user interface /// such as the Form Recognizer Labeling Tool found here: /// <a href="https://docs.microsoft.com/azure/cognitive-services/form-recognizer/quickstarts/label-tool"/>. /// </summary> /// <param name="useLabels">If <c>true</c>, use a label file created in the <link-to-label-tool-doc> to provide training-time labels for training a model. If <c>false</c>, the model will be trained from forms only.</param> /// <returns>The identifier of the trained model.</returns> private async Task <string> GetModelIdAsync(bool useLabels = false) { var trainingFiles = new Uri(TestEnvironment.BlobContainerSasUrl); FormTrainingClient client = CreateInstrumentedFormTrainingClient(); TrainingOperation trainedModel; // TODO: sanitize body and enable body recording here. using (Recording.DisableRequestBodyRecording()) { trainedModel = await client.StartTrainingAsync(trainingFiles, useLabels); } await trainedModel.WaitForCompletionAsync(); Assert.IsTrue(trainedModel.HasValue); Assert.AreEqual(CustomFormModelStatus.Ready, trainedModel.Value.Status); return(trainedModel.Value.ModelId); }
public async Task TrainModelWithFormsAndLabels() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; #region Snippet:FormRecognizerSample5TrainModelWithFormsAndLabels // For instructions to set up forms for training in an Azure Storage Blob Container, please see: // https://docs.microsoft.com/en-us/azure/cognitive-services/form-recognizer/quickstarts/curl-train-extract#train-a-form-recognizer-model // For instructions to create a label file for your training forms, please see: // https://docs.microsoft.com/en-us/azure/cognitive-services/form-recognizer/quickstarts/label-tool FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); CustomFormModel model = await client.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : true).WaitForCompletionAsync(); Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Requested on: {model.RequestedOn}"); Console.WriteLine($" Completed on: {model.CompletedOn}"); foreach (CustomFormSubModel subModel in model.Models) { Console.WriteLine($"SubModel Form Type: {subModel.FormType}"); foreach (CustomFormModelField field in subModel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Accuracy != null) { Console.Write($", Accuracy: {field.Accuracy}"); } Console.WriteLine(""); } } #endregion // Delete the model on completion to clean environment. client.DeleteModel(model.ModelId); }
// </snippet_maintask> // <snippet_train> // Train model using training form data (pdf, jpg, png files) private static async Task <string> TrainModelAsync( FormTrainingClient formTrainingClient, string trainingDataUrl) { if (!Uri.IsWellFormedUriString(trainingDataUrl, UriKind.Absolute)) { Console.WriteLine("\nInvalid trainingDataUrl:\n{0} \n", trainingDataUrl); return(null); } try { CustomFormModel result = await formTrainingClient.StartTrainingAsync(new Uri(trainingDataUrl), useTrainingLabels : false).WaitForCompletionAsync(); DisplayModelStatus(result); return(result.ModelId); } catch (RequestFailedException e) { Console.WriteLine("Train Model : " + e.Message); return(null); } }
public async Task TrainModelWithForms() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; #region Snippet:FormRecognizerSample4TrainModelWithForms // For instructions on setting up forms for training in an Azure Storage Blob Container, see // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/quickstarts/curl-train-extract#train-a-form-recognizer-model FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); CustomFormModel model = await client.StartTrainingAsync(new Uri(trainingFileUrl)).WaitForCompletionAsync(); Console.WriteLine($"Custom Model Info:"); Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine($" Model Status: {model.Status}"); Console.WriteLine($" Created On: {model.CreatedOn}"); Console.WriteLine($" Last Modified: {model.LastModified}"); foreach (CustomFormSubModel subModel in model.Models) { Console.WriteLine($"SubModel Form Type: {subModel.FormType}"); foreach (CustomFormModelField field in subModel.Fields.Values) { Console.Write($" FieldName: {field.Name}"); if (field.Label != null) { Console.Write($", FieldLabel: {field.Label}"); } Console.WriteLine(""); } } #endregion // Delete the model on completion to clean environment. client.DeleteModel(model.ModelId); }
public async Task OutputModelsTrainedWithDynamicRowsTables() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.TableDynamicRowsContainerSasUrlV2; string formFilePath = FormRecognizerTestEnvironment.CreatePath("label_table_dynamic_rows1.pdf"); FormRecognizerClient client = new FormRecognizerClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); FormTrainingClient trainingClient = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); // Model trained with labeled table with dynamic rows. CustomFormModel modelTrainedWithLabels = await trainingClient.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : true).WaitForCompletionAsync(); using (FileStream stream = new FileStream(formFilePath, FileMode.Open)) { RecognizedFormCollection forms = await client.StartRecognizeCustomFormsAsync(modelTrainedWithLabels.ModelId, stream).WaitForCompletionAsync(); Console.WriteLine("---------Recognized labeled table with dynamic rows---------"); foreach (RecognizedForm form in forms) { foreach (FormField field in form.Fields.Values) { /// Substitute "table" for the label given to the table tag during training /// (if different than sample training docs). if (field.Name == "table") { if (field.Value.ValueType == FieldValueType.List) { var table = field.Value.AsList(); //columns for (int i = 0; i < table.Count; i++) { Console.WriteLine($"Row {i+1}:"); var row = table[i].Value.AsDictionary(); foreach (var colValues in row) { Console.Write($" Col {colValues.Key}. Value: "); if (colValues.Value != null) { var rowContent = colValues.Value; if (rowContent.Value.ValueType == FieldValueType.String) { Console.WriteLine($"'{rowContent.Value.AsString()}'"); } } else { Console.WriteLine("Empty cell."); } } } } } else { Console.WriteLine($"Field {field.Name}: "); Console.WriteLine($" Value: '{field.ValueData.Text}"); Console.WriteLine($" Confidence: '{field.Confidence}"); } } } } }
public async Task RecognizeCustomFormsFromFile() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; // Firstly, create a trained model we can use to recognize the custom form. Please note that // models can also be trained using a graphical user interface such as the Form Recognizer // Labeling Tool found here: // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/label-tool?tabs=v2-1 FormTrainingClient trainingClient = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); CustomFormModel model = await trainingClient.StartTrainingAsync(new Uri(trainingFileUrl), useTrainingLabels : false, "My Model").WaitForCompletionAsync(); // Proceed with the custom form recognition. FormRecognizerClient client = new FormRecognizerClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); #region Snippet:FormRecognizerRecognizeCustomFormsFromFile #if SNIPPET string modelId = "<modelId>"; string filePath = "<filePath>"; #else string filePath = FormRecognizerTestEnvironment.CreatePath("Form_1.jpg"); string modelId = model.ModelId; #endif using var stream = new FileStream(filePath, FileMode.Open); var options = new RecognizeCustomFormsOptions() { IncludeFieldElements = true }; RecognizeCustomFormsOperation operation = await client.StartRecognizeCustomFormsAsync(modelId, stream, options); Response <RecognizedFormCollection> operationResponse = await operation.WaitForCompletionAsync(); RecognizedFormCollection forms = operationResponse.Value; foreach (RecognizedForm form in forms) { Console.WriteLine($"Form of type: {form.FormType}"); Console.WriteLine($"Form was analyzed with model with ID: {form.ModelId}"); foreach (FormField field in form.Fields.Values) { Console.WriteLine($"Field '{field.Name}': "); if (field.LabelData != null) { Console.WriteLine($" Label: '{field.LabelData.Text}'"); } Console.WriteLine($" Value: '{field.ValueData.Text}'"); Console.WriteLine($" Confidence: '{field.Confidence}'"); } // Iterate over tables, lines, and selection marks on each page foreach (var page in form.Pages) { for (int i = 0; i < page.Tables.Count; i++) { Console.WriteLine($"Table {i+1} on page {page.Tables[i].PageNumber}"); foreach (var cell in page.Tables[i].Cells) { Console.WriteLine($" Cell[{cell.RowIndex}][{cell.ColumnIndex}] has text '{cell.Text}' with confidence {cell.Confidence}"); } } Console.WriteLine($"Lines found on page {page.PageNumber}"); foreach (var line in page.Lines) { Console.WriteLine($" Line {line.Text}"); } if (page.SelectionMarks.Count != 0) { Console.WriteLine($"Selection marks found on page {page.PageNumber}"); foreach (var selectionMark in page.SelectionMarks) { Console.WriteLine($" Selection mark is '{selectionMark.State}' with confidence {selectionMark.Confidence}"); } } } } #endregion // Delete the model on completion to clean environment. await trainingClient.DeleteModelAsync(model.ModelId); }
public async Task CreateComposedModel() { string endpoint = TestEnvironment.Endpoint; string apiKey = TestEnvironment.ApiKey; string trainingFileUrl = TestEnvironment.BlobContainerSasUrl; FormTrainingClient client = new FormTrainingClient(new Uri(endpoint), new AzureKeyCredential(apiKey)); string purchaseOrderOfficeSuppliesUrl = trainingFileUrl; string purchaseOrderOfficeEquipmentUrl = trainingFileUrl; string purchaseOrderFurnitureUrl = trainingFileUrl; string purchaseOrderCleaningSuppliesUrl = trainingFileUrl; #region Snippet:FormRecognizerSampleTrainVariousModels // For this sample, you can use the training forms found in the `trainingFiles` folder. // Upload the forms to your storage container and then generate a container SAS URL. // For instructions on setting up forms for training in an Azure Storage Blob Container, see // https://docs.microsoft.com/azure/cognitive-services/form-recognizer/build-training-data-set#upload-your-training-data //@@ string purchaseOrderOfficeSuppliesUrl = "<purchaseOrderOfficeSupplies>"; //@@ string purchaseOrderOfficeEquipmentUrl = "<purchaseOrderOfficeEquipment>"; //@@ string purchaseOrderFurnitureUrl = "<purchaseOrderFurniture>"; //@@ string purchaseOrderCleaningSuppliesUrl = "<purchaseOrderCleaningSupplies>"; CustomFormModel purchaseOrderOfficeSuppliesModel = (await client.StartTrainingAsync(new Uri(purchaseOrderOfficeSuppliesUrl), useTrainingLabels: true, "Purchase order - Office supplies").WaitForCompletionAsync()).Value; CustomFormModel purchaseOrderOfficeEquipmentModel = (await client.StartTrainingAsync(new Uri(purchaseOrderOfficeEquipmentUrl), useTrainingLabels: true, "Purchase order - Office Equipment").WaitForCompletionAsync()).Value; CustomFormModel purchaseOrderFurnitureModel = (await client.StartTrainingAsync(new Uri(purchaseOrderFurnitureUrl), useTrainingLabels: true, "Purchase order - Furniture").WaitForCompletionAsync()).Value; CustomFormModel purchaseOrderCleaningSuppliesModel = (await client.StartTrainingAsync(new Uri(purchaseOrderCleaningSuppliesUrl), useTrainingLabels: true, "Purchase order - Cleaning Supplies").WaitForCompletionAsync()).Value; #endregion #region Snippet:FormRecognizerSampleCreateComposedModel List <string> modelIds = new List <string>() { purchaseOrderOfficeSuppliesModel.ModelId, purchaseOrderOfficeEquipmentModel.ModelId, purchaseOrderFurnitureModel.ModelId, purchaseOrderCleaningSuppliesModel.ModelId }; CustomFormModel purchaseOrderModel = (await client.StartCreateComposedModelAsync(modelIds, "Composed Purchase order").WaitForCompletionAsync()).Value; Console.WriteLine($"Purchase Order Model Info:"); Console.WriteLine($" Is composed model: {purchaseOrderModel.Properties.IsComposedModel}"); Console.WriteLine($" Model Id: {purchaseOrderModel.ModelId}"); Console.WriteLine($" Model name: {purchaseOrderModel.ModelName}"); Console.WriteLine($" Model Status: {purchaseOrderModel.Status}"); Console.WriteLine($" Create model started on: {purchaseOrderModel.TrainingStartedOn}"); Console.WriteLine($" Create model completed on: {purchaseOrderModel.TrainingCompletedOn}"); #endregion #region Snippet:FormRecognizerSampleSubmodelsInComposedModel Dictionary <string, List <TrainingDocumentInfo> > trainingDocsPerModel = purchaseOrderModel.TrainingDocuments.GroupBy(doc => doc.ModelId).ToDictionary(g => g.Key, g => g.ToList()); Console.WriteLine($"The purchase order model is based on {purchaseOrderModel.Submodels.Count} model{(purchaseOrderModel.Submodels.Count > 1 ? "s" : "")}."); foreach (CustomFormSubmodel model in purchaseOrderModel.Submodels) { Console.WriteLine($" Model Id: {model.ModelId}"); Console.WriteLine(" The documents used to trained the model are: "); foreach (var doc in trainingDocsPerModel[model.ModelId]) { Console.WriteLine($" {doc.Name}"); } } #endregion string purchaseOrderFilePath = FormRecognizerTestEnvironment.CreatePath("Form_1.jpg"); #region Snippet:FormRecognizerSampleRecognizeCustomFormWithComposedModel //@@ string purchaseOrderFilePath = "<purchaseOrderFilePath>"; FormRecognizerClient formRecognizerClient = client.GetFormRecognizerClient(); RecognizedFormCollection forms; using (FileStream stream = new FileStream(purchaseOrderFilePath, FileMode.Open)) { forms = await formRecognizerClient.StartRecognizeCustomFormsAsync(purchaseOrderModel.ModelId, stream).WaitForCompletionAsync(); // Find labeled field. foreach (RecognizedForm form in forms) { // Setting an arbitrary confidence level if (form.FormTypeConfidence.Value > 0.9) { if (form.Fields.TryGetValue("Total", out FormField field)) { Console.WriteLine($"Total value in the form `{form.FormType}` is `{field.ValueData.Text}`"); } } else { Console.WriteLine("Unable to recognize form."); } } } #endregion // Delete the models on completion to clean environment. await client.DeleteModelAsync(purchaseOrderOfficeSuppliesModel.ModelId).ConfigureAwait(false); await client.DeleteModelAsync(purchaseOrderOfficeEquipmentModel.ModelId).ConfigureAwait(false); await client.DeleteModelAsync(purchaseOrderFurnitureModel.ModelId).ConfigureAwait(false); await client.DeleteModelAsync(purchaseOrderCleaningSuppliesModel.ModelId).ConfigureAwait(false); await client.DeleteModelAsync(purchaseOrderModel.ModelId).ConfigureAwait(false); }