public static void Run()
        {
            var folder    = @"C:\dev\GitHub\p9-data\small\fits\simulation_point\";
            var data      = DataLoading.SimulatedPoints.Load(folder);
            var gridSizes = new int[] { 256, 512, 1024, 2048, 4096 };

            Directory.CreateDirectory("GPUSpeedup");
            var writer = new StreamWriter("GPUSpeedup/GPUSpeedup.txt", false);

            writer.WriteLine("imgSize;iterCPU;timeCPU;iterGPU;timeGPU");
            foreach (var gridSize in gridSizes)
            {
                var    visibilitiesCount = data.visibilitiesCount;
                int    subgridsize       = 8;
                int    kernelSize        = 4;
                int    max_nr_timesteps  = 1024;
                double cellSize          = (1.0 * 256 / gridSize) / 3600.0 * Math.PI / 180.0;
                var    c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f);
                var    metadata = Partitioner.CreatePartition(c, data.uvw, data.frequencies);

                var    frequencies  = FitsIO.ReadFrequencies(Path.Combine(folder, "freq.fits"));
                var    uvw          = FitsIO.ReadUVW(Path.Combine(folder, "uvw.fits"));
                var    flags        = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length];
                double norm         = 2.0;
                var    visibilities = FitsIO.ReadVisibilities(Path.Combine(folder, "vis.fits"), uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

                var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies);
                var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);
                FFT.Shift(psf);

                var residualVis = data.visibilities;
                var dirtyGrid   = IDG.Grid(c, metadata, residualVis, data.uvw, data.frequencies);
                var dirtyImage  = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);

                var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
                var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
                var bMapCPU        = bMapCalculator.Convolve(dirtyImage);
                var bMapGPU        = bMapCalculator.Convolve(dirtyImage);
                var fastCD         = new FastSerialCD(totalSize, psf);
                var gpuCD          = new GPUSerialCD(totalSize, psf, 1000);
                var lambda         = 0.5f * fastCD.MaxLipschitz;
                var alpha          = 0.5f;

                var xCPU      = new float[gridSize, gridSize];
                var cpuResult = fastCD.Deconvolve(xCPU, bMapCPU, lambda, alpha, 10000, 1e-8f);
                FitsIO.Write(xCPU, "GPUSpeedup/cpuResult" + gridSize + ".fits");

                var xGPU      = new float[gridSize, gridSize];
                var gpuResult = gpuCD.Deconvolve(xGPU, bMapGPU, lambda, alpha, 10000, 1e-8f);
                FitsIO.Write(xCPU, "GPUSpeedup/gpuResult" + gridSize + ".fits");

                writer.WriteLine(gridSize + ";" + cpuResult.IterationCount + ";" + cpuResult.ElapsedTime.TotalSeconds + ";" + gpuResult.IterationCount + ";" + gpuResult.ElapsedTime.TotalSeconds);
                writer.Flush();
            }

            writer.Close();
        }
예제 #2
0
        public static void GenerateSerialCDExample(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var cellSize = 1.0 / 3600.0 * Math.PI / 180.0;
            var c        = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);
            var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));

            Directory.CreateDirectory(outputFolder);
            var reconstruction = new float[c.GridSize, c.GridSize];
            var residualVis    = data.Visibilities;
            var totalSize      = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.50f * fastCD.MaxLipschitz;
            var alpha          = 0.2f;

            for (int cycle = 0; cycle < 100; cycle++)
            {
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize);

                Tools.WriteToMeltCSV(Common.PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CD_" + cycle + ".csv"));
                Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients_CD_" + cycle + ".csv"));

                fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 4);

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }
        }
        private static ReconstructionInfo ReconstructGradientApprox(Data input, float[,] fullPsf, string folder, int cutFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon)
        {
            var info            = new ReconstructionInfo();
            var psfCut          = PSF.Cut(fullPsf, cutFactor);
            var maxSidelobe     = PSF.CalcMaxSidelobe(fullPsf, cutFactor);
            var totalSize       = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize);
            var psfBMap         = psfCut;
            var bMapCalculator  = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)));
            var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)));
            var fastCD          = new FastSerialCD(totalSize, psfCut);
            var fastCD2         = new FastSerialCD(totalSize, psfCut);

            fastCD2.ResetLipschitzMap(fullPsf);
            FitsIO.Write(psfCut, folder + cutFactor + "psf.fits");

            var lambda     = LAMBDA_GLOBAL * fastCD.MaxLipschitz;
            var lambdaTrue = (float)(LAMBDA_GLOBAL * PSF.CalcMaxLipschitz(fullPsf));

            var xImage      = new float[input.c.GridSize, input.c.GridSize];
            var residualVis = input.visibilities;
            DeconvolutionResult lastResult = null;
            var firstTimeConverged         = false;
            var lastLambda = 0.0f;

            for (int cycle = 0; cycle < maxMajor; cycle++)
            {
                Console.WriteLine("cycle " + cycle);
                var dirtyGrid  = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies);
                var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits");

                //calc data and reg penalty
                var dataPenalty       = Residuals.CalcPenalty(dirtyImage);
                var regPenalty        = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha);
                var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha);
                info.lastDataPenalty = dataPenalty;
                info.lastRegPenalty  = regPenalty;

                var maxDirty = Residuals.GetMax(dirtyImage);
                var bMap     = bMapCalculator.Convolve(dirtyImage);
                FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + ".fits");
                var maxB             = Residuals.GetMax(bMap);
                var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f);
                var currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                var currentLambda    = Math.Max(currentSideLobe / alpha, lambda);

                writer.Write(cycle + ";" + currentLambda + ";" + currentSideLobe + ";" + ";" + fastCD2.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");;
                writer.Flush();

                //check wether we can minimize the objective further with the current psf
                var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff;
                var minimumReached   = (lastResult != null && lastResult.Converged && fastCD2.GetAbsMaxDiff(xImage, dirtyImage, lambdaTrue, alpha) < MAJOR_EPSILON && currentLambda == lambda);
                if (lambda == lastLambda & !firstTimeConverged)
                {
                    firstTimeConverged = true;
                    minimumReached     = false;
                }

                if (!objectiveReached & !minimumReached)
                {
                    //writer.Write(firstTimeConverged + ";");
                    //writer.Flush();
                    info.totalDeconv.Start();
                    if (!firstTimeConverged)
                    {
                        lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon);
                    }
                    else
                    {
                        bMap = bMapCalculator2.Convolve(dirtyImage);
                        //FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + "_full.fits");
                        maxB             = Residuals.GetMax(bMap);
                        correctionFactor = Math.Max(maxB / (maxDirty * fastCD2.MaxLipschitz), 1.0f);
                        currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                        currentLambda    = Math.Max(currentSideLobe / alpha, lambdaTrue);
                        info.totalDeconv.Start();
                        lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon);
                        info.totalDeconv.Stop();
                    }

                    info.totalDeconv.Stop();

                    FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits");
                    writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n");
                    writer.Flush();

                    FFT.Shift(xImage);
                    var xGrid = FFT.Forward(xImage);
                    FFT.Shift(xImage);
                    var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies);
                    residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags);
                }
                else
                {
                    writer.Write(false + ";0;0\n");
                    writer.Flush();

                    break;
                }

                lastLambda = currentLambda;
            }

            bMapCalculator.Dispose();
            bMapCalculator2.Dispose();

            return(info);
        }
        public bool DeconvolveApprox(float[,] xImage, float[,] residuals, float[,] psf, float lambda, float alpha, Random random, int blockSize, int threadCount, int maxIteration = 100, float epsilon = 1e-4f, bool coldStart = false)
        {
            var xExplore    = Copy(xImage);
            var xCorrection = new float[xImage.GetLength(0), xImage.GetLength(1)];

            //calculate gradients for each pixel
            var PSFCorr     = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, residuals.GetLength(0), residuals.GetLength(1)));
            var gExplore    = Residuals.CalcGradientMap(residuals, PSFCorr, new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
            var gCorrection = new float[residuals.GetLength(0), residuals.GetLength(1)];
            var psf2        = PSF.CalcPSFSquared(psf);

            if (coldStart)
            {
                var rec    = new Rectangle(0, 0, xImage.GetLength(0), xImage.GetLength(1));
                var fastCD = new FastSerialCD(rec, rec, psf, psf2);
                fastCD.Deconvolve(xExplore, gExplore, lambda, alpha, xImage.GetLength(0));
            }

            yBlockSize           = blockSize;
            xBlockSize           = blockSize;
            degreeOfSeperability = CountNonZero(psf);
            tau = threadCount; //number of processors
            var maxLipschitz = (float)PSF.CalcMaxLipschitz(psf);
            var activeSet    = GetActiveSet(xExplore, gExplore, lambda, alpha, maxLipschitz);

            var theta = DeconvolveAccelerated(xExplore, xCorrection, gExplore, gCorrection, psf2, ref activeSet, maxLipschitz, lambda, alpha, random, maxIteration, epsilon);

            var theta0   = tau / (float)activeSet.Count;
            var tmpTheta = theta < 1.0f ? ((theta * theta) / (1.0f - theta)) : theta0;

            for (int i = 0; i < xImage.GetLength(0); i++)
            {
                for (int j = 0; j < xImage.GetLength(1); j++)
                {
                    xCorrection[i, j] = tmpTheta * xCorrection[i, j] + xExplore[i, j];
                }
            }

            var objectives = CalcObjectives(xImage, residuals, psf, xExplore, xCorrection, lambda, alpha);

            //decide whether we take the correction or explore version
            if (objectives.Item2 < objectives.Item1)
            {
                //correction has the lower objective than explore
                for (int i = 0; i < xImage.GetLength(0); i++)
                {
                    for (int j = 0; j < xImage.GetLength(1); j++)
                    {
                        xImage[i, j] = xCorrection[i, j];
                    }
                }
            }
            else
            {
                for (int i = 0; i < xImage.GetLength(0); i++)
                {
                    for (int j = 0; j < xImage.GetLength(1); j++)
                    {
                        xImage[i, j] = xExplore[i, j];
                    }
                }
            }

            return(objectives.Item2 < objectives.Item1);
        }
예제 #5
0
        public static void GeneratePSFs(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var c        = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory(outputFolder);

            var maskedPsf = Copy(psf);

            Tools.Mask(maskedPsf, 2);
            var reverseMasked = Copy(psf);

            Tools.ReverseMask(reverseMasked, 2);
            var psf2    = PSF.CalcPSFSquared(psf);
            var psf2Cut = PSF.CalcPSFSquared(maskedPsf);

            Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv"));
            Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv"));
            Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv"));
            Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv"));
            Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv"));

            var x = new float[c.GridSize, c.GridSize];

            x[10, 10] = 1.0f;

            var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));
            var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));

            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                {
                    var zeroPadded = convolver.Convolve(x);
                    var psf2Edge   = correlator.Convolve(zeroPadded);
                    Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv"));
                    Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv"));
                }
            convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0));
            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0)))
                Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv"));

            //================================================= Reconstruct =============================================================
            var totalSize      = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var reconstruction = new float[c.GridSize, c.GridSize];
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.50f * fastCD.MaxLipschitz;
            var alpha          = 0.2f;

            var residualVis = data.Visibilities;

            for (int cycle = 0; cycle < 5; cycle++)
            {
                Console.WriteLine("in cycle " + cycle);
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);

                var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize);

                if (cycle == 0)
                {
                    Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv"));
                    Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv"));
                }

                fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f);

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }

            //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits"));
            Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv"));
        }
예제 #6
0
        public static void DebugdWStack()
        {
            var    frequencies  = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\freq.fits");
            var    uvw          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw0.fits");
            var    flags        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length);
            double norm         = 2.0;
            var    visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm);

            for (int i = 1; i < 8; i++)
            {
                var uvw0          = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw" + i + ".fits");
                var flags0        = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length);
                var visibilities0 = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length, norm);
                uvw          = FitsIO.Stitch(uvw, uvw0);
                flags        = FitsIO.Stitch(flags, flags0);
                visibilities = FitsIO.Stitch(visibilities, visibilities0);
            }

            var maxW = 0.0;

            for (int i = 0; i < uvw.GetLength(0); i++)
            {
                for (int j = 0; j < uvw.GetLength(1); j++)
                {
                    maxW = Math.Max(maxW, Math.Abs(uvw[i, j, 2]));
                }
            }
            maxW = Partitioner.MetersToLambda(maxW, frequencies[frequencies.Length - 1]);

            var visCount2 = 0;

            for (int i = 0; i < flags.GetLength(0); i++)
            {
                for (int j = 0; j < flags.GetLength(1); j++)
                {
                    for (int k = 0; k < flags.GetLength(2); k++)
                    {
                        if (!flags[i, j, k])
                        {
                            visCount2++;
                        }
                    }
                }
            }
            var    visibilitiesCount = visCount2;
            int    gridSize          = 4096;
            int    subgridsize       = 16;
            int    kernelSize        = 8;
            int    max_nr_timesteps  = 1024;
            double cellSize          = 1.6 / 3600.0 * PI / 180.0;
            int    wLayerCount       = 32;
            double wStep             = maxW / (wLayerCount);
            var    c        = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep);
            var    c2       = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0);
            var    metadata = Partitioner.CreatePartition(c, uvw, frequencies);

            var psfVis = new Complex[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length];

            for (int i = 0; i < visibilities.GetLength(0); i++)
            {
                for (int j = 0; j < visibilities.GetLength(1); j++)
                {
                    for (int k = 0; k < visibilities.GetLength(2); k++)
                    {
                        if (!flags[i, j, k])
                        {
                            psfVis[i, j, k] = new Complex(1.0, 0);
                        }
                        else
                        {
                            psfVis[i, j, k] = new Complex(0, 0);
                        }
                    }
                }
            }

            var psfGrid = IDG.GridW(c, metadata, psfVis, uvw, frequencies);
            var psf     = FFT.WStackIFFTFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            FitsIO.Write(psf, "psfWStack.fits");

            var totalSize      = new Rectangle(0, 0, gridSize, gridSize);
            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.4f * fastCD.MaxLipschitz;
            var alpha          = 0.1f;

            var xImage      = new float[gridSize, gridSize];
            var residualVis = visibilities;

            for (int cycle = 0; cycle < 8; cycle++)
            {
                var dirtyGrid = IDG.GridW(c, metadata, residualVis, uvw, frequencies);
                var dirty     = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirty);

                FitsIO.Write(dirty, "dirty_" + cycle + ".fits");
                bMapCalculator.ConvolveInPlace(dirty);
                FitsIO.Write(dirty, "bMap_" + cycle + ".fits");
                var result = fastCD.Deconvolve(xImage, dirty, lambda, alpha, 10000, 1e-4f);

                FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits");

                FFT.Shift(xImage);
                var xGrid = FFT.Forward(xImage);
                FFT.Shift(xImage);
                var modelVis  = IDG.DeGridW(c, metadata, xGrid, uvw, frequencies);
                var modelGrid = IDG.GridW(c, metadata, modelVis, uvw, frequencies);
                var model     = FFT.WStackIFFTFloat(modelGrid, c.VisibilitiesCount);
                FFT.Shift(model);
                FitsIO.Write(model, "model_" + cycle + ".fits");
                residualVis = Visibilities.Substract(visibilities, modelVis, flags);
            }
        }
예제 #7
0
        private static ReconstructionInfo Reconstruct(Data input, float fullLipschitz, float[,] maskedPsf, string folder, float maskFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon, bool maskPsf2)
        {
            var info      = new ReconstructionInfo();
            var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize);

            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(maskedPsf, totalSize), new Rectangle(0, 0, maskedPsf.GetLength(0), maskedPsf.GetLength(1)));
            var maskedPsf2     = PSF.CalcPSFSquared(maskedPsf);

            if (maskPsf2)
            {
                Mask(maskedPsf2, 1e-5f);
            }
            writer.WriteLine((CountNonZero(maskedPsf2) - maskedPsf2.Length) / (double)maskedPsf2.Length);
            var fastCD = new FastSerialCD(totalSize, totalSize, maskedPsf, maskedPsf2);

            FitsIO.Write(maskedPsf, folder + maskFactor + "psf.fits");



            var lambda     = 0.4f * fastCD.MaxLipschitz;
            var lambdaTrue = 0.4f * fullLipschitz;
            var alpha      = 0.1f;

            var xImage      = new float[input.c.GridSize, input.c.GridSize];
            var residualVis = input.visibilities;
            DeconvolutionResult lastResult = null;

            for (int cycle = 0; cycle < maxMajor; cycle++)
            {
                Console.WriteLine("cycle " + cycle);
                var dirtyGrid  = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies);
                var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits");

                //calc data and reg penalty
                var dataPenalty       = Residuals.CalcPenalty(dirtyImage);
                var regPenalty        = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha);
                var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha);
                info.lastDataPenalty = dataPenalty;
                info.lastRegPenalty  = regPenalty;

                bMapCalculator.ConvolveInPlace(dirtyImage);
                //FitsIO.Write(dirtyImage, folder + dirtyPrefix + "bmap_" + cycle + ".fits");
                var currentLambda = lambda;

                writer.Write(cycle + ";" + currentLambda + ";" + Residuals.GetMax(dirtyImage) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");
                writer.Flush();

                //check wether we can minimize the objective further with the current psf
                var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff;
                var minimumReached   = (lastResult != null && lastResult.IterationCount < 100 && lastResult.Converged);
                if (!objectiveReached & !minimumReached)
                {
                    info.totalDeconv.Start();
                    lastResult = fastCD.Deconvolve(xImage, dirtyImage, currentLambda, alpha, 50000, epsilon);
                    info.totalDeconv.Stop();

                    FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits");
                    writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n");
                    writer.Flush();

                    FFT.Shift(xImage);
                    var xGrid = FFT.Forward(xImage);
                    FFT.Shift(xImage);
                    var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies);
                    residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags);
                }
                else
                {
                    writer.Write(false + ";0;0");
                    writer.Flush();
                    break;
                }
            }

            return(info);
        }
        private static void ReconstructSerial(MeasurementData input, GriddingConstants c, float[,] fullPsf, string folder, string file, int processorCount)
        {
            var totalWatch   = new Stopwatch();
            var currentWatch = new Stopwatch();

            var totalSize   = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var psfCut      = PSF.Cut(fullPsf, CUT_FACTOR_SERIAL);
            var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, CUT_FACTOR_SERIAL);
            var fastCD      = new FastSerialCD(totalSize, psfCut, processorCount);
            var metadata    = Partitioner.CreatePartition(c, input.UVW, input.Frequencies);

            var writer  = new StreamWriter(folder + "/" + file + ".txt");
            var psfBMap = psfCut;

            using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1))))
                using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))))
                {
                    var currentBMapCalculator = bMapCalculator;

                    var maxLipschitz = PSF.CalcMaxLipschitz(psfCut);
                    var lambda       = (float)(LAMBDA * maxLipschitz);
                    var lambdaTrue   = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf));
                    var alpha        = ALPHA;

                    var switchedToOtherPsf         = false;
                    var xImage                     = new float[c.GridSize, c.GridSize];
                    var residualVis                = input.Visibilities;
                    DeconvolutionResult lastResult = null;
                    for (int cycle = 0; cycle < 6; cycle++)
                    {
                        Console.WriteLine("cycle " + cycle);
                        var dirtyGrid  = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies);
                        var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount);
                        FFT.Shift(dirtyImage);
                        FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits");

                        currentWatch.Restart();
                        totalWatch.Start();
                        var maxDirty         = Residuals.GetMax(dirtyImage);
                        var bMap             = bMapCalculator.Convolve(dirtyImage);
                        var maxB             = Residuals.GetMax(bMap);
                        var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f);
                        var currentSideLobe  = maxB * maxSidelobe * correctionFactor;
                        var currentLambda    = Math.Max(currentSideLobe / alpha, lambda);


                        var objective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha);

                        var absMax = fastCD.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha);

                        if (absMax >= MAJOR_STOP)
                        {
                            lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, 1e-5f);
                        }

                        if (lambda == currentLambda & !switchedToOtherPsf)
                        {
                            currentBMapCalculator = bMapCalculator2;
                            lambda             = lambdaTrue;
                            switchedToOtherPsf = true;
                        }

                        currentWatch.Stop();
                        totalWatch.Stop();
                        writer.WriteLine(cycle + ";" + currentLambda + ";" + objective + ";" + absMax + ";" + lastResult.IterationCount + ";" + totalWatch.Elapsed.TotalSeconds + ";" + currentWatch.Elapsed.TotalSeconds);
                        writer.Flush();

                        if (absMax < MAJOR_STOP)
                        {
                            break;
                        }

                        FFT.Shift(xImage);
                        var xGrid = FFT.Forward(xImage);
                        FFT.Shift(xImage);
                        var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies);
                        residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags);
                    }
                }
        }