public void buildAndTest() { mainThread = System.Threading.Thread.CurrentThread; expert = new Expert("Эксперт Easy 1", this); expert.AddAlgorithm((new Easy(this, "Easy[0]").Open(@"E:\Anton\Desktop\MAIN\Экспертная система\Экспертная система\Алгоритмы прогнозирования\Easy\h.json"))); // expert.Add(new CNN_1(this, "CNN_1[0]")); // expert.algorithms[0].Open(@"E:\Anton\Desktop\MAIN\Эксперт 1\CNN_1[0]\h.json"); // expert.algorithms[0].Open(pathPrefix + @"Optimization\LSTM_1\LSTM_1[0]\h.json"); // expert.algorithms[1].Open(pathPrefix + @"Optimization\LSTM_2\LSTM_2[0]\h.json"); // expert.algorithms[2].Open(pathPrefix + @"Optimization\ANN_1\ANN_1[0]\h.json"); /* expert.H.setValueByName("start_point", "0.5"); * expert.H.setValueByName("normalize", "true"); * expert.H.add("input_file", pathPrefix + @"Временные ряды\USD_RUB_exmo-dataset.txt"); * expert.H.add("path_prefix", pathPrefix); * expert.H.add("drop_columns:<local_time>"); * expert.H.add("predicted_column_index:1"); * expert.H.add("name:show_train_charts,value:True");*/ // expert.H.add("normalize:true"); // expert.H.add("input_file", pathPrefix + @"Временные ряды\85123A-dataset.txt"); // expert.H.add("path_prefix", pathPrefix); //expert.H.add("name:show_train_charts,value:False"); // expert.H.add("predicted_column_index:0"); /* expert.copyExpertParametersToAlgorithms(); * expert.trainAllAlgorithms(false); * * expert.copyHyperparametersFromAlgorithmsToExpert(); * expert.H.draw(0, picBox, this, 20, 150); * expert.Save(); */ expert.copyHyperparametersFromAlgorithmsToExpert(); expert.H.add("drop_columns:<DATE>"); expert.H.setValueByName("normalize", "true"); expert.Save(); sourceDataFile = pathPrefix + @"Временные ряды\LD2011_2014-250 столбец-dataset+date.txt"; expert.test_prediction(new DateTime(2011, 10, 01), sourceDataFile); }
public void iteration_of_optimization() { if (opt_inc == 1) { string new_save_folder; expert.copyExpertParametersToAlgorithms(); for (int j = 0; j < expert.algorithms.Count; j++) { new_save_folder = form1.pathPrefix + "Optimization\\" + name + "\\" + expert.expertName + "[0]" + "\\" + expert.algorithms[j].getValueByName("model_name") + "\\"; Directory.CreateDirectory(new_save_folder); expert.algorithms[j].h.setValueByName("save_folder", new_save_folder); string predictionsFilePath = new_save_folder + "predictions.txt"; expert.algorithms[j].h.setValueByName("predictions_file_path", predictionsFilePath); expert.algorithms[j].h.setValueByName("json_file_path", new_save_folder + "h.json"); File.WriteAllText(new_save_folder + "h.json", expert.algorithms[j].h.toJSON(0), System.Text.Encoding.Default); expert.algorithms[j].train(); } expert.copyHyperparametersFromAlgorithmsToExpert(); expert.H.setValueByName("report_path", form1.pathPrefix + "Optimization\\" + name + "\\" + expert.expertName + "[0]"); expert.H.setValueByName("code", "0"); expert.Save(form1.pathPrefix + "Optimization\\" + name + "\\" + expert.expertName + "[0]"); expert.test_trading(date1, date2, rawDatasetFilePath); //отрисовка истрии баланса for (int i = 0; i < expert.deposit1History.Count; i++) { variablesVisualizer.addPoint(expert.deposit2History[i] + (expert.deposit1History[i] * expert.closeValueHistory[i]), "exit [0]"); variablesVisualizer.addPoint(expert.deposit2History[i], "deposit2 [0]"); variablesVisualizer.addPoint(expert.closeValueHistory[i], "close [0]"); } for (int i = 0; i < population_value; i++) { expert.H.setValueByName("code", i.ToString()); population[i] = Copy(expert.H, form1.pathPrefix + "Optimization\\" + name + "\\" + expert.expertName + "[0]" + "\\", form1.pathPrefix + "Optimization\\" + name + "\\" + expert.expertName + "[" + i.ToString() + "]" + "\\"); } variablesIDs.Clear(); recurciveVariableAdding(population[0], 0, name + "[0]"); /* for (int i = 1; i < population_value; i++) * { * variablesIDs.Clear(); * recurciveVariableAdding(population[i], 0, name + "[" + i.ToString() + "]"); * } */ refreshEOTree(); variablesVisualizer.refresh(); } else { //kill and concieve kill_and_conceive(); //mutation for (int i = 0; i < mutation_rate; i++) { mutation(); } for (int i = 0; i < population_value; i++) { File.WriteAllText(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]" + "\\h.json", population[i].toJSON(0), System.Text.Encoding.Default); } // ВВЕДЕНО МНОГОКРАТНОЕ ТЕСТИРОВНИЕ ИНДИВИДОВ ВСЕХ КАТЕГОРИЙ ДЛЯ ПОВЫШЕНИЯ ПОВТОРЯЕМОСТИ РЕЗУЛЬТАТОВ // target_functions - матрица результатов тестирования, // где номер строки (первый индекс (i)) - индекс индивида, а номер столбца (второй индекс (j)) - итерация тестирования double[,] target_functions = new double[population_value, test_count]; for (int tc = 0; tc < test_count; tc++) { if (opt_inc == 2) { if (agentManager.agents.Count == 0) { if (multiThreadTraining) { if (form1.multiThreadTrainingRATE != 0) { multiThreadTrainingRATE = form1.multiThreadTrainingRATE; } log("multiThreadTrainingRATE = " + multiThreadTrainingRATE.ToString(), Color.Yellow); if (multiThreadTrainingRATE > population_value) { multiThreadTrainingRATE = population_value; } for (int begin = 0; begin < population_value; begin += multiThreadTrainingRATE) { var now1 = new DateTimeOffset(DateTime.Now); var start1 = now1.ToUnixTimeSeconds(); int end = 0; if (begin + multiThreadTrainingRATE >= population_value) { end = population_value; } else { end = begin + multiThreadTrainingRATE; } List <Expert> experts = new List <Expert>(); for (int i = begin; i < end; i++) { Expert exp = Expert.Open(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]", name, form1); // exp.H = population[i].Clone(); experts.Add(exp); } Task[] trainTasks = new Task[end - begin]; foreach (Expert exp in experts) { trainTasks[experts.IndexOf(exp)] = new Task(() => experts[experts.IndexOf(exp)].trainAllAlgorithms(false)); trainTasks[experts.IndexOf(exp)].Start(); } foreach (var task in trainTasks) { task.Wait(); } for (int i = begin; i < end; i++) { // experts[i].copyHyperparametersFromAlgorithmsToExpert(); experts[i - begin].Save(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]"); population[i] = experts[i - begin].H.Clone(); } log((end).ToString() + '/' + population_value.ToString() + " training comlete" + TimeSpan.FromSeconds((new DateTimeOffset(DateTime.Now).ToUnixTimeSeconds()) - start1).ToString(), Color.LimeGreen); } } else { for (int i = 0; i < population_value; i++) { expert = Expert.Open(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]", name, form1); expert.trainAllAlgorithms(false); expert.Save(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]"); population[i] = expert.H.Clone(); log((i + 1).ToString() + '/' + population_value.ToString() + " training comlete", Color.LimeGreen); } } } else { for (int i = 0; i < population_value; i++) { var algorithmBranches = population[i].getNodesByparentID(expert.committeeNodeID); foreach (Node algorithmBranch in algorithmBranches) { agentManager.tasks.Add(new AgentTask("train", new Hyperparameters(population[i].toJSON(algorithmBranch.ID), form1))); } Task.Factory.StartNew(() => { agentManager.work(); }).Wait(); // СПИСОК ВЕТВЕЙ АЛГОРИТМОВ List <Node> toDelete = population[i].getNodesByparentID(expert.committeeNodeID); //удаление старых конфигураций алгоритмов for (int j = 0; j < toDelete.Count; j++) { population[i].deleteBranch(toDelete[j].ID); } //приращение новых конфигураций к узлу "committee" for (int j = 0; j < agentManager.tasks.Count; j++) { population[i].addBranch(agentManager.tasks[j].h, agentManager.tasks[j].h.nodes[0].name(), expert.committeeNodeID); } agentManager.tasks.Clear(); // expert.synchronizeHyperparameters(); File.WriteAllText(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]" + "\\h.json", population[i].toJSON(0), System.Text.Encoding.Default); } } } for (int i = 0; i < population_value; i++) { variablesVisualizer.Clear("committee response [" + i.ToString() + "]"); variablesVisualizer.Clear("deposit2 [" + i.ToString() + "]"); variablesVisualizer.Clear("deposit1 [" + i.ToString() + "]"); variablesVisualizer.Clear("exit [" + i.ToString() + "]"); variablesVisualizer.Clear("close [" + i.ToString() + "]"); } //Тестирование (вычисление целевой функции) for (int i = 0; i < population_value; i++) { expert = Expert.Open(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]", name, form1); expert.test_trading(date1, date2, rawDatasetFilePath); log("test[" + i.ToString() + "]: " + expert.H.getValueByName("expert_target_function"), Color.Purple); population[i] = expert.H.Clone(); File.WriteAllText(form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]" + "\\h.json", population[i].toJSON(0), System.Text.Encoding.Default); target_functions[i, tc] = Convert.ToDouble(population[i].getValueByName("expert_target_function").Replace('.', ',')); //отрисовка истрии баланса for (int j = 0; j < expert.deposit1History.Count; j++) { variablesVisualizer.addPoint(expert.committeeResponseHistory[j][0], "committee response [" + i.ToString() + "]"); // variablesVisualizer.addPoint(expert.actionHistory[j], "actions [" + i.ToString() + "]"); variablesVisualizer.addPoint(expert.deposit2History[j] + (expert.deposit1History[j] * expert.closeValueHistory[j]), "exit [" + i.ToString() + "]"); variablesVisualizer.addPoint(expert.deposit1History[j], "deposit1 [" + i.ToString() + "]"); variablesVisualizer.addPoint(expert.closeValueHistory[j], "close [" + i.ToString() + "]"); } variablesVisualizer.refresh(); } log((tc + 1).ToString() + '/' + test_count.ToString() + " test comlete", Color.LimeGreen); } variablesVisualizer.refresh(); //вычисление итоговых значений критерия оптимальности for (int i = 0; i < population_value; i++) { double sum = 0; // AVG for (int j = 0; j < test_count; j++) { sum += target_functions[i, j]; } double AVG = sum / test_count; sum = 0; // StdDev for (int j = 0; j < test_count; j++) { sum += (AVG - target_functions[i, j]) * (AVG - target_functions[i, j]); } double StdDev = Math.Sqrt(sum / test_count); // если target_function равна (AVG - StdDev), то последующее вычисление критерия оптимальности будет давать результаты ВЫШЕ, чем target_function population[i].setValueByName("expert_target_function", (AVG - StdDev).ToString().Replace(',', '.')); population[i].setValueByName("expert_target_function_AVG", (AVG).ToString().Replace(',', '.')); population[i].setValueByName("expert_target_function_StdDev", (StdDev).ToString().Replace(',', '.')); // File.WriteAllText(population[i].getValueByName("json_file_path"), population[i].toJSON(0), System.Text.Encoding.Default); } // сортировка Hyperparameters temp; for (int i = 0; i < population_value - 1; i++) { for (int j = i + 1; j < population_value; j++) { double i_value = Convert.ToDouble(population[i].getValueByName("expert_target_function").Replace('.', ',')); double j_value = Convert.ToDouble(population[j].getValueByName("expert_target_function").Replace('.', ',')); if (i_value < j_value || (double.IsNaN(i_value) && (!double.IsNaN(j_value)))) { log(" [" + i.ToString() + "] <- [" + j.ToString() + "]: " + i_value + "<" + j_value, Color.Orchid); string tempFolder = form1.pathPrefix + "Optimization\\" + name + "\\temp"; string path_to_i = form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + i.ToString() + "]"; string path_to_j = form1.pathPrefix + "Optimization\\" + name + "\\" + name + "[" + j.ToString() + "]"; temp = Copy(population[i], path_to_i, tempFolder); population[i] = Copy(population[j], path_to_j, path_to_i); population[j] = Copy(temp, tempFolder, path_to_j); population[i].setValueByName("report_path", form1.pathPrefix + "Optimization\\" + name + "\\" + expert.expertName + "[" + i.ToString() + "]"); population[j].setValueByName("report_path", form1.pathPrefix + "Optimization\\" + name + "\\" + expert.expertName + "[" + j.ToString() + "]"); } } } } for (int i = 0; i < population_value; i++) { population[i].setValueByName("name", population[i].nodes[0].name() + "[" + i.ToString() + "]"); } log("Обновление отображаемых параметров", Color.Lime); refreshEOTree(); // A.draw(0, form1.picBox, form1, 15, 150); variableChangeMonitoring(); variablesVisualizer.addPoint(Convert.ToDouble(population[0].getValueByName("expert_target_function").Replace('.', ',')), "best_individ"); double averegeBest = 0; for (int i = 0; i < population_value; i++) { var t_f = Convert.ToDouble(population[i].getValueByName("expert_target_function").Replace('.', ',')); if (i < population_value * elite_ratio) { averegeBest += t_f; } variablesVisualizer.addPoint(t_f, " [" + population[i].getValueByName("code") + "]"); } variablesVisualizer.addPoint((averegeBest / (population_value * elite_ratio)).ToString(), "averege best"); variablesVisualizer.refresh(); }