예제 #1
0
        public void TestDct2()
        {
            float[] res     = new float[6];
            float[] resDct2 = { 5.2f, -0.44856072f, 1.41480218f, -1.21159099f, 1.97989899f, 0.73330259f };

            var dct2 = new Dct2(8);

            dct2.Direct(_test, res);

            Assert.That(res, Is.EqualTo(resDct2).Within(1e-5));
        }
예제 #2
0
        public void TestDct2()
        {
            float[] res     = new float[6];
            float[] resDct2 = { 2.6f, -0.22428036f, 0.70740109f, -0.6057955f, 0.98994949f, 0.3666513f };

            var dct2 = new Dct2(8, 6);

            dct2.Direct(_test, res);

            Assert.That(res, Is.EqualTo(resDct2).Within(1e-5));
        }
예제 #3
0
        /// <summary>
        /// Standard method for computing mfcc features:
        ///     0) [Optional] pre-emphasis
        ///
        /// Decompose signal into overlapping (hopSize) frames of length fftSize. In each frame do:
        ///
        ///     1) Apply window (if rectangular window was specified then just do nothing)
        ///     2) Obtain power spectrum X
        ///     3) Apply mel filters and log() the result: Y = Log10(X * H)
        ///     4) Do dct-II: mfcc = Dct(Y)
        ///     5) [Optional] liftering of mfcc
        ///
        /// </summary>
        /// <param name="samples">Samples for analysis</param>
        /// <param name="startSample">The number (position) of the first sample for processing</param>
        /// <param name="endSample">The number (position) of last sample for processing</param>
        /// <returns>List of mfcc vectors</returns>
        public override List <FeatureVector> ComputeFrom(float[] samples, int startSample, int endSample)
        {
            Guard.AgainstInvalidRange(startSample, endSample, "starting pos", "ending pos");

            var hopSize   = HopSize;
            var frameSize = FrameSize;

            var featureVectors = new List <FeatureVector>();

            var prevSample = startSample > 0 ? samples[startSample - 1] : 0.0f;

            var i = startSample;

            while (i + frameSize < endSample)
            {
                // prepare next block for processing

                _zeroblock.FastCopyTo(_block, _fftSize);
                samples.FastCopyTo(_block, _windowSamples.Length, i);


                // 0) pre-emphasis (if needed)

                if (_preEmphasis > 0.0)
                {
                    for (var k = 0; k < frameSize; k++)
                    {
                        var y = _block[k] - prevSample * _preEmphasis;
                        prevSample = _block[k];
                        _block[k]  = y;
                    }
                    prevSample = samples[i + hopSize - 1];
                }


                // 1) apply window

                if (_window != WindowTypes.Rectangular)
                {
                    _block.ApplyWindow(_windowSamples);
                }


                // 2) calculate power spectrum

                _fft.PowerSpectrum(_block, _spectrum);


                // 3) apply mel filterbank and take log() of the result

                FilterBanks.ApplyAndLog(FilterBank, _spectrum, _logMelSpectrum);


                // 4) dct-II

                var mfccs = new float[FeatureCount];
                _dct.Direct(_logMelSpectrum, mfccs);


                // 5) (optional) liftering

                if (_lifterCoeffs != null)
                {
                    mfccs.ApplyWindow(_lifterCoeffs);
                }


                // add mfcc vector to output sequence

                featureVectors.Add(new FeatureVector
                {
                    Features     = mfccs,
                    TimePosition = (double)i / SamplingRate
                });

                i += hopSize;
            }

            return(featureVectors);
        }
예제 #4
0
        /// <summary>
        /// Standard method for computing mfcc features:
        ///     0) [Optional] pre-emphasis
        ///
        /// Decompose signal into overlapping (hopSize) frames of length fftSize. In each frame do:
        ///
        ///     1) Apply window (if rectangular window was specified then just do nothing)
        ///     2) Obtain power spectrum X
        ///     3) Apply mel filters and log() the result: Y = Log10(X * H)
        ///     4) Do dct-II: mfcc = Dct(Y)
        ///     5) [Optional] liftering of mfcc
        ///
        /// </summary>
        /// <param name="signal">Signal for analysis</param>
        /// <param name="startSample">The number (position) of the first sample for processing</param>
        /// <param name="endSample">The number (position) of last sample for processing</param>
        /// <returns>List of mfcc vectors</returns>
        public override List <FeatureVector> ComputeFrom(DiscreteSignal signal, int startSample, int endSample)
        {
            // ====================================== PREPARE =======================================

            var hopSize       = (int)(signal.SamplingRate * HopSize);
            var frameSize     = (int)(signal.SamplingRate * FrameSize);
            var windowSamples = Window.OfType(_window, frameSize);

            var fftSize = _fftSize >= frameSize ? _fftSize : MathUtils.NextPowerOfTwo(frameSize);

            _melFilterBank = FilterBanks.Triangular(fftSize, signal.SamplingRate,
                                                    FilterBanks.MelBands(_filterbankSize, fftSize, signal.SamplingRate, _lowFreq, _highFreq));

            var lifterCoeffs = _lifterSize > 0 ? Window.Liftering(FeatureCount, _lifterSize) : null;

            var fft = new Fft(fftSize);
            var dct = new Dct2(_filterbankSize, FeatureCount);


            // reserve memory for reusable blocks

            var spectrum       = new float[fftSize / 2 + 1];
            var logMelSpectrum = new float[_filterbankSize];

            var block     = new float[fftSize];   // buffer for currently processed signal block at each step
            var zeroblock = new float[fftSize];   // just a buffer of zeros for quick memset


            // ================================= MAIN PROCESSING ==================================

            var featureVectors = new List <FeatureVector>();

            var prevSample = startSample > 0 ? signal[startSample - 1] : 0.0f;

            var i = startSample;

            while (i + frameSize < endSample)
            {
                // prepare next block for processing

                zeroblock.FastCopyTo(block, zeroblock.Length);
                signal.Samples.FastCopyTo(block, windowSamples.Length, i);


                // 0) pre-emphasis (if needed)

                if (_preEmphasis > 0.0)
                {
                    for (var k = 0; k < frameSize; k++)
                    {
                        var y = block[k] - prevSample * _preEmphasis;
                        prevSample = block[k];
                        block[k]   = y;
                    }
                    prevSample = signal[i + hopSize - 1];
                }


                // 1) apply window

                if (_window != WindowTypes.Rectangular)
                {
                    block.ApplyWindow(windowSamples);
                }


                // 2) calculate power spectrum

                fft.PowerSpectrum(block, spectrum);


                // 3) apply mel filterbank and take log() of the result

                FilterBanks.ApplyAndLog(_melFilterBank, spectrum, logMelSpectrum);


                // 4) dct-II

                var mfccs = new float[FeatureCount];
                dct.Direct(logMelSpectrum, mfccs);


                // 5) (optional) liftering

                if (lifterCoeffs != null)
                {
                    mfccs.ApplyWindow(lifterCoeffs);
                }


                // add mfcc vector to output sequence

                featureVectors.Add(new FeatureVector
                {
                    Features     = mfccs,
                    TimePosition = (double)i / signal.SamplingRate
                });

                i += hopSize;
            }

            return(featureVectors);
        }