private void button2_Click(object sender, EventArgs e) { List <string> lstAttributes = new List <string>(); foreach (object item in listBox2.Items) { lstAttributes.Add(item.ToString()); } DataTableEncodingManager encodingManager = new DataTableEncodingManager(_EncodingDictionary, lstAttributes, _DataTableToEncode, checkBox1.Checked, checkBox2.Checked); encodingManager.EncodingCompleted += new WorkerCompletedEventHandler(encodingManager_EncodingCompleted); encodingManager.EncodingProgress += new WorkerProgressUpdateEventHandler(encodingManager_EncodingProgress); encodingManager.Run(); }
private void button5_Click(object sender, EventArgs e) { //Perform Prediction CreateNeuralNetwork(); DataTable dt = new DataTable("Runtime Result"); dt.Columns.Add("Pattern"); dt.Columns.Add("Position"); dt.Columns.Add("Prediction"); DataTable peptideDataTable; List <string> listOfTargetResidue = new List <string>(); listOfTargetResidue.Add(txtTargetResidues.Text); int sizeOfPeptide = int.Parse(textBox2.Text); peptideDataTable = ResidueBasedPeptideGenerator.ExtractPeptide(txtSequence.Text, listOfTargetResidue, sizeOfPeptide, false); List <string> listOfInputAttributesStringCollectionType = new List <string>(); List <string> listOfInputAttributesListType = new List <string>(); for (int index = (-1 * sizeOfPeptide); index <= sizeOfPeptide; index++) { listOfInputAttributesStringCollectionType.Add("P" + index.ToString()); listOfInputAttributesListType.Add("P" + index.ToString()); } DataTableEncodingManager encodingManager = new DataTableEncodingManager(codeDictionary, listOfInputAttributesListType, peptideDataTable, true, true); encodingManager.Run(); DataTable encodedPeptideDataTable = encodingManager._EncodedDataTable; int binaryStringLenghtPepAminoAcid = 0; foreach (object key in codeDictionary.Keys) { if (codeDictionary[key.ToString()].Length > binaryStringLenghtPepAminoAcid) { binaryStringLenghtPepAminoAcid = codeDictionary[key.ToString()].Length; } } listOfInputAttributesStringCollectionType = new List <string>(); int ctr; for (int index = (-1 * sizeOfPeptide); index <= sizeOfPeptide; index++) { for (ctr = 1; ctr <= binaryStringLenghtPepAminoAcid; ctr++) { listOfInputAttributesStringCollectionType.Add("P" + index.ToString() + "_" + ctr.ToString()); } } runtimeEngine = new RuntimeEngine(1, ANN, listOfInputAttributesStringCollectionType); DataRow row; string pattern; float predictedValue; float patternIndex = 1; float totalPattern = encodedPeptideDataTable.Rows.Count; richTextBox1.Text = "Prediction Evaluation Started..."; DataRow encodedPatternRrow; DataRow patternRow; dataGridView2.DataSource = encodedPeptideDataTable; for (patternIndex = 0; patternIndex < totalPattern; patternIndex++) { encodedPatternRrow = encodedPeptideDataTable.Rows[(int)patternIndex]; patternRow = peptideDataTable.Rows[(int)patternIndex]; pattern = ""; for (ctr = 0; ctr < listOfInputAttributesListType.Count; ctr++) { pattern = pattern + patternRow[listOfInputAttributesListType[ctr]].ToString(); } //row runtimeEngine.PatternRow = encodedPatternRrow; predictedValue = runtimeEngine.Run(); row = dt.NewRow(); row["Pattern"] = pattern; row["Prediction"] = predictedValue.ToString(); row["Position"] = patternRow["Position"].ToString(); dt.Rows.Add(row); SetMessage(pattern + " => " + predictedValue.ToString()); richTextBox1.Text = Convert.ToString((patternIndex + 1)) + " - " + pattern + " => " + predictedValue.ToString() + Environment.NewLine; } dataGridView2.DataSource = dt; }