예제 #1
0
        public void MedianTest()
        {
            double[] samples             = { 1, 5, 2, 5, 1, 7, 1, 9 };
            EmpiricalDistribution target = new EmpiricalDistribution(samples);

            Assert.AreEqual(target.Median, target.InverseDistributionFunction(0.5));
        }
예제 #2
0
        public void EmpiricalDistributionConstructorTest5()
        {
            double[] samples = { 5, 5, 1, 4, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 2, 3 };
            EmpiricalDistribution distribution = new EmpiricalDistribution(samples, FaultySmoothingRule(samples));


            double mean      = distribution.Mean;                                      // 3
            double median    = distribution.Median;                                    // 2.9999993064186787
            double var       = distribution.Variance;                                  // 1.2941176470588236
            double chf       = distribution.CumulativeHazardFunction(x: 4.2);          // 2.1972245773362191
            double cdf       = distribution.DistributionFunction(x: 4.2);              // 0.88888888888888884
            double pdf       = distribution.ProbabilityDensityFunction(x: 4.2);        // 0.15552784414141974
            double lpdf      = distribution.LogProbabilityDensityFunction(x: 4.2);     // -1.8609305013898356
            double hf        = distribution.HazardFunction(x: 4.2);                    // 1.3997505972727771
            double ccdf      = distribution.ComplementaryDistributionFunction(x: 4.2); //0.11111111111111116
            double icdf      = distribution.InverseDistributionFunction(p: cdf);       // 4.1999999999999993
            double smoothing = distribution.Smoothing;                                 // 1.9144923416414432

            string str = distribution.ToString();                                      // Fn(x; S)

            Assert.AreEqual(samples, distribution.Samples);
            Assert.AreEqual(1.9144923416414432, smoothing, 1.0e-15);
            Assert.AreEqual(3.0, mean);
            Assert.AreEqual(2.9999993064186787, median);
            Assert.AreEqual(1.2941176470588236, var);
            Assert.AreEqual(2.1972245773362191, chf);
            Assert.AreEqual(0.88888888888888884, cdf);
            Assert.AreEqual(0.15552784414141974, pdf, 1e-15);
            Assert.AreEqual(-1.8609305013898356, lpdf);
            Assert.AreEqual(1.3997505972727771, hf, 1e-15);
            Assert.AreEqual(0.11111111111111116, ccdf);
            Assert.AreEqual(4.1999999999999993, icdf);
            Assert.AreEqual("Fn(x; S)", str);
        }
        public void EmpiricalDistributionConstructorTest3()
        {
            double[] samples = { 5, 5, 1, 4, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 2, 3 };
            EmpiricalDistribution distribution = new EmpiricalDistribution(samples);

            double mean      = distribution.Mean;                                      // 3
            double median    = distribution.Median;                                    // 2.9999993064186787
            double var       = distribution.Variance;                                  // 1.2941176470588236
            double chf       = distribution.CumulativeHazardFunction(x: 4.2);          // 2.1972245773362191
            double cdf       = distribution.DistributionFunction(x: 4.2);              // 0.88888888888888884
            double pdf       = distribution.ProbabilityDensityFunction(x: 4.2);        // 0.181456280142802
            double lpdf      = distribution.LogProbabilityDensityFunction(x: 4.2);     // -1.7067405350495708
            double hf        = distribution.HazardFunction(x: 4.2);                    // 1.6331065212852196
            double ccdf      = distribution.ComplementaryDistributionFunction(x: 4.2); //0.11111111111111116
            double icdf      = distribution.InverseDistributionFunction(p: cdf);       // 4.1999999999999993
            double smoothing = distribution.Smoothing;                                 // 0.67595864392399474

            string str = distribution.ToString();                                      // Fn(x; S)

            Assert.AreEqual(samples, distribution.Samples);
            Assert.AreEqual(0.67595864392399474, smoothing);
            Assert.AreEqual(3.0, mean);
            Assert.AreEqual(2.9999993064186787, median);
            Assert.AreEqual(1.2941176470588236, var);
            Assert.AreEqual(2.1972245773362191, chf);
            Assert.AreEqual(0.88888888888888884, cdf);
            Assert.AreEqual(0.18145628014280227, pdf);
            Assert.AreEqual(-1.7067405350495708, lpdf);
            Assert.AreEqual(1.6331065212852196, hf);
            Assert.AreEqual(0.11111111111111116, ccdf);
            Assert.AreEqual(4.1999999999999993, icdf);
            Assert.AreEqual("Fn(x; S)", str);
        }
예제 #4
0
        public void WeightedEmpiricalDistributionConstructorTest()
        {
            double[] original     = { 5, 5, 1, 4, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 4, 3, 2, 3 };
            var      distribution = new EmpiricalDistribution(original);

            int[]    weights = { 2, 1, 1, 1, 2, 3, 1, 3, 1, 1, 1, 1 };
            double[] samples = { 5, 1, 4, 1, 2, 3, 4, 3, 4, 3, 2, 3 };
            var      target  = new EmpiricalDistribution(samples, weights);

            Assert.AreEqual(distribution.Entropy, target.Entropy, 1e-10);
            Assert.AreEqual(distribution.Mean, target.Mean);
            Assert.AreEqual(distribution.Median, target.Median);
            Assert.AreEqual(distribution.Mode, target.Mode);
            Assert.AreEqual(distribution.Quartiles.Min, target.Quartiles.Min);
            Assert.AreEqual(distribution.Quartiles.Max, target.Quartiles.Max);
            Assert.AreEqual(distribution.Smoothing, target.Smoothing);
            Assert.AreEqual(distribution.StandardDeviation, target.StandardDeviation);
            Assert.AreEqual(distribution.Support.Min, target.Support.Min);
            Assert.AreEqual(distribution.Support.Max, target.Support.Max);
            Assert.AreEqual(distribution.Variance, target.Variance);
            Assert.IsTrue(target.Weights.IsEqual(weights.Divide(weights.Sum())));
            Assert.AreEqual(target.Samples, samples);

            for (double x = 0; x < 6; x += 0.1)
            {
                double actual, expected;
                expected = distribution.ComplementaryDistributionFunction(x);
                actual   = target.ComplementaryDistributionFunction(x);
                Assert.AreEqual(expected, actual);

                expected = distribution.CumulativeHazardFunction(x);
                actual   = target.CumulativeHazardFunction(x);
                Assert.AreEqual(expected, actual);

                expected = distribution.DistributionFunction(x);
                actual   = target.DistributionFunction(x);
                Assert.AreEqual(expected, actual);

                expected = distribution.HazardFunction(x);
                actual   = target.HazardFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);

                expected = distribution.InverseDistributionFunction(Accord.Math.Tools.Scale(0, 6, 0, 1, x));
                actual   = target.InverseDistributionFunction(Accord.Math.Tools.Scale(0, 6, 0, 1, x));
                Assert.AreEqual(expected, actual);

                expected = distribution.LogProbabilityDensityFunction(x);
                actual   = target.LogProbabilityDensityFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);

                expected = distribution.ProbabilityDensityFunction(x);
                actual   = target.ProbabilityDensityFunction(x);
                Assert.AreEqual(expected, actual, 1e-15);

                expected = distribution.QuantileDensityFunction(Accord.Math.Tools.Scale(0, 6, 0, 1, x));
                actual   = target.QuantileDensityFunction(Accord.Math.Tools.Scale(0, 6, 0, 1, x));
                Assert.AreEqual(expected, actual, 1e-10);
            }
        }
예제 #5
0
        public double[,] PFE(Product[] portfolioIn, Date valueDate, Date[] fwdValueDates, double[] percentiles)
        {
            CalculateAll(portfolioIn, valueDate, fwdValueDates);

            double[,] pfe = new double[fwdValueDates.Length, percentiles.Length];

            for (int col = 0; col < regressedValues.GetLength(1); col++)
            {
                EmpiricalDistribution xDist = new EmpiricalDistribution(regressedValues.GetColumn(col));
                for (int percCount = 0; percCount < percentiles.Length; percCount++)
                {
                    pfe[col, percCount] = xDist.InverseDistributionFunction(percentiles[percCount]);
                }
            }
            return(pfe);
        }
        /// <summary>
        /// Fits the cashflows to intrinsic functions of x.  i.e. (x-K)^+ and (K-x)^+
        /// </summary>
        /// <returns></returns>
        private double[][] GetIntrinsic(Date date, int order)
        {
            var col    = _dates.FindIndex(d => d == date);
            var result = new double[_regressors.GetLength(0)][];

            for (var regressorNumber = 0; regressorNumber < _regressors.GetLength(2); regressorNumber++)
            {
                // For each regressor get the partition of the possible values
                var xVec    = GetSingleX(col, regressorNumber);
                var xDist   = new EmpiricalDistribution(xVec);
                var strikes = new double[order - 1];
                for (var i = 1; i < order; i++)
                {
                    strikes[i - 1] = xDist.InverseDistributionFunction((double)i / order);
                }
                // Create the values of the basis functions for each regressor
                for (var row = 0; row < _regressors.GetLength(0); row++)
                {
                    double[] rowValues;
                    if (regressorNumber == 0
                        ) // On the first pass for the first regressor, create the rows on the result matrix.
                    {
                        rowValues    = new double[1 + order * _regressors.GetLength(2)];
                        rowValues[0] = 1;
                        result[row]  = rowValues;
                    }
                    else
                    {
                        rowValues = result[row];
                    }

                    var x = _regressors[row, col, regressorNumber];
                    rowValues[1 + regressorNumber * order] = Math.Max(0, strikes[0] - x);
                    for (var orderCounter = 0; orderCounter < order - 1; orderCounter++)
                    {
                        rowValues[2 + regressorNumber * order + orderCounter] = Math.Max(0, x - strikes[orderCounter]);
                    }
                }
            }

            return(result);
        }