public ConnectionString this[ConnectionDefinition def]
 {
     get
     {
         if (!_dico.ContainsKey(def))
             _dico[def] = new ConnectionString();
         return _dico[def];
     }
     set
     {
         _dico[def] = value;
     }
 }
        /// <summary>
        ///     Creates a single randomly initialised genome.
        ///     A random set of connections are made form the input to the output neurons, the number of
        ///     connections made is based on the NeatGenomeParameters.InitialInterconnectionsProportion
        ///     which specifies the proportion of all posssible input-output connections to be made in
        ///     initial genomes.
        ///     The connections that are made are allocated innovation IDs in a consistent manner across
        ///     the initial population of genomes. To do this we allocate IDs sequentially to all possible
        ///     interconnections and then randomly select some proportion of connections for inclusion in the
        ///     genome. In addition, for this scheme to work the innovation ID generator must be reset to zero
        ///     prior to each call to CreateGenome(), and a test is made to ensure this is the case.
        ///     The consistent allocation of innovation IDs ensure that equivalent connections in different
        ///     genomes have the same innovation ID, and although this isn't strictly necessary it is
        ///     required for sexual reproduction to work effectively - like structures are detected by comparing
        ///     innovation IDs only.
        /// </summary>
        /// <param name="birthGeneration">
        ///     The current evolution algorithm generation.
        ///     Assigned to the new genome as its birth generation.
        /// </param>
        public override NeatGenome CreateGenome(uint birthGeneration)
        {
            NeuronGeneList neuronGeneList = new NeuronGeneList(_inputNeuronCount + _outputNeuronCount + _hiddenNeuronCount);
            NeuronGeneList inputNeuronGeneList = new NeuronGeneList(_inputNeuronCount); // includes single bias neuron.
            NeuronGeneList outputNeuronGeneList = new NeuronGeneList(_outputNeuronCount);
            NeuronGeneList hiddenNeuronGeneList = new NeuronGeneList(_hiddenNeuronCount);

            // Create a single bias neuron.
            uint biasNeuronId = _innovationIdGenerator.NextId;
            if (0 != biasNeuronId)
            {
                // The ID generator must be reset before calling this method so that all generated genomes use the
                // same innovation ID for matching neurons and structures.
                throw new SharpNeatException("IdGenerator must be reset before calling CreateGenome(uint)");
            }

            // Note. Genes within nGeneList must always be arranged according to the following layout plan.
            //   Bias - single neuron. Innovation ID = 0
            //   Input neurons.
            //   Output neurons.
            //   Hidden neurons.
            NeuronGene neuronGene = CreateNeuronGene(biasNeuronId, NodeType.Bias);
            inputNeuronGeneList.Add(neuronGene);
            neuronGeneList.Add(neuronGene);

            // Create input neuron genes.
            for (int i = 0; i < _inputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Input);
                inputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Create output neuron genes.
            for (int i = 0; i < _outputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Output);
                outputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Create hidden neuron genes.
            for (int i = 0; i < _hiddenNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Hidden);
                hiddenNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Define all possible connections between the input and hidden neurons and the hidden and output neurons
            // (fully interconnected with minimal hidden/feature layer).
            int srcCount = inputNeuronGeneList.Count;
            int tgtCount = outputNeuronGeneList.Count;
            int hdnCount = hiddenNeuronGeneList.Count;
            ConnectionDefinition[] srcHdnConnectionDefArr = new ConnectionDefinition[srcCount * hdnCount];
            ConnectionDefinition[] hdnTgtConnectionDefArr = new ConnectionDefinition[tgtCount * hdnCount];

            for (int hdnIdx = 0, i = 0; hdnIdx < hdnCount; hdnIdx++)
            {
                for (int srcIdx = 0; srcIdx < srcCount; srcIdx++)
                {
                    srcHdnConnectionDefArr[i++] = new ConnectionDefinition(_innovationIdGenerator.NextId, srcIdx, hdnIdx);
                }
            }

            for (int hdnIdx = 0, i = 0; hdnIdx < hdnCount; hdnIdx++)
            {
                for (int tgtIdx = 0; tgtIdx < tgtCount; tgtIdx++)
                {
                    hdnTgtConnectionDefArr[i++] = new ConnectionDefinition(_innovationIdGenerator.NextId, hdnIdx, tgtIdx);
                }
            }

            // Shuffle the array of possible connections.
            Utilities.Shuffle(srcHdnConnectionDefArr, _rng);
            Utilities.Shuffle(hdnTgtConnectionDefArr, _rng);

            // Select connection definitions from the head of the list and convert them to real connections.
            // We want some proportion of all possible connections but at least one (Connectionless genomes are not allowed).
            int srcConnectionCount = (int) Utilities.ProbabilisticRound(
                srcHdnConnectionDefArr.Length*_neatGenomeParamsComplexifying.InitialInterconnectionsProportion,
                _rng);
            srcConnectionCount = Math.Max(1, srcConnectionCount);

            int tgtConnectionCount = (int)Utilities.ProbabilisticRound(
                hdnTgtConnectionDefArr.Length * _neatGenomeParamsComplexifying.InitialInterconnectionsProportion,
                _rng);
            tgtConnectionCount = Math.Max(1, tgtConnectionCount);

            // Create the connection gene list and populate it.
            ConnectionGeneList connectionGeneList = new ConnectionGeneList(srcConnectionCount + tgtConnectionCount);

            for (int i = 0; i < srcConnectionCount; i++)
            {
                ConnectionDefinition def = srcHdnConnectionDefArr[i];
                NeuronGene srcNeuronGene = inputNeuronGeneList[def._sourceNeuronIdx];
                NeuronGene tgtNeuronGene = hiddenNeuronGeneList[def._targetNeuronIdx];

                ConnectionGene cGene = new ConnectionGene(def._innovationId,
                    srcNeuronGene.InnovationId,
                    tgtNeuronGene.InnovationId,
                    GenerateRandomConnectionWeight());
                connectionGeneList.Add(cGene);

                // Register connection with endpoint neurons.
                srcNeuronGene.TargetNeurons.Add(cGene.TargetNodeId);
                tgtNeuronGene.SourceNeurons.Add(cGene.SourceNodeId);
            }

            for (int i = 0; i < tgtConnectionCount; i++)
            {
                ConnectionDefinition def = hdnTgtConnectionDefArr[i];
                NeuronGene srcNeuronGene = hiddenNeuronGeneList[def._sourceNeuronIdx];
                NeuronGene tgtNeuronGene = outputNeuronGeneList[def._targetNeuronIdx];

                ConnectionGene cGene = new ConnectionGene(def._innovationId,
                    srcNeuronGene.InnovationId,
                    tgtNeuronGene.InnovationId,
                    GenerateRandomConnectionWeight());
                connectionGeneList.Add(cGene);

                // Register connection with endpoint neurons.
                srcNeuronGene.TargetNeurons.Add(cGene.TargetNodeId);
                tgtNeuronGene.SourceNeurons.Add(cGene.SourceNodeId);
            }

            // Ensure connections are sorted.
            connectionGeneList.SortByInnovationId();

            // Create and return the completed genome object.
            return CreateGenome(_genomeIdGenerator.NextId, birthGeneration,
                neuronGeneList, connectionGeneList,
                _inputNeuronCount, _outputNeuronCount, false);
        }
        /// <summary>
        ///     TODO
        /// </summary>
        /// <param name="birthGeneration">
        ///     The current evolution algorithm generation.
        ///     Assigned to the new genome as its birth generation.
        /// </param>
        public override NeatGenome CreateGenome(uint birthGeneration)
        {
            NeuronGeneList neuronGeneList = new NeuronGeneList(_inputNeuronCount + _outputNeuronCount);
            NeuronGeneList inputNeuronGeneList = new NeuronGeneList(_inputNeuronCount); // includes single bias neuron.
            NeuronGeneList outputNeuronGeneList = new NeuronGeneList(_outputNeuronCount);

            // Create a single bias neuron.
            uint biasNeuronId = _innovationIdGenerator.NextId;
            if (0 != biasNeuronId)
            {   // The ID generator must be reset before calling this method so that all generated genomes use the
                // same innovation ID for matching neurons and structures.
                throw new SharpNeatException("IdGenerator must be reset before calling CreateGenome(uint)");
            }

            // Note. Genes within nGeneList must always be arranged according to the following layout plan.
            //   Bias - single neuron. Innovation ID = 0
            //   Input neurons.
            //   Output neurons.
            //   Hidden neurons.
            NeuronGene neuronGene = CreateNeuronGene(biasNeuronId, NodeType.Bias);
            inputNeuronGeneList.Add(neuronGene);
            neuronGeneList.Add(neuronGene);

            // Create input neuron genes.
            for (int i = 0; i < _inputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Input);
                inputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Create output neuron genes.
            for (int i = 0; i < _outputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Output);
                outputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Define all possible connections between the input and output neurons (fully interconnected).
            int srcCount = inputNeuronGeneList.Count;
            int tgtCount = outputNeuronGeneList.Count;
            ConnectionDefinition[] connectionDefArr = new ConnectionDefinition[srcCount * tgtCount];

            for (int srcIdx = 0, i = 0; srcIdx < srcCount; srcIdx++)
            {
                for (int tgtIdx = 0; tgtIdx < tgtCount; tgtIdx++)
                {
                    connectionDefArr[i++] = new ConnectionDefinition(_innovationIdGenerator.NextId, srcIdx, tgtIdx);
                }
            }

            // Shuffle the array of possible connections.
            Utilities.Shuffle(connectionDefArr, _rng);

            // Select connection definitions from the head of the list and convert them to real connections.
            // We want some proportion of all possible connections but at least one (Connectionless genomes are not allowed).
            int connectionCount = (int)Utilities.ProbabilisticRound(
                (double)connectionDefArr.Length * _neatGenomeParamsComplexifying.InitialInterconnectionsProportion,
                _rng);
            connectionCount = Math.Max(1, connectionCount);

            // Create the connection gene list and populate it.
            ConnectionGeneList connectionGeneList = new ConnectionGeneList(connectionCount);

            #region Add connection to bisas short connections
            NeuronGene srcNeuronGeneACBias = inputNeuronGeneList[0];
            if (!srcNeuronGeneACBias.TargetNeurons.Contains(outputNeuronGeneList[2].InnovationId))
            {
                NeuronGene tgtNeuronGeneAC = outputNeuronGeneList[2];
                ConnectionGene biasGene = new ConnectionGene(_innovationIdGenerator.NextId,
                                                            srcNeuronGeneACBias.InnovationId,
                                                            tgtNeuronGeneAC.InnovationId,
                                                            Math.Abs(GenerateRandomConnectionWeight()));
                connectionGeneList.Add(biasGene);

                // Register connection with endpoint neurons.
                srcNeuronGeneACBias.TargetNeurons.Add(biasGene.TargetNodeId);
                tgtNeuronGeneAC.SourceNeurons.Add(biasGene.SourceNodeId);
            }
            double conW = GenerateRandomConnectionWeight();
            for (int i = 5; i <= 6; i++)
            {
                NeuronGene srcNeuronGeneAC = inputNeuronGeneList[i];
                if (!srcNeuronGeneAC.TargetNeurons.Contains(outputNeuronGeneList[2].InnovationId))
                {
                    NeuronGene tgtNeuronGeneAC = outputNeuronGeneList[2];
                    ConnectionGene biasGene = new ConnectionGene(_innovationIdGenerator.NextId,
                                                                srcNeuronGeneAC.InnovationId,
                                                                tgtNeuronGeneAC.InnovationId,
                                                                -Math.Abs(conW));
                    connectionGeneList.Add(biasGene);

                    // Register connection with endpoint neurons.
                    srcNeuronGeneAC.TargetNeurons.Add(biasGene.TargetNodeId);
                    tgtNeuronGeneAC.SourceNeurons.Add(biasGene.SourceNodeId);
                }

                srcNeuronGeneAC = inputNeuronGeneList[i];
                if (!srcNeuronGeneAC.TargetNeurons.Contains(outputNeuronGeneList[5].InnovationId))
                {
                    NeuronGene tgtNeuronGeneAC = outputNeuronGeneList[5];
                    ConnectionGene biasGene = new ConnectionGene(_innovationIdGenerator.NextId,
                                                                srcNeuronGeneAC.InnovationId,
                                                                tgtNeuronGeneAC.InnovationId,
                                                                -Math.Abs(conW));
                    connectionGeneList.Add(biasGene);

                    // Register connection with endpoint neurons.
                    srcNeuronGeneAC.TargetNeurons.Add(biasGene.TargetNodeId);
                    tgtNeuronGeneAC.SourceNeurons.Add(biasGene.SourceNodeId);
                }
            }
            #endregion

            #region Add connection to bisas connection strength based on distance
            for (int i = 5; i <= 6; i++)
            {
                NeuronGene srcNeuronGeneAC = inputNeuronGeneList[i];
                if (!srcNeuronGeneAC.TargetNeurons.Contains(outputNeuronGeneList[0].InnovationId))
                {
                    NeuronGene tgtNeuronGeneAC = outputNeuronGeneList[0];
                    ConnectionGene biasGene = new ConnectionGene(_innovationIdGenerator.NextId,
                                                                srcNeuronGeneAC.InnovationId,
                                                                tgtNeuronGeneAC.InnovationId,
                                                                Math.Abs(GenerateRandomConnectionWeight()));
                    connectionGeneList.Add(biasGene);

                    // Register connection with endpoint neurons.
                    srcNeuronGeneAC.TargetNeurons.Add(biasGene.TargetNodeId);
                    tgtNeuronGeneAC.SourceNeurons.Add(biasGene.SourceNodeId);
                }
            }
            #endregion
            for (int i = 0; i < connectionCount; i++)
            {
                ConnectionDefinition def = connectionDefArr[i];
                NeuronGene srcNeuronGene = inputNeuronGeneList[def._sourceNeuronIdx];
                NeuronGene tgtNeuronGene = outputNeuronGeneList[def._targetNeuronIdx];

                ConnectionGene cGene = new ConnectionGene(def._innovationId,
                                                        srcNeuronGene.InnovationId,
                                                        tgtNeuronGene.InnovationId,
                                                        GenerateRandomConnectionWeight());
                if (!srcNeuronGene.TargetNeurons.Contains(cGene.TargetNodeId))
                {
                    connectionGeneList.Add(cGene);

                    // Register connection with endpoint neurons.
                    srcNeuronGene.TargetNeurons.Add(cGene.TargetNodeId);
                    tgtNeuronGene.SourceNeurons.Add(cGene.SourceNodeId);
                }
            }

            // Ensure connections are sorted.
            connectionGeneList.SortByInnovationId();

            // Create and return the completed genome object.
            return CreateGenome(_genomeIdGenerator.NextId, birthGeneration,
                                neuronGeneList, connectionGeneList,
                                _inputNeuronCount, _outputNeuronCount, false);
        }
예제 #4
0
        /// <summary>
        /// Creates a single randomly initialised genome.
        /// A random set of connections are made form the input to the output neurons, the number of
        /// connections made is based on the NeatGenomeParameters.InitialInterconnectionsProportion
        /// which specifies the proportion of all possible input-output connections to be made in
        /// initial genomes.
        ///
        /// The connections that are made are allocated innovation IDs in a consistent manner across
        /// the initial population of genomes. To do this we allocate IDs sequentially to all possible
        /// interconnections and then randomly select some proportion of connections for inclusion in the
        /// genome. In addition, for this scheme to work the innovation ID generator must be reset to zero
        /// prior to each call to CreateGenome(), and a test is made to ensure this is the case.
        ///
        /// The consistent allocation of innovation IDs ensure that equivalent connections in different
        /// genomes have the same innovation ID, and although this isn't strictly necessary it is
        /// required for sexual reproduction to work effectively - like structures are detected by comparing
        /// innovation IDs only.
        /// </summary>
        /// <param name="birthGeneration">The current evolution algorithm generation.
        /// Assigned to the new genome as its birth generation.</param>
        public NeatGenome CreateGenome(uint birthGeneration)
        {
            NeuronGeneList neuronGeneList       = new NeuronGeneList(_inputNeuronCount + _outputNeuronCount);
            NeuronGeneList inputNeuronGeneList  = new NeuronGeneList(_inputNeuronCount); // includes single bias neuron.
            NeuronGeneList outputNeuronGeneList = new NeuronGeneList(_outputNeuronCount);

            // Create a single bias neuron.
            uint biasNeuronId = _innovationIdGenerator.NextId;

            if (0 != biasNeuronId)
            {   // The ID generator must be reset before calling this method so that all generated genomes use the
                // same innovation ID for matching neurons and structures.
                throw new SharpNeatException("IdGenerator must be reset before calling CreateGenome(uint)");
            }

            // Note. Genes within nGeneList must always be arranged according to the following layout plan.
            //   Bias - single neuron. Innovation ID = 0
            //   Input neurons.
            //   Output neurons.
            //   Hidden neurons.
            NeuronGene neuronGene = CreateNeuronGene(biasNeuronId, NodeType.Bias);

            inputNeuronGeneList.Add(neuronGene);
            neuronGeneList.Add(neuronGene);

            // Create input neuron genes.
            for (int i = 0; i < _inputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Input);
                inputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Create output neuron genes.
            for (int i = 0; i < _outputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Output);
                outputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Define all possible connections between the input and output neurons (fully interconnected).
            int srcCount = inputNeuronGeneList.Count;
            int tgtCount = outputNeuronGeneList.Count;

            ConnectionDefinition[] connectionDefArr = new ConnectionDefinition[srcCount * tgtCount];

            for (int srcIdx = 0, i = 0; srcIdx < srcCount; srcIdx++)
            {
                for (int tgtIdx = 0; tgtIdx < tgtCount; tgtIdx++)
                {
                    connectionDefArr[i++] = new ConnectionDefinition(_innovationIdGenerator.NextId, srcIdx, tgtIdx);
                }
            }

            // Shuffle the array of possible connections.
            SortUtils.Shuffle(connectionDefArr, _rng);

            // Select connection definitions from the head of the list and convert them to real connections.
            // We want some proportion of all possible connections but at least one (Connectionless genomes are not allowed).
            int connectionCount = (int)NumericsUtils.ProbabilisticRound(
                (double)connectionDefArr.Length * _neatGenomeParamsComplexifying.InitialInterconnectionsProportion,
                _rng);

            connectionCount = Math.Max(1, connectionCount);

            // Create the connection gene list and populate it.
            ConnectionGeneList connectionGeneList = new ConnectionGeneList(connectionCount);

            for (int i = 0; i < connectionCount; i++)
            {
                ConnectionDefinition def           = connectionDefArr[i];
                NeuronGene           srcNeuronGene = inputNeuronGeneList[def._sourceNeuronIdx];
                NeuronGene           tgtNeuronGene = outputNeuronGeneList[def._targetNeuronIdx];

                ConnectionGene cGene = new ConnectionGene(def._innovationId,
                                                          srcNeuronGene.InnovationId,
                                                          tgtNeuronGene.InnovationId,
                                                          GenerateRandomConnectionWeight());
                connectionGeneList.Add(cGene);

                // Register connection with endpoint neurons.
                srcNeuronGene.TargetNeurons.Add(cGene.TargetNodeId);
                tgtNeuronGene.SourceNeurons.Add(cGene.SourceNodeId);
            }

            // Ensure connections are sorted.
            connectionGeneList.SortByInnovationId();

            // Create and return the completed genome object.
            return(CreateGenome(_genomeIdGenerator.NextId, birthGeneration,
                                neuronGeneList, connectionGeneList,
                                _inputNeuronCount, _outputNeuronCount, false));
        }