public void StepDown(CollisionWorld collisionWorld, float dt) { IndexedMatrix start = IndexedMatrix.Identity, end = IndexedMatrix.Identity; // phase 3: down /*float additionalDownStep = (m_wasOnGround && !onGround()) ? m_stepHeight : 0.0; * btVector3 step_drop = getUpAxisDirections()[m_upAxis] * (m_currentStepOffset + additionalDownStep); * float downVelocity = (additionalDownStep == 0.0 && m_verticalVelocity<0.0?-m_verticalVelocity:0.0) * dt; * btVector3 gravity_drop = getUpAxisDirections()[m_upAxis] * downVelocity; * m_targetPosition -= (step_drop + gravity_drop);*/ float downVelocity = (m_verticalVelocity < 0.0f ? -m_verticalVelocity : 0.0f) * dt; if (downVelocity > 0.0 && downVelocity < m_stepHeight && (m_wasOnGround || !m_wasJumping)) { downVelocity = m_stepHeight; } IndexedVector3 step_drop = upAxisDirection[m_upAxis] * (m_currentStepOffset + downVelocity); m_targetPosition -= step_drop; start._origin = m_currentPosition; end._origin = m_targetPosition; KinematicClosestNotMeConvexResultCallback callback = new KinematicClosestNotMeConvexResultCallback(m_ghostObject, upAxisDirection[m_upAxis], m_maxSlopeCosine); callback.m_collisionFilterGroup = GetGhostObject().GetBroadphaseHandle().m_collisionFilterGroup; callback.m_collisionFilterMask = GetGhostObject().GetBroadphaseHandle().m_collisionFilterMask; if (m_useGhostObjectSweepTest) { // this doesn't work.... m_ghostObject.ConvexSweepTest(m_convexShape, ref start, ref end, callback, collisionWorld.GetDispatchInfo().GetAllowedCcdPenetration()); } else { // this works.... collisionWorld.ConvexSweepTest(m_convexShape, start, end, callback, collisionWorld.GetDispatchInfo().GetAllowedCcdPenetration()); } if (callback.HasHit()) { // we dropped a fraction of the height -> hit floor m_currentPosition = MathUtil.Interpolate3(ref m_currentPosition, ref m_targetPosition, callback.m_closestHitFraction); m_verticalVelocity = 0.0f; m_verticalOffset = 0.0f; m_wasJumping = false; } else { // we dropped the full height m_currentPosition = m_targetPosition; } }
public bool RecoverFromPenetration(CollisionWorld collisionWorld) { bool penetration = false; collisionWorld.GetDispatcher().DispatchAllCollisionPairs(m_ghostObject.GetOverlappingPairCache(), collisionWorld.GetDispatchInfo(), collisionWorld.GetDispatcher()); m_currentPosition = m_ghostObject.GetWorldTransform()._origin; float maxPen = 0f; for (int i = 0; i < m_ghostObject.GetOverlappingPairCache().GetNumOverlappingPairs(); i++) { m_manifoldArray.Clear(); BroadphasePair collisionPair = m_ghostObject.GetOverlappingPairCache().GetOverlappingPairArray()[i]; if (collisionPair.m_algorithm != null) { collisionPair.m_algorithm.GetAllContactManifolds(m_manifoldArray); } for (int j = 0; j < m_manifoldArray.Count; j++) { PersistentManifold manifold = m_manifoldArray[j]; float directionSign = manifold.GetBody0() == m_ghostObject ? -1f : 1f; for (int p = 0; p < manifold.GetNumContacts(); p++) { ManifoldPoint pt = manifold.GetContactPoint(p); float dist = pt.GetDistance(); if (dist < 0.0) { if (dist < maxPen) { maxPen = dist; m_touchingNormal = pt.m_normalWorldOnB * directionSign; //?? } m_currentPosition += pt.m_normalWorldOnB * directionSign * dist * 0.2f; penetration = true; } else { //printf("touching %f\n", dist); } } //manifold->clearManifold(); } } IndexedMatrix newTrans = m_ghostObject.GetWorldTransform(); newTrans._origin = m_currentPosition; m_ghostObject.SetWorldTransform(ref newTrans); // printf("m_touchingNormal = %f,%f,%f\n",m_touchingNormal[0],m_touchingNormal[1],m_touchingNormal[2]); return(penetration); }
public void StepForwardAndStrafe(CollisionWorld collisionWorld, ref IndexedVector3 walkMove) { // printf("originalDir=%f,%f,%f\n",originalDir[0],originalDir[1],originalDir[2]); // phase 2: forward and strafe IndexedMatrix start = IndexedMatrix.Identity, end = IndexedMatrix.Identity; m_targetPosition = m_currentPosition + walkMove; float fraction = 1.0f; float distance2 = (m_currentPosition - m_targetPosition).LengthSquared(); // printf("distance2=%f\n",distance2); if (m_touchingContact) { if (IndexedVector3.Dot(m_normalizedDirection, m_touchingNormal) > 0.0f) { UpdateTargetPositionBasedOnCollision(ref m_touchingNormal, 0.0f, 1.0f); } } int maxIter = 10; while (fraction > 0.01f && maxIter-- > 0) { start._origin = (m_currentPosition); end._origin = (m_targetPosition); IndexedVector3 sweepDirNegative = m_currentPosition - m_targetPosition; KinematicClosestNotMeConvexResultCallback callback = new KinematicClosestNotMeConvexResultCallback(m_ghostObject, sweepDirNegative, 0f); callback.m_collisionFilterGroup = GetGhostObject().GetBroadphaseHandle().m_collisionFilterGroup; callback.m_collisionFilterMask = GetGhostObject().GetBroadphaseHandle().m_collisionFilterMask; float margin = m_convexShape.GetMargin(); m_convexShape.SetMargin(margin + m_addedMargin); if (m_useGhostObjectSweepTest) { m_ghostObject.ConvexSweepTest(m_convexShape, ref start, ref end, callback, collisionWorld.GetDispatchInfo().GetAllowedCcdPenetration()); } else { collisionWorld.ConvexSweepTest(m_convexShape, ref start, ref end, callback, collisionWorld.GetDispatchInfo().GetAllowedCcdPenetration()); } m_convexShape.SetMargin(margin); fraction -= callback.m_closestHitFraction; if (callback.HasHit()) { // we moved only a fraction float hitDistance = (callback.m_hitPointWorld - m_currentPosition).Length(); UpdateTargetPositionBasedOnCollision(ref callback.m_hitNormalWorld, 0f, 1f); IndexedVector3 currentDir = m_targetPosition - m_currentPosition; distance2 = currentDir.LengthSquared(); if (distance2 > MathUtil.SIMD_EPSILON) { currentDir.Normalize(); /* See Quake2: "If velocity is against original velocity, stop ead to avoid tiny oscilations in sloping corners." */ if (IndexedVector3.Dot(currentDir, m_normalizedDirection) <= 0.0f) { break; } } else { // printf("currentDir: don't normalize a zero vector\n"); break; } } else { // we moved whole way m_currentPosition = m_targetPosition; } // if (callback.m_closestHitFraction == 0.f) // break; } }
public void StepUp(CollisionWorld collisionWorld) { // phase 1: up IndexedMatrix start = IndexedMatrix.Identity, end = IndexedMatrix.Identity; m_targetPosition = m_currentPosition + upAxisDirection[m_upAxis] * (m_stepHeight + (m_verticalOffset > 0.0f ? m_verticalOffset : 0.0f)); /* FIXME: Handle penetration properly */ start._origin = (m_currentPosition + upAxisDirection[m_upAxis] * (m_convexShape.GetMargin() + m_addedMargin)); end._origin = (m_targetPosition); KinematicClosestNotMeConvexResultCallback callback = new KinematicClosestNotMeConvexResultCallback(m_ghostObject, -upAxisDirection[m_upAxis], 0.7071f); callback.m_collisionFilterGroup = GetGhostObject().GetBroadphaseHandle().m_collisionFilterGroup; callback.m_collisionFilterMask = GetGhostObject().GetBroadphaseHandle().m_collisionFilterMask; if (m_useGhostObjectSweepTest) { m_ghostObject.ConvexSweepTest(m_convexShape, ref start, ref end, callback, collisionWorld.GetDispatchInfo().GetAllowedCcdPenetration()); } else { collisionWorld.ConvexSweepTest(m_convexShape, ref start, ref end, callback, 0f); } if (callback.HasHit()) { // Only modify the position if the hit was a slope and not a wall or ceiling. if (IndexedVector3.Dot(callback.m_hitNormalWorld, upAxisDirection[m_upAxis]) > 0.0) { // we moved up only a fraction of the step height m_currentStepOffset = m_stepHeight * callback.m_closestHitFraction; m_currentPosition = MathUtil.Interpolate3(ref m_currentPosition, ref m_targetPosition, callback.m_closestHitFraction); } m_verticalVelocity = 0.0f; m_verticalOffset = 0.0f; } else { m_currentStepOffset = m_stepHeight; m_currentPosition = m_targetPosition; } }