public PoolingLayer(int kernelSize, int layerIndex, FilterMeta filterMeta) : base(layerIndex, filterMeta) { _maxValues = new bool[filterMeta.Channels, filterMeta.Size, filterMeta.Size]; _inputMaps = new double[filterMeta.Channels, filterMeta.Size, filterMeta.Size]; _kernelSize = kernelSize; }
public ConvolutionalLayer(int nk, int ks, int li, FilterMeta ifm, IWeightInitializer wi, LearningRateAnnealerType lrat) : base(li, ifm) { _numberOfKernels = nk; _kernelSize = ks; List <Kernel> temp = new List <Kernel>(); for (int i = 0; i < _numberOfKernels; i++) { var k = new Kernel(ks, ifm.Channels, lrat); k.RandomizeWeights(wi); temp.Add(k); } _kernels = new List <Kernel>(temp); _inputeFm = ifm; _outputFm = GetOutputFilterMeta(); _featureMaps = new double[_outputFm.Channels, _outputFm.Size, _outputFm.Size]; }
public DetectorLayer(int layerIndex, IActivator activator, FilterMeta filterMeta) : base(layerIndex, filterMeta) { _featureMaps = new double[filterMeta.Channels, filterMeta.Size, filterMeta.Size]; _activator = activator; }
protected FilterLayer(int layerIndex, FilterMeta filterMeta) : base(layerIndex) { InputFilterMeta = filterMeta; }