private void buttonROC_Click(object sender, EventArgs e) { ReceiverOperatingCharacteristic roc = null; int numPoints = -1; string numPointsStr = ""; Utility.InputBox("ROC Points", "How many points should be used?", ref numPointsStr); if (numPointsStr != "") { if (!Int32.TryParse(numPointsStr, out numPoints)) { MessageBox.Show("Your input was invalid. Please try again."); return; } } switch (_scheme) { case VotingScheme.NONE: { roc = _voter.getROC(); break; } case VotingScheme.MAJORITY_VOTE: { roc = _voter.getMajorityVote().getROC(); break; } case VotingScheme.ADDITIVE_PREDICTIONS: { roc = _voter.getSumPredictions().getROC(); break; } default: { break; } } if (roc != null) { roc.Compute(numPoints); FormDataView <double> f = new FormDataView <double>(roc); f.Show(); } else { if (MessageBox.Show(this, "This voter does not offer ROC computation.\nWould you like to compute a general (non-vote) ROC from the data?", "ROC Computation", MessageBoxButtons.YesNo) == System.Windows.Forms.DialogResult.Yes) { roc = _voter.getROC(); roc.Compute(numPoints); FormDataView <double> f = new FormDataView <double>(roc); f.Show(); } } }
public void testSVM() { if (_svm == null) { return; } int[] output = new int[_outputs.Length]; // Compute the machine outputs for (int i = 0; i < _outputs.Length; i++) { double actual = _outputs[i]; double predicted = _svm.Compute(_inputs[i]); // System.Console.WriteLine(Math.Sign(actual) + " " + _names[i] + " => " + predicted + " => " + Math.Sign(predicted)); output[i] = System.Math.Sign(predicted); } // Use confusion matrix to compute some performance metrics ConfusionMatrix confusionMatrix = new ConfusionMatrix(output, _outputs, 1, -1); FormDataView <double> f = new FormDataView <double>(new[] { confusionMatrix }); f.Show(); //dgvPerformance.DataSource = new[] { confusionMatrix }; }
private void buttonShowGeneric_Click(object sender, EventArgs e) { FormDataView <double> f = new FormDataView <double>(new[] { _voter.AggregatedConfusionMatrix }); f.Show(); }
internal void showSummary() { if (_tableSummary == null) { _tableSummary = new DataTable(); _tableSummary.Columns.Add("Category"); _tableSummary.Columns.Add("Samples"); _tableSummary.Columns.Add("AP"); _tableSummary.Columns.Add("AN"); _tableSummary.Columns.Add("TP"); _tableSummary.Columns.Add("FP"); _tableSummary.Columns.Add("TN"); _tableSummary.Columns.Add("FN"); _tableSummary.Columns.Add("Predictions/Node", typeof(String)); _tableSummary.Columns.Add("AP-CM"); _tableSummary.Columns.Add("AN-CM"); _tableSummary.Columns.Add("TP-CM"); _tableSummary.Columns.Add("FP-CM"); _tableSummary.Columns.Add("TN-CM"); _tableSummary.Columns.Add("FN-CM"); _tableSummary.Columns.Add("Sensitivity"); _tableSummary.Columns.Add("FPR"); _tableSummary.Columns.Add("Precision"); _tableSummary.Columns.Add("AUC"); _tableSummary.Columns.Add("FScore"); //_tableSummary.Columns.Add("Num Predictions", typeof(String)); //_tableSummary.Columns.Add("Correct", typeof(String)); //_tableSummary.Columns.Add("False", typeof(String)); //_tableSummary.Columns.Add("Total Votes (Nodes)", typeof(String)); //_tableSummary.Columns.Add("Correct Votes", typeof(String)); //_tableSummary.Columns.Add("False Votes", typeof(String)); //_tableSummary.Columns.Add("Sensitivity (TPR)", typeof(String)); //_tableSummary.Columns.Add("Specificity (TNR)", typeof(String)); //_tableSummary.Columns.Add("Precision (PPV)", typeof(String)); //_tableSummary.Columns.Add("Accuracy", typeof(String)); //_tableSummary.Columns.Add("FPR", typeof(String)); //_tableSummary.Columns.Add("FDR", typeof(String)); _tableSummary.Rows.Add("Base", Samples, AP, AN, TP, FP, TN, FN, _numPredictionsPerNode.ToString(), _baseMatrix.ActualPositives, _baseMatrix.ActualNegatives, _baseMatrix.TruePositives, _baseMatrix.FalsePositives, _baseMatrix.TrueNegatives, _baseMatrix.FalseNegatives, _baseMatrix.Sensitivity, _baseMatrix.FalsePositiveRate, _baseMatrix.Precision, rocAreaBase, _baseMatrix.FScore); _tableSummary.Rows.Add("Voter", VSamples, VAP, VAN, VTP, VFP, VTN, VFN, _numPredictionsPerNode.ToString(), _voterMatrix.ActualPositives, _voterMatrix.ActualNegatives, _voterMatrix.TruePositives, _voterMatrix.FalsePositives, _voterMatrix.TrueNegatives, _voterMatrix.FalseNegatives, _voterMatrix.Sensitivity, _voterMatrix.FalsePositiveRate, _voterMatrix.Precision, rocAreaVoter, _voterMatrix.FScore); //_tableSummary.Rows.Add(VSamples, VAP, VAN, VTP, VFP, VTN, VFN, _numPredictionsPerNode.ToString(), _voterMatrix.ActualNegatives, _voterMatrix.ActualPositives, _voterMatrix.TruePositives, _voterMatrix.FalsePositives, _voterMatrix.TrueNegatives, _voterMatrix.FalseNegatives); } FormDataView <string> f = new FormDataView <string>(_tableSummary); f.Show(); }
internal void showDetails() { FormDataView <string> f = new FormDataView <string>(_tableDetails); f.Show(); }