public static void Run() { var folder = @"C:\dev\GitHub\p9-data\small\fits\simulation_point\"; var data = DataLoading.SimulatedPoints.Load(folder); var gridSizes = new int[] { 256, 512, 1024, 2048, 4096 }; Directory.CreateDirectory("GPUSpeedup"); var writer = new StreamWriter("GPUSpeedup/GPUSpeedup.txt", false); writer.WriteLine("imgSize;iterCPU;timeCPU;iterGPU;timeGPU"); foreach (var gridSize in gridSizes) { var visibilitiesCount = data.visibilitiesCount; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = (1.0 * 256 / gridSize) / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var metadata = Partitioner.CreatePartition(c, data.uvw, data.frequencies); var frequencies = FitsIO.ReadFrequencies(Path.Combine(folder, "freq.fits")); var uvw = FitsIO.ReadUVW(Path.Combine(folder, "uvw.fits")); var flags = new bool[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(Path.Combine(folder, "vis.fits"), uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); var psfGrid = IDG.GridPSF(c, metadata, uvw, flags, frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var residualVis = data.visibilities; var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.uvw, data.frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))); var bMapCPU = bMapCalculator.Convolve(dirtyImage); var bMapGPU = bMapCalculator.Convolve(dirtyImage); var fastCD = new FastSerialCD(totalSize, psf); var gpuCD = new GPUSerialCD(totalSize, psf, 1000); var lambda = 0.5f * fastCD.MaxLipschitz; var alpha = 0.5f; var xCPU = new float[gridSize, gridSize]; var cpuResult = fastCD.Deconvolve(xCPU, bMapCPU, lambda, alpha, 10000, 1e-8f); FitsIO.Write(xCPU, "GPUSpeedup/cpuResult" + gridSize + ".fits"); var xGPU = new float[gridSize, gridSize]; var gpuResult = gpuCD.Deconvolve(xGPU, bMapGPU, lambda, alpha, 10000, 1e-8f); FitsIO.Write(xCPU, "GPUSpeedup/gpuResult" + gridSize + ".fits"); writer.WriteLine(gridSize + ";" + cpuResult.IterationCount + ";" + cpuResult.ElapsedTime.TotalSeconds + ";" + gpuResult.IterationCount + ";" + gpuResult.ElapsedTime.TotalSeconds); writer.Flush(); } writer.Close(); }
public static void GenerateSerialCDExample(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var c = new GriddingConstants(data.VisibilitiesCount, 256, 8, 4, 512, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); Directory.CreateDirectory(outputFolder); var reconstruction = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; for (int cycle = 0; cycle < 100; cycle++) { var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); Tools.WriteToMeltCSV(Common.PSF.Cut(reconstruction), Path.Combine(outputFolder, "model_CD_" + cycle + ".csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients_CD_" + cycle + ".csv")); fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 4); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } }
private static ReconstructionInfo ReconstructGradientApprox(Data input, float[,] fullPsf, string folder, int cutFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon) { var info = new ReconstructionInfo(); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var psfBMap = psfCut; var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1))); var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); var fastCD2 = new FastSerialCD(totalSize, psfCut); fastCD2.ResetLipschitzMap(fullPsf); FitsIO.Write(psfCut, folder + cutFactor + "psf.fits"); var lambda = LAMBDA_GLOBAL * fastCD.MaxLipschitz; var lambdaTrue = (float)(LAMBDA_GLOBAL * PSF.CalcMaxLipschitz(fullPsf)); var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; DeconvolutionResult lastResult = null; var firstTimeConverged = false; var lastLambda = 0.0f; for (int cycle = 0; cycle < maxMajor; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits"); //calc data and reg penalty var dataPenalty = Residuals.CalcPenalty(dirtyImage); var regPenalty = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha); info.lastDataPenalty = dataPenalty; info.lastRegPenalty = regPenalty; var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + ".fits"); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = Math.Max(currentSideLobe / alpha, lambda); writer.Write(cycle + ";" + currentLambda + ";" + currentSideLobe + ";" + ";" + fastCD2.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");; writer.Flush(); //check wether we can minimize the objective further with the current psf var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff; var minimumReached = (lastResult != null && lastResult.Converged && fastCD2.GetAbsMaxDiff(xImage, dirtyImage, lambdaTrue, alpha) < MAJOR_EPSILON && currentLambda == lambda); if (lambda == lastLambda & !firstTimeConverged) { firstTimeConverged = true; minimumReached = false; } if (!objectiveReached & !minimumReached) { //writer.Write(firstTimeConverged + ";"); //writer.Flush(); info.totalDeconv.Start(); if (!firstTimeConverged) { lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon); } else { bMap = bMapCalculator2.Convolve(dirtyImage); //FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + "_full.fits"); maxB = Residuals.GetMax(bMap); correctionFactor = Math.Max(maxB / (maxDirty * fastCD2.MaxLipschitz), 1.0f); currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = Math.Max(currentSideLobe / alpha, lambdaTrue); info.totalDeconv.Start(); lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon); info.totalDeconv.Stop(); } info.totalDeconv.Stop(); FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits"); writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n"); writer.Flush(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } else { writer.Write(false + ";0;0\n"); writer.Flush(); break; } lastLambda = currentLambda; } bMapCalculator.Dispose(); bMapCalculator2.Dispose(); return(info); }
public bool DeconvolveApprox(float[,] xImage, float[,] residuals, float[,] psf, float lambda, float alpha, Random random, int blockSize, int threadCount, int maxIteration = 100, float epsilon = 1e-4f, bool coldStart = false) { var xExplore = Copy(xImage); var xCorrection = new float[xImage.GetLength(0), xImage.GetLength(1)]; //calculate gradients for each pixel var PSFCorr = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, residuals.GetLength(0), residuals.GetLength(1))); var gExplore = Residuals.CalcGradientMap(residuals, PSFCorr, new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))); var gCorrection = new float[residuals.GetLength(0), residuals.GetLength(1)]; var psf2 = PSF.CalcPSFSquared(psf); if (coldStart) { var rec = new Rectangle(0, 0, xImage.GetLength(0), xImage.GetLength(1)); var fastCD = new FastSerialCD(rec, rec, psf, psf2); fastCD.Deconvolve(xExplore, gExplore, lambda, alpha, xImage.GetLength(0)); } yBlockSize = blockSize; xBlockSize = blockSize; degreeOfSeperability = CountNonZero(psf); tau = threadCount; //number of processors var maxLipschitz = (float)PSF.CalcMaxLipschitz(psf); var activeSet = GetActiveSet(xExplore, gExplore, lambda, alpha, maxLipschitz); var theta = DeconvolveAccelerated(xExplore, xCorrection, gExplore, gCorrection, psf2, ref activeSet, maxLipschitz, lambda, alpha, random, maxIteration, epsilon); var theta0 = tau / (float)activeSet.Count; var tmpTheta = theta < 1.0f ? ((theta * theta) / (1.0f - theta)) : theta0; for (int i = 0; i < xImage.GetLength(0); i++) { for (int j = 0; j < xImage.GetLength(1); j++) { xCorrection[i, j] = tmpTheta * xCorrection[i, j] + xExplore[i, j]; } } var objectives = CalcObjectives(xImage, residuals, psf, xExplore, xCorrection, lambda, alpha); //decide whether we take the correction or explore version if (objectives.Item2 < objectives.Item1) { //correction has the lower objective than explore for (int i = 0; i < xImage.GetLength(0); i++) { for (int j = 0; j < xImage.GetLength(1); j++) { xImage[i, j] = xCorrection[i, j]; } } } else { for (int i = 0; i < xImage.GetLength(0); i++) { for (int j = 0; j < xImage.GetLength(1); j++) { xImage[i, j] = xExplore[i, j]; } } } return(objectives.Item2 < objectives.Item1); }
public static void GeneratePSFs(string simulatedLocation, string outputFolder) { var data = MeasurementData.LoadSimulatedPoints(simulatedLocation); var c = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount); var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); Directory.CreateDirectory(outputFolder); var maskedPsf = Copy(psf); Tools.Mask(maskedPsf, 2); var reverseMasked = Copy(psf); Tools.ReverseMask(reverseMasked, 2); var psf2 = PSF.CalcPSFSquared(psf); var psf2Cut = PSF.CalcPSFSquared(maskedPsf); Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv")); Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv")); Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv")); Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv")); Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv")); var x = new float[c.GridSize, c.GridSize]; x[10, 10] = 1.0f; var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize))) { var zeroPadded = convolver.Convolve(x); var psf2Edge = correlator.Convolve(zeroPadded); Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv")); Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv")); } convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0)); using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0))) Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv")); //================================================= Reconstruct ============================================================= var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var reconstruction = new float[c.GridSize, c.GridSize]; var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.50f * fastCD.MaxLipschitz; var alpha = 0.2f; var residualVis = data.Visibilities; for (int cycle = 0; cycle < 5; cycle++) { Console.WriteLine("in cycle " + cycle); var dirtyGrid = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize); if (cycle == 0) { Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv")); Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv")); } fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f); FFT.Shift(reconstruction); var xGrid = FFT.Forward(reconstruction); FFT.Shift(reconstruction); var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits")); Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv")); }
public static void DebugdWStack() { var frequencies = FitsIO.ReadFrequencies(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\freq.fits"); var uvw = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw0.fits"); var flags = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length); double norm = 2.0; var visibilities = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis0.fits", uvw.GetLength(0), uvw.GetLength(1), frequencies.Length, norm); for (int i = 1; i < 8; i++) { var uvw0 = FitsIO.ReadUVW(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\uvw" + i + ".fits"); var flags0 = FitsIO.ReadFlags(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\flags" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length); var visibilities0 = FitsIO.ReadVisibilities(@"C:\dev\GitHub\p9-data\large\fits\meerkat_tiny\vis" + i + ".fits", uvw0.GetLength(0), uvw0.GetLength(1), frequencies.Length, norm); uvw = FitsIO.Stitch(uvw, uvw0); flags = FitsIO.Stitch(flags, flags0); visibilities = FitsIO.Stitch(visibilities, visibilities0); } var maxW = 0.0; for (int i = 0; i < uvw.GetLength(0); i++) { for (int j = 0; j < uvw.GetLength(1); j++) { maxW = Math.Max(maxW, Math.Abs(uvw[i, j, 2])); } } maxW = Partitioner.MetersToLambda(maxW, frequencies[frequencies.Length - 1]); var visCount2 = 0; for (int i = 0; i < flags.GetLength(0); i++) { for (int j = 0; j < flags.GetLength(1); j++) { for (int k = 0; k < flags.GetLength(2); k++) { if (!flags[i, j, k]) { visCount2++; } } } } var visibilitiesCount = visCount2; int gridSize = 4096; int subgridsize = 16; int kernelSize = 8; int max_nr_timesteps = 1024; double cellSize = 1.6 / 3600.0 * PI / 180.0; int wLayerCount = 32; double wStep = maxW / (wLayerCount); var c = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep); var c2 = new GriddingConstants(visibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0); var metadata = Partitioner.CreatePartition(c, uvw, frequencies); var psfVis = new Complex[uvw.GetLength(0), uvw.GetLength(1), frequencies.Length]; for (int i = 0; i < visibilities.GetLength(0); i++) { for (int j = 0; j < visibilities.GetLength(1); j++) { for (int k = 0; k < visibilities.GetLength(2); k++) { if (!flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } var psfGrid = IDG.GridW(c, metadata, psfVis, uvw, frequencies); var psf = FFT.WStackIFFTFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); FitsIO.Write(psf, "psfWStack.fits"); var totalSize = new Rectangle(0, 0, gridSize, gridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psf); var lambda = 0.4f * fastCD.MaxLipschitz; var alpha = 0.1f; var xImage = new float[gridSize, gridSize]; var residualVis = visibilities; for (int cycle = 0; cycle < 8; cycle++) { var dirtyGrid = IDG.GridW(c, metadata, residualVis, uvw, frequencies); var dirty = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirty); FitsIO.Write(dirty, "dirty_" + cycle + ".fits"); bMapCalculator.ConvolveInPlace(dirty); FitsIO.Write(dirty, "bMap_" + cycle + ".fits"); var result = fastCD.Deconvolve(xImage, dirty, lambda, alpha, 10000, 1e-4f); FitsIO.Write(xImage, "xImageGreedy" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, uvw, frequencies); var modelGrid = IDG.GridW(c, metadata, modelVis, uvw, frequencies); var model = FFT.WStackIFFTFloat(modelGrid, c.VisibilitiesCount); FFT.Shift(model); FitsIO.Write(model, "model_" + cycle + ".fits"); residualVis = Visibilities.Substract(visibilities, modelVis, flags); } }
private static ReconstructionInfo Reconstruct(Data input, float fullLipschitz, float[,] maskedPsf, string folder, float maskFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon, bool maskPsf2) { var info = new ReconstructionInfo(); var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(maskedPsf, totalSize), new Rectangle(0, 0, maskedPsf.GetLength(0), maskedPsf.GetLength(1))); var maskedPsf2 = PSF.CalcPSFSquared(maskedPsf); if (maskPsf2) { Mask(maskedPsf2, 1e-5f); } writer.WriteLine((CountNonZero(maskedPsf2) - maskedPsf2.Length) / (double)maskedPsf2.Length); var fastCD = new FastSerialCD(totalSize, totalSize, maskedPsf, maskedPsf2); FitsIO.Write(maskedPsf, folder + maskFactor + "psf.fits"); var lambda = 0.4f * fastCD.MaxLipschitz; var lambdaTrue = 0.4f * fullLipschitz; var alpha = 0.1f; var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < maxMajor; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits"); //calc data and reg penalty var dataPenalty = Residuals.CalcPenalty(dirtyImage); var regPenalty = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha); info.lastDataPenalty = dataPenalty; info.lastRegPenalty = regPenalty; bMapCalculator.ConvolveInPlace(dirtyImage); //FitsIO.Write(dirtyImage, folder + dirtyPrefix + "bmap_" + cycle + ".fits"); var currentLambda = lambda; writer.Write(cycle + ";" + currentLambda + ";" + Residuals.GetMax(dirtyImage) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";"); writer.Flush(); //check wether we can minimize the objective further with the current psf var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff; var minimumReached = (lastResult != null && lastResult.IterationCount < 100 && lastResult.Converged); if (!objectiveReached & !minimumReached) { info.totalDeconv.Start(); lastResult = fastCD.Deconvolve(xImage, dirtyImage, currentLambda, alpha, 50000, epsilon); info.totalDeconv.Stop(); FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits"); writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n"); writer.Flush(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } else { writer.Write(false + ";0;0"); writer.Flush(); break; } } return(info); }
private static void ReconstructSerial(MeasurementData input, GriddingConstants c, float[,] fullPsf, string folder, string file, int processorCount) { var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, CUT_FACTOR_SERIAL); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, CUT_FACTOR_SERIAL); var fastCD = new FastSerialCD(totalSize, psfCut, processorCount); var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var writer = new StreamWriter(folder + "/" + file + ".txt"); var psfBMap = psfCut; using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < 6; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = Math.Max(currentSideLobe / alpha, lambda); var objective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var absMax = fastCD.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha); if (absMax >= MAJOR_STOP) { lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, 1e-5f); } if (lambda == currentLambda & !switchedToOtherPsf) { currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; } currentWatch.Stop(); totalWatch.Stop(); writer.WriteLine(cycle + ";" + currentLambda + ";" + objective + ";" + absMax + ";" + lastResult.IterationCount + ";" + totalWatch.Elapsed.TotalSeconds + ";" + currentWatch.Elapsed.TotalSeconds); writer.Flush(); if (absMax < MAJOR_STOP) { break; } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } } }