예제 #1
0
        public static DataMatrix PredictRatings(DataMatrix R_train, DataMatrix R_unknown,
                                                int maxEpoch, double learnRate, double regularization, int factorCount)
        {
            int        userCount       = R_train.UserCount;
            int        itemCount       = R_train.ItemCount;
            int        ratingCount     = R_train.NonZerosCount;
            double     meanOfGlobal    = R_train.GetGlobalMean();
            DataMatrix R_train_unknown = R_train.IndexesOfNonZeroElements();  // For testing convergence

            // User latent vectors with default seed
            Matrix <double> P = Utils.CreateRandomMatrixFromNormal(userCount, factorCount, 0, 0.1, Config.Seed);
            // Matrix<double> P = Utils.CreateRandomMatrixFromUniform(userCount, factorCount, 0, 0.1, Config.Seed);
            // Item latent vectors with a different seed
            Matrix <double> Q = Utils.CreateRandomMatrixFromNormal(factorCount, itemCount, 0, 0.1, Config.Seed + 1);
            //Matrix<double> Q = Utils.CreateRandomMatrixFromUniform(factorCount, itemCount, 0, 0.1, Config.Seed + 1);

            // SGD
            double e_prev = double.MaxValue;

            for (int epoch = 0; epoch < maxEpoch; ++epoch)
            {
                foreach (Tuple <int, int, double> element in R_train.Ratings)
                {
                    int    indexOfUser = element.Item1;
                    int    indexOfItem = element.Item2;
                    double rating      = element.Item3;

                    double e_ij = rating - (meanOfGlobal + P.Row(indexOfUser).DotProduct(Q.Column(indexOfItem)));

                    // Update feature vectors
                    Vector <double> P_u = P.Row(indexOfUser);
                    Vector <double> Q_i = Q.Column(indexOfItem);

                    Vector <double> P_u_updated = P_u + (Q_i.Multiply(e_ij) - P_u.Multiply(regularization)).Multiply(learnRate);
                    P.SetRow(indexOfUser, P_u_updated);

                    Vector <double> Q_i_updated = Q_i + (P_u.Multiply(e_ij) - Q_i.Multiply(regularization)).Multiply(learnRate);
                    Q.SetColumn(indexOfItem, Q_i_updated);

                    #region Update feature vectors loop version

                    /*
                     * // Update feature vectors
                     * for (int k = 0; k < factorCount; ++k)
                     * {
                     *  double factorOfUser = P[indexOfUser, k];
                     *  double factorOfItem = Q[k, indexOfItem];
                     *
                     *  P[indexOfUser, k] += learnRate * (e_ij * factorOfItem - regularization * factorOfUser);
                     *  Q[k, indexOfItem] += learnRate * (e_ij * factorOfUser - regularization * factorOfItem);
                     * }
                     */
                    #endregion
                }

                // Display the current regularized error see if it converges

                double e_curr = 0;
                if (epoch == 0 || epoch == maxEpoch - 1 || epoch % (int)Math.Ceiling(maxEpoch * 0.1) == 4)
                {
                    Matrix <double> predictedMatrix      = R_train_unknown.PointwiseMultiply(P.Multiply(Q));
                    SparseMatrix    correctMatrix        = R_train.Matrix;
                    double          squaredError         = (correctMatrix - predictedMatrix).SquaredSum();
                    double          regularizationPenaty = regularization * (P.SquaredSum() + Q.SquaredSum());
                    double          objective            = squaredError + regularizationPenaty;

                    #region Linear implementation

                    /*
                     * double e = 0;
                     * foreach (Tuple<int, int, double> element in R_train.Ratings)
                     * {
                     *  int indexOfUser = element.Item1;
                     *  int indexOfItem = element.Item2;
                     *  double rating = element.Item3;
                     *
                     *  e += Math.Pow(rating - P.Row(indexOfUser).DotProduct(Q.Column(indexOfItem)), 2);
                     *
                     *  for (int k = 0; k < factorCount; ++k)
                     *  {
                     *      e += (regularization / 2) * (Math.Pow(P[indexOfUser, k], 2) + Math.Pow(Q[k, indexOfItem], 2));
                     *  }
                     * }
                     */
                    #endregion

                    // Record the current error
                    e_curr = objective;

                    // Stop the learning if the regularized error falls below a certain threshold
                    if (e_prev - e_curr < 0.001)
                    {
                        Console.WriteLine("Improvment less than 0.001, learning stopped.");
                        break;
                    }
                    e_prev = e_curr;

                    Utils.PrintEpoch("Epoch", epoch, maxEpoch, "Objective cost", objective);
                }
            }

            SparseMatrix R_predicted = new SparseMatrix(R_unknown.UserCount, R_unknown.ItemCount);
            foreach (var element in R_unknown.Matrix.EnumerateIndexed(Zeros.AllowSkip))
            {
                int    indexOfUser = element.Item1;
                int    indexOfItem = element.Item2;
                double r_predicted = meanOfGlobal + P.Row(indexOfUser) * Q.Column(indexOfItem);

                if (r_predicted > Config.Ratings.MaxRating)
                {
                    r_predicted = Config.Ratings.MaxRating;
                }
                if (r_predicted < Config.Ratings.MinRating)
                {
                    r_predicted = Config.Ratings.MinRating;
                }

                R_predicted[indexOfUser, indexOfItem] = r_predicted;
            }
            return(new DataMatrix(R_predicted));
            //return new RatingMatrix(R_unknown.PointwiseMultiply(P.Multiply(Q)));
        }