/// <summary> /// Froms the bar series to a double array. /// </summary> /// <param name="thebarserie">The thebarserie.</param> /// <returns></returns> public static double[] FromBarSeriestoDouble(Encog.App.Quant.Loader.OpenQuant.IDataSeries thebarserie) { double[] outputtedseries = new double[thebarserie.Count]; int index = 0; foreach (Data.Data.Bar abar in thebarserie) { outputtedseries[index] = abar.Close; index++; } return outputtedseries; }
public double CalculateScore(Encog.ML.IMLMethod network) { return score (); }
public SupportVectorMachine(int theInputCount, Encog.ML.SVM.SVMType svmType, Encog.ML.SVM.KernelType kernelType) { goto Label_02B7; Label_000B: this._paras.nr_weight = 0; Label_0017: this._paras.weight_label = new int[0]; this._paras.weight = new double[0]; this._paras.gamma = 1.0 / ((double) this._inputCount); goto Label_00C6; Label_0057: this._paras.C = 1.0; this._paras.eps = 0.001; this._paras.p = 0.1; this._paras.shrinking = 1; this._paras.probability = 0; if ((((uint) theInputCount) + ((uint) theInputCount)) >= 0) { goto Label_000B; } Label_00C6: if (0 == 0) { return; } goto Label_02B7; Label_00D1: this._paras.degree = 3.0; this._paras.coef0 = 0.0; this._paras.nu = 0.5; if (0 != 0) { goto Label_0256; } this._paras.cache_size = 100.0; if (0 == 0) { goto Label_0057; } goto Label_019C; Label_0134: this._paras.kernel_type = 3; goto Label_00D1; Label_0167: this._paras.kernel_type = 0; goto Label_00D1; Label_019C: switch (kernelType) { case Encog.ML.SVM.KernelType.Linear: goto Label_0167; case Encog.ML.SVM.KernelType.Poly: this._paras.kernel_type = 1; goto Label_00D1; case Encog.ML.SVM.KernelType.RadialBasisFunction: this._paras.kernel_type = 2; goto Label_00D1; case Encog.ML.SVM.KernelType.Sigmoid: goto Label_0134; default: throw new NeuralNetworkError("Invalid kernel type"); } Label_01CD: throw new NeuralNetworkError("Invalid svm type"); if ((((uint) theInputCount) - ((uint) theInputCount)) < 0) { goto Label_0134; } if (8 != 0) { goto Label_019C; } if ((((uint) theInputCount) + ((uint) theInputCount)) < 0) { goto Label_01CD; } goto Label_0167; if (0 == 0) { goto Label_00D1; } goto Label_0057; Label_0256: this._paras.svm_type = 2; goto Label_019C; Label_02B7: this._inputCount = theInputCount; this._paras = new svm_parameter(); if ((((uint) theInputCount) - ((uint) theInputCount)) > uint.MaxValue) { goto Label_00D1; } switch (svmType) { case Encog.ML.SVM.SVMType.SupportVectorClassification: this._paras.svm_type = 0; if (0 != 0) { goto Label_0017; } goto Label_019C; case Encog.ML.SVM.SVMType.NewSupportVectorClassification: this._paras.svm_type = 1; if ((((uint) theInputCount) | uint.MaxValue) == 0) { goto Label_000B; } goto Label_019C; case Encog.ML.SVM.SVMType.SupportVectorOneClass: goto Label_0256; case Encog.ML.SVM.SVMType.EpsilonSupportVectorRegression: this._paras.svm_type = 3; if ((((uint) theInputCount) + ((uint) theInputCount)) <= uint.MaxValue) { goto Label_019C; } goto Label_02B7; case Encog.ML.SVM.SVMType.NewSupportVectorRegression: this._paras.svm_type = 4; if (((uint) theInputCount) > uint.MaxValue) { return; } goto Label_019C; default: goto Label_01CD; } }
public SortedField(int theIndexindex, Encog.App.Analyst.CSV.Sort.SortType t, bool theAscending) { this._xc0c4c459c6ccbd00 = theIndexindex; this.Ascending = theAscending; this._x0a082a37646d8463 = t; }