예제 #1
0
        public virtual ClassicCounter <L> ScoresOf(RVFDatum <L, F> example)
        {
            ClassicCounter <L> scores = new ClassicCounter <L>();

            Counters.AddInPlace(scores, priors);
            if (addZeroValued)
            {
                Counters.AddInPlace(scores, priorZero);
            }
            foreach (L l in labels)
            {
                double       score    = 0.0;
                ICounter <F> features = example.AsFeaturesCounter();
                foreach (F f in features.KeySet())
                {
                    int value = (int)features.GetCount(f);
                    score += Weight(l, f, int.Parse(value));
                    if (addZeroValued)
                    {
                        score -= Weight(l, f, zero);
                    }
                }
                scores.IncrementCount(l, score);
            }
            return(scores);
        }
예제 #2
0
        public virtual Edu.Stanford.Nlp.Stats.Dirichlet <E> GetPosteriorDistribution(ICounter <E> counts)
        {
            ICounter <E> newParameters = new ClassicCounter <E>(parameters);

            Counters.AddInPlace(newParameters, counts);
            return(new Edu.Stanford.Nlp.Stats.Dirichlet <E>(newParameters));
        }
        public virtual void AddAll(K1 key, ICounter <K2> c)
        {
            ClassicCounter <K2> myInner = GetCounter(key);

            Counters.AddInPlace(myInner, c);
            total += c.TotalCount();
        }
예제 #4
0
        public virtual ClassicCounter <OUT> LastRecall()
        {
            ClassicCounter <OUT> result = new ClassicCounter <OUT>();

            Counters.AddInPlace(result, previousGoldCorrect);
            Counters.DivideInPlace(result, previousGold);
            return(result);
        }
예제 #5
0
        public virtual ClassicCounter <OUT> LastPrecision()
        {
            ClassicCounter <OUT> result = new ClassicCounter <OUT>();

            Counters.AddInPlace(result, previousGuessedCorrect);
            Counters.DivideInPlace(result, previousGuessed);
            return(result);
        }
 public virtual void AddFeatures(ICollection <string> feat)
 {
     if (features == null)
     {
         features = new ClassicCounter <string>();
     }
     Counters.AddInPlace(features, feat);
 }
 public virtual void AddAll(ITwoDimensionalCounterInterface <K1, K2> c)
 {
     foreach (K1 key in c.FirstKeySet())
     {
         ICounter <K2>       inner   = c.GetCounter(key);
         ClassicCounter <K2> myInner = GetCounter(key);
         Counters.AddInPlace(myInner, inner);
         total += inner.TotalCount();
     }
 }
 public virtual void AddAll(Edu.Stanford.Nlp.Stats.TwoDimensionalIntCounter <K1, K2> c)
 {
     foreach (K1 key in c.FirstKeySet())
     {
         IntCounter <K2> inner   = c.GetCounter(key);
         IntCounter <K2> myInner = GetCounter(key);
         Counters.AddInPlace(myInner, inner);
         total += inner.TotalIntCount();
     }
 }
예제 #9
0
        /// <summary>
        /// Takes all the support vectors, and their corresponding alphas, and computes a weight
        /// vector that can be used in a vanilla LinearClassifier.
        /// </summary>
        /// <remarks>
        /// Takes all the support vectors, and their corresponding alphas, and computes a weight
        /// vector that can be used in a vanilla LinearClassifier.  This only works because
        /// we are using a linear kernel.  The Counter is over the feature indices (+1 cos for
        /// some reason svm_light is 1-indexed), not features.
        /// </remarks>
        private static ClassicCounter <int> GetWeights(IList <Pair <double, ClassicCounter <int> > > supportVectors)
        {
            ClassicCounter <int> weights = new ClassicCounter <int>();

            foreach (Pair <double, ClassicCounter <int> > sv in supportVectors)
            {
                ClassicCounter <int> c = new ClassicCounter <int>(sv.Second());
                Counters.MultiplyInPlace(c, sv.First());
                Counters.AddInPlace(weights, c);
            }
            return(weights);
        }
예제 #10
0
        public virtual void TestAddInPlaceCollection()
        {
            // initialize counter
            SetUp();
            IList <string> collection = new List <string>();

            collection.Add("p");
            collection.Add("p");
            collection.Add("s");
            Counters.AddInPlace(c1, collection);
            NUnit.Framework.Assert.AreEqual(3.0, c1.GetCount("p"));
            NUnit.Framework.Assert.AreEqual(5.0, c1.GetCount("s"));
        }
        /// <summary>
        /// Use
        /// <see cref="Edu.Stanford.Nlp.Trees.International.Spanish.SpanishXMLTreeReader"/>
        /// to load the trees from the provided files,
        /// and begin collecting some statistics to be used in later MWE cleanup.
        /// NB: Much of the important cleanup happens implicitly here; the XML tree reader triggers the
        /// tree normalization routine.
        /// </summary>
        /// <exception cref="System.Exception"/>
        /// <exception cref="System.IO.IOException"/>
        /// <exception cref="Java.Util.Concurrent.ExecutionException"/>
        private IList <Tree> LoadTrees()
        {
            bool   ner      = PropertiesUtils.GetBool(options, "ner", false);
            string encoding = new SpanishTreebankLanguagePack().GetEncoding();
            SpanishXMLTreeReaderFactory trf = new SpanishXMLTreeReaderFactory(true, true, ner, false);
            IList <Tree> trees = new List <Tree>();

            foreach (File file in inputFiles)
            {
                Pair <TwoDimensionalCounter <string, string>, IList <Tree> > ret = ProcessTreeFile(file, trf, encoding);
                Counters.AddInPlace(unigramTagger, ret.First());
                Sharpen.Collections.AddAll(trees, ret.Second());
            }
            return(trees);
        }
예제 #12
0
        /// <param name="guesses">Collection of guessed objects</param>
        /// <param name="golds">Collection of gold-standard objects</param>
        /// <param name="pw">
        ///
        /// <see cref="Java.IO.PrintWriter"/>
        /// to print eval stats
        /// </param>
        public virtual void Eval(ICollection <In> guesses, ICollection <In> golds, PrintWriter pw)
        {
            if (verbose)
            {
                System.Console.Out.WriteLine("evaluating precision...");
            }
            Pair <ClassicCounter <OUT>, ClassicCounter <OUT> > precision = EvalPrecision(guesses, golds);

            previousGuessed = precision.First();
            Counters.AddInPlace(guessed, previousGuessed);
            previousGuessedCorrect = precision.Second();
            Counters.AddInPlace(guessedCorrect, previousGuessedCorrect);
            if (verbose)
            {
                System.Console.Out.WriteLine("evaluating recall...");
            }
            Pair <ClassicCounter <OUT>, ClassicCounter <OUT> > recall = EvalPrecision(golds, guesses);

            previousGold = recall.First();
            Counters.AddInPlace(gold, previousGold);
            previousGoldCorrect = recall.Second();
            Counters.AddInPlace(goldCorrect, previousGoldCorrect);
        }
예제 #13
0
        /// <exception cref="System.IO.IOException"/>
        /// <exception cref="System.TypeLoadException"/>
        private ICounter <CandidatePhrase> LearnNewPhrasesPrivate(string label, PatternsForEachToken patternsForEachToken, ICounter <E> patternsLearnedThisIter, ICounter <E> allSelectedPatterns, ICollection <CandidatePhrase> alreadyIdentifiedWords, CollectionValuedMap
                                                                  <E, Triple <string, int, int> > matchedTokensByPat, ICounter <CandidatePhrase> scoreForAllWordsThisIteration, TwoDimensionalCounter <CandidatePhrase, E> terms, TwoDimensionalCounter <CandidatePhrase, E> wordsPatExtracted, TwoDimensionalCounter <E
                                                                                                                                                                                                                                                                                                                       , CandidatePhrase> patternsAndWords4Label, string identifier, ICollection <CandidatePhrase> ignoreWords, bool computeProcDataFreq)
        {
            ICollection <CandidatePhrase> alreadyLabeledWords = new HashSet <CandidatePhrase>();

            if (constVars.doNotApplyPatterns)
            {
                // if want to get the stats by the lossy way of just counting without
                // applying the patterns
                ConstantsAndVariables.DataSentsIterator sentsIter = new ConstantsAndVariables.DataSentsIterator(constVars.batchProcessSents);
                while (sentsIter.MoveNext())
                {
                    Pair <IDictionary <string, DataInstance>, File> sentsf = sentsIter.Current;
                    this.StatsWithoutApplyingPatterns(sentsf.First(), patternsForEachToken, patternsLearnedThisIter, wordsPatExtracted);
                }
            }
            else
            {
                if (patternsLearnedThisIter.Size() > 0)
                {
                    this.ApplyPats(patternsLearnedThisIter, label, wordsPatExtracted, matchedTokensByPat, alreadyLabeledWords);
                }
            }
            if (computeProcDataFreq)
            {
                if (!phraseScorer.wordFreqNorm.Equals(PhraseScorer.Normalization.None))
                {
                    Redwood.Log(Redwood.Dbg, "computing processed freq");
                    foreach (KeyValuePair <CandidatePhrase, double> fq in Data.rawFreq.EntrySet())
                    {
                        double @in = fq.Value;
                        if (phraseScorer.wordFreqNorm.Equals(PhraseScorer.Normalization.Sqrt))
                        {
                            @in = Math.Sqrt(@in);
                        }
                        else
                        {
                            if (phraseScorer.wordFreqNorm.Equals(PhraseScorer.Normalization.Log))
                            {
                                @in = 1 + Math.Log(@in);
                            }
                            else
                            {
                                throw new Exception("can't understand the normalization");
                            }
                        }
                        System.Diagnostics.Debug.Assert(!double.IsNaN(@in), "Why is processed freq nan when rawfreq is " + @in);
                        Data.processedDataFreq.SetCount(fq.Key, @in);
                    }
                }
                else
                {
                    Data.processedDataFreq = Data.rawFreq;
                }
            }
            if (constVars.wordScoring.Equals(GetPatternsFromDataMultiClass.WordScoring.Weightednorm))
            {
                foreach (CandidatePhrase en in wordsPatExtracted.FirstKeySet())
                {
                    if (!constVars.GetOtherSemanticClassesWords().Contains(en) && (en.GetPhraseLemma() == null || !constVars.GetOtherSemanticClassesWords().Contains(CandidatePhrase.CreateOrGet(en.GetPhraseLemma()))) && !alreadyLabeledWords.Contains(en))
                    {
                        terms.AddAll(en, wordsPatExtracted.GetCounter(en));
                    }
                }
                RemoveKeys(terms, ConstantsAndVariables.GetStopWords());
                ICounter <CandidatePhrase> phraseScores = phraseScorer.ScorePhrases(label, terms, wordsPatExtracted, allSelectedPatterns, alreadyIdentifiedWords, false);
                System.Console.Out.WriteLine("count for word U.S. is " + phraseScores.GetCount(CandidatePhrase.CreateOrGet("U.S.")));
                ICollection <CandidatePhrase> ignoreWordsAll;
                if (ignoreWords != null && !ignoreWords.IsEmpty())
                {
                    ignoreWordsAll = CollectionUtils.UnionAsSet(ignoreWords, constVars.GetOtherSemanticClassesWords());
                }
                else
                {
                    ignoreWordsAll = new HashSet <CandidatePhrase>(constVars.GetOtherSemanticClassesWords());
                }
                Sharpen.Collections.AddAll(ignoreWordsAll, constVars.GetSeedLabelDictionary()[label]);
                Sharpen.Collections.AddAll(ignoreWordsAll, constVars.GetLearnedWords(label).KeySet());
                System.Console.Out.WriteLine("ignoreWordsAll contains word U.S. is " + ignoreWordsAll.Contains(CandidatePhrase.CreateOrGet("U.S.")));
                ICounter <CandidatePhrase> finalwords = ChooseTopWords(phraseScores, terms, phraseScores, ignoreWordsAll, constVars.thresholdWordExtract);
                phraseScorer.PrintReasonForChoosing(finalwords);
                scoreForAllWordsThisIteration.Clear();
                Counters.AddInPlace(scoreForAllWordsThisIteration, phraseScores);
                Redwood.Log(ConstantsAndVariables.minimaldebug, "\n\n## Selected Words for " + label + " : " + Counters.ToSortedString(finalwords, finalwords.Size(), "%1$s:%2$.2f", "\t"));
                if (constVars.goldEntities != null)
                {
                    IDictionary <string, bool> goldEntities4Label = constVars.goldEntities[label];
                    if (goldEntities4Label != null)
                    {
                        StringBuilder s = new StringBuilder();
                        finalwords.KeySet().Stream().ForEach(null);
                        Redwood.Log(ConstantsAndVariables.minimaldebug, "\n\n## Gold labels for selected words for label " + label + " : " + s.ToString());
                    }
                    else
                    {
                        Redwood.Log(Redwood.Dbg, "No gold entities provided for label " + label);
                    }
                }
                if (constVars.outDir != null && !constVars.outDir.IsEmpty())
                {
                    string outputdir = constVars.outDir + "/" + identifier + "/" + label;
                    IOUtils.EnsureDir(new File(outputdir));
                    TwoDimensionalCounter <CandidatePhrase, CandidatePhrase> reasonForWords = new TwoDimensionalCounter <CandidatePhrase, CandidatePhrase>();
                    foreach (CandidatePhrase word in finalwords.KeySet())
                    {
                        foreach (E l in wordsPatExtracted.GetCounter(word).KeySet())
                        {
                            foreach (CandidatePhrase w2 in patternsAndWords4Label.GetCounter(l))
                            {
                                reasonForWords.IncrementCount(word, w2);
                            }
                        }
                    }
                    Redwood.Log(ConstantsAndVariables.minimaldebug, "Saving output in " + outputdir);
                    string filename = outputdir + "/words.json";
                    // the json object is an array corresponding to each iteration - of list
                    // of objects,
                    // each of which is a bean of entity and reasons
                    IJsonArrayBuilder obj = Javax.Json.Json.CreateArrayBuilder();
                    if (writtenInJustification.Contains(label) && writtenInJustification[label])
                    {
                        IJsonReader jsonReader = Javax.Json.Json.CreateReader(new BufferedInputStream(new FileInputStream(filename)));
                        IJsonArray  objarr     = jsonReader.ReadArray();
                        foreach (IJsonValue o in objarr)
                        {
                            obj.Add(o);
                        }
                        jsonReader.Close();
                    }
                    IJsonArrayBuilder objThisIter = Javax.Json.Json.CreateArrayBuilder();
                    foreach (CandidatePhrase w in reasonForWords.FirstKeySet())
                    {
                        IJsonObjectBuilder objinner = Javax.Json.Json.CreateObjectBuilder();
                        IJsonArrayBuilder  l        = Javax.Json.Json.CreateArrayBuilder();
                        foreach (CandidatePhrase w2 in reasonForWords.GetCounter(w).KeySet())
                        {
                            l.Add(w2.GetPhrase());
                        }
                        IJsonArrayBuilder pats = Javax.Json.Json.CreateArrayBuilder();
                        foreach (E p in wordsPatExtracted.GetCounter(w))
                        {
                            pats.Add(p.ToStringSimple());
                        }
                        objinner.Add("reasonwords", l);
                        objinner.Add("patterns", pats);
                        objinner.Add("score", finalwords.GetCount(w));
                        objinner.Add("entity", w.GetPhrase());
                        objThisIter.Add(objinner.Build());
                    }
                    obj.Add(objThisIter);
                    // Redwood.log(ConstantsAndVariables.minimaldebug, channelNameLogger,
                    // "Writing justification at " + filename);
                    IOUtils.WriteStringToFile(StringUtils.Normalize(StringUtils.ToAscii(obj.Build().ToString())), filename, "ASCII");
                    writtenInJustification[label] = true;
                }
                if (constVars.justify)
                {
                    Redwood.Log(Redwood.Dbg, "\nJustification for phrases:\n");
                    foreach (CandidatePhrase word in finalwords.KeySet())
                    {
                        Redwood.Log(Redwood.Dbg, "Phrase " + word + " extracted because of patterns: \t" + Counters.ToSortedString(wordsPatExtracted.GetCounter(word), wordsPatExtracted.GetCounter(word).Size(), "%1$s:%2$f", "\n"));
                    }
                }
                // if (usePatternResultAsLabel)
                // if (answerLabel != null)
                // labelWords(sents, commonEngWords, finalwords.keySet(),
                // patterns.keySet(), outFile);
                // else
                // throw new RuntimeException("why is the answer label null?");
                return(finalwords);
            }
            else
            {
                if (constVars.wordScoring.Equals(GetPatternsFromDataMultiClass.WordScoring.Bpb))
                {
                    Counters.AddInPlace(terms, wordsPatExtracted);
                    ICounter <CandidatePhrase>       maxPatWeightTerms = new ClassicCounter <CandidatePhrase>();
                    IDictionary <CandidatePhrase, E> wordMaxPat        = new Dictionary <CandidatePhrase, E>();
                    foreach (KeyValuePair <CandidatePhrase, ClassicCounter <E> > en in terms.EntrySet())
                    {
                        ICounter <E> weights = new ClassicCounter <E>();
                        foreach (E k in en.Value.KeySet())
                        {
                            weights.SetCount(k, patternsLearnedThisIter.GetCount(k));
                        }
                        maxPatWeightTerms.SetCount(en.Key, Counters.Max(weights));
                        wordMaxPat[en.Key] = Counters.Argmax(weights);
                    }
                    Counters.RemoveKeys(maxPatWeightTerms, alreadyIdentifiedWords);
                    double maxvalue = Counters.Max(maxPatWeightTerms);
                    ICollection <CandidatePhrase> words = Counters.KeysAbove(maxPatWeightTerms, maxvalue - 1e-10);
                    CandidatePhrase bestw = null;
                    if (words.Count > 1)
                    {
                        double max = double.NegativeInfinity;
                        foreach (CandidatePhrase w in words)
                        {
                            if (terms.GetCount(w, wordMaxPat[w]) > max)
                            {
                                max   = terms.GetCount(w, wordMaxPat[w]);
                                bestw = w;
                            }
                        }
                    }
                    else
                    {
                        if (words.Count == 1)
                        {
                            bestw = words.GetEnumerator().Current;
                        }
                        else
                        {
                            return(new ClassicCounter <CandidatePhrase>());
                        }
                    }
                    Redwood.Log(ConstantsAndVariables.minimaldebug, "Selected Words: " + bestw);
                    return(Counters.AsCounter(Arrays.AsList(bestw)));
                }
                else
                {
                    throw new Exception("wordscoring " + constVars.wordScoring + " not identified");
                }
            }
        }
예제 #14
0
 /// <summary>
 /// <inheritDoc/>
 ///
 /// </summary>
 public virtual void AddAll(ICounter <E> counter)
 {
     Counters.AddInPlace(this, counter);
 }
예제 #15
0
 /// <summary>Constructs a new Counter with the contents of the given Counter.</summary>
 /// <remarks>
 /// Constructs a new Counter with the contents of the given Counter.
 /// <i>Implementation note:</i> A new Counter is allocated with its
 /// own counts, but keys will be shared and should be an immutable class.
 /// </remarks>
 /// <param name="c">The Counter which will be copied.</param>
 public ClassicCounter(ICounter <E> c)
     : this()
 {
     Counters.AddInPlace(this, c);
     SetDefaultReturnValue(c.DefaultReturnValue());
 }
        public virtual void TestClassicCounterHistoricalMain()
        {
            c.SetCount("p", 0);
            c.SetCount("q", 2);
            ClassicCounter <string> small_c = new ClassicCounter <string>(c);
            ICounter <string>       c7      = c.GetFactory().Create();

            c7.AddAll(c);
            NUnit.Framework.Assert.AreEqual(c.TotalCount(), 2.0);
            c.IncrementCount("p");
            NUnit.Framework.Assert.AreEqual(c.TotalCount(), 3.0);
            c.IncrementCount("p", 2.0);
            NUnit.Framework.Assert.AreEqual(Counters.Min(c), 2.0);
            NUnit.Framework.Assert.AreEqual(Counters.Argmin(c), "q");
            // Now p is p=3.0, q=2.0
            c.SetCount("w", -5.0);
            c.SetCount("x", -4.5);
            IList <string> biggestKeys = new List <string>(c.KeySet());

            NUnit.Framework.Assert.AreEqual(biggestKeys.Count, 4);
            biggestKeys.Sort(Counters.ToComparator(c, false, true));
            NUnit.Framework.Assert.AreEqual("w", biggestKeys[0]);
            NUnit.Framework.Assert.AreEqual("x", biggestKeys[1]);
            NUnit.Framework.Assert.AreEqual("p", biggestKeys[2]);
            NUnit.Framework.Assert.AreEqual("q", biggestKeys[3]);
            NUnit.Framework.Assert.AreEqual(Counters.Min(c), -5.0, Tolerance);
            NUnit.Framework.Assert.AreEqual(Counters.Argmin(c), "w");
            NUnit.Framework.Assert.AreEqual(Counters.Max(c), 3.0, Tolerance);
            NUnit.Framework.Assert.AreEqual(Counters.Argmax(c), "p");
            if (integral)
            {
                NUnit.Framework.Assert.AreEqual(Counters.Mean(c), -1.0);
            }
            else
            {
                NUnit.Framework.Assert.AreEqual(Counters.Mean(c), -1.125, Tolerance);
            }
            if (!integral)
            {
                // only do this for floating point counters.  Too much bother to rewrite
                c.SetCount("x", -2.5);
                ClassicCounter <string> c2 = new ClassicCounter <string>(c);
                NUnit.Framework.Assert.AreEqual(3.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(2.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(-5.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(-2.5, c2.GetCount("x"));
                ICounter <string> c3 = c.GetFactory().Create();
                foreach (string str in c2.KeySet())
                {
                    c3.IncrementCount(str);
                }
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("x"));
                Counters.AddInPlace(c2, c3, 10.0);
                NUnit.Framework.Assert.AreEqual(13.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(12.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(5.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(7.5, c2.GetCount("x"));
                c3.AddAll(c);
                NUnit.Framework.Assert.AreEqual(4.0, c3.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(3.0, c3.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(-4.0, c3.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(-1.5, c3.GetCount("x"));
                Counters.SubtractInPlace(c3, c);
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(1.0, c3.GetCount("x"));
                foreach (string str_1 in c.KeySet())
                {
                    c3.IncrementCount(str_1);
                }
                NUnit.Framework.Assert.AreEqual(2.0, c3.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(2.0, c3.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(2.0, c3.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(2.0, c3.GetCount("x"));
                Counters.DivideInPlace(c2, c3);
                NUnit.Framework.Assert.AreEqual(6.5, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(6.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(2.5, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(3.75, c2.GetCount("x"));
                Counters.DivideInPlace(c2, 0.5);
                NUnit.Framework.Assert.AreEqual(13.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(12.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(5.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(7.5, c2.GetCount("x"));
                Counters.MultiplyInPlace(c2, 2.0);
                NUnit.Framework.Assert.AreEqual(26.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(24.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(10.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(15.0, c2.GetCount("x"));
                Counters.DivideInPlace(c2, 2.0);
                NUnit.Framework.Assert.AreEqual(13.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(12.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(5.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(7.5, c2.GetCount("x"));
                foreach (string str_2 in c2.KeySet())
                {
                    c2.IncrementCount(str_2);
                }
                NUnit.Framework.Assert.AreEqual(14.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(13.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(6.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(8.5, c2.GetCount("x"));
                foreach (string str_3 in c.KeySet())
                {
                    c2.IncrementCount(str_3);
                }
                NUnit.Framework.Assert.AreEqual(15.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(14.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(7.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(9.5, c2.GetCount("x"));
                c2.AddAll(small_c);
                NUnit.Framework.Assert.AreEqual(15.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(16.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(7.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(9.5, c2.GetCount("x"));
                NUnit.Framework.Assert.AreEqual(new HashSet <string>(Arrays.AsList("p", "q")), Counters.KeysAbove(c2, 14));
                NUnit.Framework.Assert.AreEqual(new HashSet <string>(Arrays.AsList("q")), Counters.KeysAt(c2, 16));
                NUnit.Framework.Assert.AreEqual(new HashSet <string>(Arrays.AsList("x", "w")), Counters.KeysBelow(c2, 9.5));
                Counters.AddInPlace(c2, small_c, -6);
                NUnit.Framework.Assert.AreEqual(15.0, c2.GetCount("p"));
                NUnit.Framework.Assert.AreEqual(4.0, c2.GetCount("q"));
                NUnit.Framework.Assert.AreEqual(7.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(9.5, c2.GetCount("x"));
                Counters.SubtractInPlace(c2, small_c);
                Counters.SubtractInPlace(c2, small_c);
                Counters.RetainNonZeros(c2);
                NUnit.Framework.Assert.AreEqual(15.0, c2.GetCount("p"));
                NUnit.Framework.Assert.IsFalse(c2.ContainsKey("q"));
                NUnit.Framework.Assert.AreEqual(7.0, c2.GetCount("w"));
                NUnit.Framework.Assert.AreEqual(9.5, c2.GetCount("x"));
            }
            // serialize to Stream
            if (c is ISerializable)
            {
                try
                {
                    ByteArrayOutputStream baos = new ByteArrayOutputStream();
                    ObjectOutputStream    @out = new ObjectOutputStream(new BufferedOutputStream(baos));
                    @out.WriteObject(c);
                    @out.Close();
                    // reconstitute
                    byte[]            bytes = baos.ToByteArray();
                    ObjectInputStream @in   = new ObjectInputStream(new BufferedInputStream(new ByteArrayInputStream(bytes)));
                    c = IOUtils.ReadObjectFromObjectStream(@in);
                    @in.Close();
                    if (!this.integral)
                    {
                        NUnit.Framework.Assert.AreEqual(-2.5, c.TotalCount());
                        NUnit.Framework.Assert.AreEqual(-5.0, Counters.Min(c));
                        NUnit.Framework.Assert.AreEqual("w", Counters.Argmin(c));
                    }
                    c.Clear();
                    if (!this.integral)
                    {
                        NUnit.Framework.Assert.AreEqual(0.0, c.TotalCount());
                    }
                }
                catch (IOException ioe)
                {
                    Fail("IOException: " + ioe);
                }
                catch (TypeLoadException cce)
                {
                    Fail("ClassNotFoundException: " + cce);
                }
            }
        }